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Abstract

How can pretrained language models (PLMs)
learn factual knowledge from the training set?
We investigate the two most important mech-
anisms: reasoning and memorization. Prior
work has attempted to quantify the number of
facts PLMs learn, but we present, using syn-
thetic data, the first study that investigates the
causal relation between facts present in train-
ing and facts learned by the PLM. For reason-
ing, we show that PLMs seem to learn to apply
some symbolic reasoning rules correctly but
struggle with others, including two-hop rea-
soning. Further analysis suggests that even
the application of learned reasoning rules is
flawed. For memorization, we identify schema
conformity (facts systematically supported by
other facts) and frequency as key factors for its
success.

1 Introduction

Pretrained language models (PLMs) like BERT
(Devlin et al., 2019), GPT-2 (Radford et al., 2019)
and RoBERTa (Liu et al., 2019) have emerged as
universal tools that capture a diverse range of lin-
guistic and – as more and more evidence suggests
– factual knowledge (Petroni et al., 2019; Radford
et al., 2019).

Recent work on knowledge captured by PLMs
is focused on probing, a methodology that identi-
fies the set of facts a PLM has command of. But
little is understood about how this knowledge is
acquired during pretraining and why. We analyze
the ability of PLMs to acquire factual knowledge
focusing on two mechanisms: reasoning and mem-
orization. We pose the following two questions:
a) Symbolic reasoning: Are PLMs able to infer
knowledge not seen explicitly during pretraining?
b) Memorization: Which factors result in success-
ful memorization of a fact by PLMs?

∗*equal contribution

We conduct our study by pretraining BERT from
scratch on synthetic corpora. The corpora are com-
posed of short knowledge-graph like facts: subject-
relation-object triples. To test whether BERT has
learned a fact, we mask the object, thereby gener-
ating a cloze-style query, and then evaluate predic-
tions.

Symbolic reasoning. We create synthetic cor-
pora to investigate six symbolic rules (equivalence,
symmetry, inversion, composition, implication,
negation); see Table 1. For each rule, we create a
corpus that contains facts from which the rule can
be learned. We test BERT’s ability to use the rule
to infer unseen facts by holding out some facts in
a test set. For example, for composition, BERT
should infer, after having seen that leopards are
faster than sheep and sheep are faster than snails,
that leopards are faster than snails.

Our setup is similar to link prediction in the
knowledge base domain and therefore can be seen
as a natural extension of the question: “Language
models as knowledge bases?” (Petroni et al., 2019).
In the knowledge base domain, prior work (Sun
et al., 2019; Zhang et al., 2020) has shown that
models that are able to learn symbolic rules are
superior to ones that are not.

Talmor et al. (2019) also investigate symbolic
reasoning in BERT using cloze-style queries. How-
ever, in their setup, there are two possible reasons
for BERT having answered a cloze-style query cor-
rectly: (i) the underlying fact was correctly inferred
or (ii) it was seen during training. In contrast,
since we pretrain BERT from scratch, we have full
control over the training setup and can distinguish
cases (i) and (ii).

A unique feature of our approach compared to
prior work (Sinha et al., 2019; Richardson et al.,
2020; Weston et al., 2016; Clark et al., 2020) is that
we do not gather all relevant facts and present them
to the model at inference time. This is a crucial
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Rule Definition Example
EQUI Equivalence (e, r, a) ⇐⇒ (e, s, a) (bird, can, fly) ⇐⇒ (bird, is able to, fly)
SYM Symmetry (e, r, f) ⇐⇒ (f, r, e) (barack, married, michelle) ⇐⇒ (michelle, married, barack)
INV Inversion (e, r, f ) ⇐⇒ (f, s, e) (john, loves, soccer) ⇐⇒ (soccer, thrills, john)
NEG Negation (e, r, a) ⇐⇒ (e, not r, b) (jupiter, is, big) ⇐⇒ (jupiter, is not, small)
IMP Implication (e, r, a) ⇒ (e, s, b), (e, s, c),... (dog, is, mammal) ⇒ (dog, has, hair), (dog, has, neocortex), ...
COMP Composition (e, r, f ) ∧ (f, s, g) ⇒ (e, t, g) (tiger, faster than, sheep) ∧ (sheep, faster than, snail)

⇒ (leopard, faster than, snail) with r = s = t

Table 1: The six symbolic rules we investigate (cf. (Nayyeri et al., 2019)) with an example in natural language for
entities e, f, g ∈ E, relations r, s, t ∈ R and attributes a, b, c ∈ A.

difference – note that human inference similarly
does not require that all relevant facts are explicitly
repeated at inference time.

We find that i) BERT is capable of learning some
one-hop rules (equivalence and implication). ii) For
others, even though high test precision suggests suc-
cessful learning, the rules were not in fact learned
correctly (symmetry, inversion and negation). iii)
BERT struggles with two-hop rules (composition).
However, by providing richer semantic context,
even two-hop rules can be learned.

Given that BERT can in principle learn some rea-
soning rules, the question arises whether it does so
for standard training corpora. We find that BERT-
large has only partially learned the types of rules
we investigate here. For example, BERT has some
notion of “X shares borders with Y” being symmet-
ric, but it fails to understand rules like symmetry in
other cases.

Memorization. During the course of pretrain-
ing, BERT sees more data than any human could
read in a lifetime, an amount of knowledge that sur-
passes its storage capacity. We simulate this with
a scaled-down version of BERT and a training set
that ensures that BERT cannot memorize all facts
in training. We identify two important factors that
lead to successful memorization. (i) Frequency:
Other things being equal, low-frequency facts are
not learned whereas frequent facts are. (ii) Schema
conformity: Facts that conform with the overall
schema of their entities (e.g., “sparrows can fly” in
a corpus with many similar facts about birds) are
easier to memorize than exceptions (e.g., “penguins
can dive”).

We publish our code for training and data gener-
ation. 1

1https://github.com/BennoKrojer/
reasoning-over-facts

2 Data

To test PLMs’ reasoning capabilities, natural cor-
pora like Wikipedia are limited since it is difficult
to control what the model sees during training. Syn-
thetic corpora provide an effective way of investi-
gating reasoning by giving full control over what
knowledge is seen and which rules are employed
in generating the data.

In our investigation of PLMs as knowledge bases,
it is natural to use (subject, relation, object) triples
as basic units of knowledge; we refer to them as
facts. The underlying vocabulary consists of a set
of entities e, f, g, ... ∈ E, relations r, s, t, ... ∈
R and attributes a, b, c, ... ∈ A, all represented
by artificial strings such as e14, r3 or a35. Two
types of facts are generated. (i) Attribute facts:
relations linking entities to attributes, e.g., (e, r, a)
= (leopard, is, fast). (ii) Entity facts: relations
linking entities, e.g., (e, r, f) = (Paris, is the capital
of, France).

In the test set, we mask the objects and generate
cloze-style queries of the form “e r [MASK]”. The
model’s task is then to predict the correct object.

2.1 Symbolic Reasoning

Table 1 gives definitions and examples for the six
rules (EQUI, SYM, INV, COMP, IMP, NEG) we
investigate. The definitions are the basis for our
corpus generation algorithms, shown in Figure 1.
SYM, INV, COMP generate entity facts and EQUI,
IMP, NEG attribute facts. We create a separate
corpus for each symbolic rule. Facts are generated
by sampling from the underlying vocabulary. For
§2.1, this vocabulary consists of 5000 entities, 500
relations and 1000 attributes. Half of the relations
follow the rule, the other half is used to generate
random facts of entity or attribute type.

We can most easily think of the corpus genera-
tion as template filling. For example, looking at
SYM in Table 1, the template is (e, r, f) ⇐⇒
(f, r, e). We first sample a relation r from R and

https://github.com/BennoKrojer/reasoning-over-facts
https://github.com/BennoKrojer/reasoning-over-facts
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EQUI
C = ∅, D = ∅
for i ∈ 1 . . . n do
(r, s) ∼ R× R
a ∼ A
for j ∈ 1 . . .m do
e ∼ E
addC=Bernoulli(0.5)
if addC then
C=C∪{(e, r, a)}
D=D∪{(e, s, a)}

else
C=C∪{(e, s, a)}
D=D∪{(e, r, a)}

SYM
C = ∅, D = ∅
for i ∈ 1 . . . n do
r ∼ R
for j ∈ 1 . . .m do
(e, f) ∼ E × E
C=C∪{(e, r, f)}
D=D∪{(f, r, e)}

INV
C = ∅, D = ∅
for i ∈ 1 . . . n do
(r, s) ∼ R× R
for j ∈ 1 . . .m do
(e, f) ∼ E × E
C=C∪{(e, r, f)}
D=D∪{(f, s, e)}

COMP
C = ∅, D = ∅
for i ∈ 1 . . . n do
(r, s, t) ∼ R× R× R
for j ∈ 1 . . .m do
(e, f, g) ∼ E×E×E
C=C∪{(e, r, f)}
C=C∪{(f, s, g)}
D=D∪{(e, t, g)}

IMP
C = ∅, D = ∅
for i ∈ 1 . . . n do
(r, s) ∼ R× R
for k ∈ 1 . . . l do
b ∼ A
α ∼ A× . . .× A
for j ∈ 1 . . .m do
e ∼ E
C=C∪{(e, r, b)}
for a ∈ α do
D=D∪{(e, s, a)}

NEG
C = ∅, D = ∅
for i ∈ 1 . . . n do
r ∼ R
for j ∈ 1 . . .m do
e ∼ E
a ∼ A
b = antonym(a)
negated=Bernoulli(0.5)
if negated then
C=C∪{(e, not r, a)}
D=D∪{(e, r, b)}

else
C=C∪{(e, r, a)}
D=D∪{(e, not r, b)}

Figure 1: Pseudocode for symbolic reasoning corpus generation. “a ∼ A” stands for: a is randomly sampled
from A. (“α ∼ A × . . . × A”: a tuple of 4 attributes is sampled.) The vocabulary consists of entities e, f, g ∈ E,
relations r, s, t ∈ R and attributes a, b, c ∈ A. Train/test corpora are formed from C and D. n = 20, m = 800,
l = 2. See §2.1 for details.

FREQ
C = ∅
m = 1
for i ∈ 1 . . . n do
(e, f) ∼ E × E
r ∼ R
for j ∈ 1 . . .m do
C = C ∪ {(e, r, f)}

if i%(n/100) == 0 then
m+ = 1

SCHEMA
C = ∅
for i ∈ 1 . . . k do
δ ∼ E × . . .× E
for r inR do
schema = Bernoulli(0.5)
if schema then
α ∼ A× ...× A
for e ∈ δ do

for a ∈ α do
add = Bernoulli(0.5)
if add then
C = C ∪ {(e, r, a)}

else
exception = Bernoulli(0.5)
if exception then
a ∼ A
C = C ∪ {(e, r, a)}

else
for e ∈ δ do
add = Bernoulli(0.5)
if add then
a ∼ A
C = C ∪ {(e, r, a)}

Figure 2: Pseudocode for memorization corpus gen-
eration. “a ∼ A” stands for: a is randomly sampled
from A. (“δ ∼ E × . . .×E”: a tuple of 250 entities is
sampled. “α ∼ A × ... × A”: a tuple of 10 attributes
is sampled.) The vocabulary consists of entities e ∈ E,
relations r ∈ R and attributes a ∈ A. C is both training
set and test set. n = 800,000, k = 250. See §2.2 for
details.

then two entities e and f from E. We then add
(e, r, f) and (f, r, e) to the corpus – this is one
instance of applying the SYM rule from which
symmetry can be learned. Similarly, the other rules
also generate instances.

For each of the other rules, the template filling
is modified to conform with its definition in Ta-
ble 1. INV corresponds directly to SYM. COMP is
a two-hop rule whereas the other five are one-hop
rules. EQUI generates instances from which one
can learn that the relations r and s are equivalent.
IMP generates implication instances, e.g., (e, r, b)
(= (dog, is, mammal)) implies (e, s, a1) (= (dog,
has, hair)), (e, s, a2) (= (dog, has, neocortex)) etc.
Per premise we create four implied facts.

For NEG, we generate pairs of facts (e, r, a) (=

(jupiter, is, big)) and (e, not r, b) (= (jupiter, is not,
small)). We define the antonym function in Figure 1
(NEG) as returning for each attribute its antonym,
i.e., attributes are paired, each pair consisting of a
positive and a negative attribute.

Each of the six generation algorithms has the
outer loop “for i ∈ 1. . .n” (where n = 20) that
samples one, two or three relations (and potentially
attributes) and generates a subcorpus for these rela-
tions; and the inner loop “for j ∈ 1. . .m” (where
m = 800) that generates the subcorpus of instances
for the sampled relations.

Train/test split. The data generation algorithms
generate two subsets of factsC andD, see Figure 1.
For each rule, we merge all of C with 90% of D
(randomly sampled) to create the training set. The
rest of D (i.e., the other 10%) serves as the test set.

For some of the cloze queries “e r [MASK]”,
there are multiple correct objects that can be sub-
stituted for MASK. Thus, we rank predictions and
compute precision at m, i.e., precision in the top
m where m is the number of correct objects. We
average precision at m for all cloze queries.

This experimental setup allows us to test to what
extent BERT learns the six rules, i.e., to what extent
the facts in the test set are correctly inferred from
their premises in the training set.

2.2 Memorization

For memorization, the vocabulary consists of
125,000 entities, 20 relations and 2250 attributes.

Effect of frequency on memorization. Our
first experiment tests how the frequency of a fact in-
fluences its successful memorization by the model.
Figure 2 (left, FREQ) gives the corpus generation
algorithm. The outer loop generates 800,000 ran-
dom facts. These are divided up in groups of 8000.
A fact in the first group of 8000 is added once to
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the corpus, a fact from the second group is added
twice and so on. A fact from the last group is added
100 times to the corpus. The resulting corpus C is
both the training set and the test set.

Effect of schema conformity. In this experi-
ment, we investigate the hypothesis that a fact can
be memorized more easily if it is schema confor-
mant.

Figure 2 (right, SCHEMA) gives the corpus gen-
eration algorithm. We first sample an entity group:
δ ∼ E × . . . × E. For each group, relations are
either related to the schema (“if schema”) or are
not (else clause). For example, for the schema “pri-
mate” the relations “eat” (eats fruit) and “climb”
(climbs trees) are related to the schema, the rela-
tion “build” is not since some primates build nests
and treehouses, but others do not.

For non-schema relations, facts with random
attributes are added to the corpus. In Figure 4,
we refer to these facts as (facts with) unique at-
tributes. For relations related to the schema, we
sample the attributes that are part of the schema:
α ∼ A × ... × A (e.g., (“paranut”,. . . ,”banana”)
for “eat”). Facts are then generated involving these
attributes and added to the corpus. In Figure 4, we
refer to these facts as (facts with) group attributes.
We also generate exceptions (e.g., “eats tubers”)
since schemas generally have exceptions.

Similarly, the two lines “add = Bernoulli(0.5)”
are intended to make the data more realistic: for a
group of entities, its relations and its attributes, the
complete cross product of all facts is not available
to the human learner. For example, a corpus may
contain sentences stating that chimpanzees and ba-
boons eat fruit, but none that states that gorillas eat
fruit.

For this second memorization experiment, train-
ing set and test set are again identical (i.e., = C).

In a final experiment, we modify SCHEMA as
follows: exceptions are added 10 times to the cor-
pus (instead of once). This tests the interaction
between schema conformity and frequency.

3 BERT Model

BERT uses a deep bidirectional Transformer
(Vaswani et al., 2017) encoder to perform masked
language modeling. During pretraining, BERT ran-
domly masks positions and learns to predict fillers.
We use source code provided by Wolf et al. (2019).
Following (Liu et al., 2019), we perform dynamic
masking and no next sequence prediction.

rule train test
EQUI 99.95 98.28
SYM 99.97 98.40
INV 99.99 87.21
IMP 100.00 80.53
NEG 99.98 20.54
COMP 99.98 0.01
ANTI 100.00 14.85

Table 2: Precision in % of completing facts for sym-
bolic rules. Training corpora generated as specified in
Figure 1. See §4.1 for detailed discussion.

(A) NEG (B) COMP

Figure 3: Learning curves for symbolic reasoning.
(A) shows precision for NEG with a varying number
of attributes. A reduction to 125 attributes enables
BERT to successfully apply antonym negation to the
test set. (B) shows test set precision for COMP follow-
ing the standard setup (orange) and an enhanced ver-
sion (blue). Only in enhanced, i.e., with the introduc-
tion of additional facts adding more semantic informa-
tion, is COMP generalized.

For symbolic rules, we start with BERT-base
and tune hyperparameters. We vary the number
of layers to avoid that rule learning fails due to
over-parametrization, see appendix for details. We
report precision based on optimal configuration.

In the memorization experiment, our goal is to
investigate the effect of frequency on memorization.
Due to a limited compute infrastructure, we scale
down BERT to a single hidden layer with 3 atten-
tion heads, a hidden size of 192 and an intermediate
size of 768.

4 Results, Analysis and Discussion

4.1 Symbolic Reasoning
Table 2 gives results for the symbolic reasoning
experiments. BERT has high test set precision
for EQUI, SYM, INV and IMP. As we see in Ta-
ble 1, these rules share that they are “one-hop”:
The inference can be straightforwardly made from
a single premise to a conclusion, e.g., “(barack
married michelle)” implies “(michelle married
barack)”. The crucial difference to prior work is
that the premise is not available at inference time.
“(michelle married barack)” is correctly inferred by
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the model based on its memory of having seen the
fact “(barack married michelle)” in the training set
and based on the successful acquisition of the sym-
metry rule. Table 2 seems to suggest that BERT is
able to learn one-hop rules and it can successively
apply these rules in a natural setting in which the
premise is not directly available.

In the rest of this section, we investigate these
results further for SYM, INV, NEG and COMP.

4.1.1 Analysis of SYM and INV
Table 2 seems to indicate that BERT can learn that
a relation r is symmetric (SYM) and that s and t are
inverses (INV) – the evidence is that it generates
facts based on the successfully acquired symmetry
and inversion properties of the relations r, s and t.
We now show that while BERT acquires SYM and
INV partially, it also severely overgenerates. Our
analysis points to the complexity of evaluating rule
learning in PLMs and opens interesting avenues for
future work.

Our first observation is that in the SYM experi-
ment, BERT understands all relations to be sym-
metric. Recall that of the total of 500 relations,
250 are symmetric and 250 are used to generate
random facts. If we take a fact with a random
relation r, say (e, r, f), and prompt BERT with
“(f, r, [MASK])”, then e is predicted in close to
100% of cases. So BERT has simply learned that
any relation is symmetric as opposed to distinguish-
ing between symmetric and non-symmetric rela-
tions.

This analysis brings to light that our setup is
unfair to BERT: it never sees evidence for non-
symmetry. To address this, we define a new experi-
ment, which we call ANTI because it includes an
additional set of “anti” relations that are sampled
from R∗ with R∗∩ R =∅ and |R| = |R∗|. ANTI
facts take the following form: (e, r, f), (f, r, g)
with e 6= g. Using this ANTI template we follow
the standard data generation procedure. The corpus
is now composed of symmetric, anti-symmetric
and random facts. ANTI training data indicate to
BERT that r ∈ R∗ is not symmetric since many
instances of r facts are seen, with specific entities
(f in the example) occurring in both slots, but there
is never a symmetric example.

Table 2 (ANTI) shows that BERT memorizes
ANTI facts seen during training but on test, BERT
only recognizes 14.85% of ANTI facts as non-
symmetric. So it still generalizes from the 250 sym-
metric relations to most other relations (85.15%),

even those without any “symmetric” evidence in
training. So it is easy for BERT to learn the concept
of symmetry, but it is hard to teach it to distinguish
between symmetric and non-symmetric relations.

Similar considerations apply to INV. BERT suc-
cessfully predicts correct facts once it has learned
that s and t are inverses – but it overgeneralizes
by also predicting many incorrect facts; e.g., for
(e, s, f) in train, it may predict (f, t, e) (correct),
but also (e, t, f) and (f, s, e) (incorrect).

In another INV experiment, we add, for each pair
of (f, r, e) and (e, s, f) two facts that give evidence
of non-symmetry: (f, r, g) and (e, s, h) with e 6= g
and h 6= f . We find that test set precision for
INV (i.e., inferring (e, s, f) in test from (f, r, e) in
train) drops to 17% in this scenario. As for SYM,
this indicates how complex the evaluation of rule
learning is.

In summary, we have found that SYM and INV
are learned in the sense that BERT generates cor-
rect facts for symmetric and inverse relations. But
it severely overgenerates. Our analysis points to
a problem of neural language models that has not
received sufficient attention: they can easily learn
that the order of arguments is not important (as
is the case for SYM relations), but it is hard for
them to learn that this is the case only for a subset
of relations. Future work will have to delineate
the exact scope of this finding – e.g., it may not
hold for much larger training sets with millions of
occurrences of each relation. Note, however, that
human learning is likely to have a bias against sym-
metry in relations since the vast majority of verbs2

in English (and presumably relations in the world)
is asymmetric. So unless we have explicit evidence
for symmetry, we are likely to assume a relation is
non-symmetric. Our results suggest that neural lan-
guage models do not have this bias – which would
be problematic when using them for learning from
natural language text.

4.1.2 Analysis of NEG
NEG was the only rule for which parameter tuning
improved performance. A reduction to four layers
obtained optimal results.

In Table 2 we report a test set precision of
20.54%. Why is negation more challenging than
implication? Implication allows the model to gen-
eralize over several entities all following the same
rule (e.g., every animal that is a mammal has a

2For example, almost all of the verb classes in (Levin,
1993) are asymmetric.
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neocortex). This does not hold for negation (e.g., a
leopard is fast but a snail is not fast). BERT must
learn antonym negation from a large number of
possible combinations. By reducing the number of
possible combinations (decreasing the number of
attributes from 1000 to 500, 250 and 125) BERT’s
test set precision increases, see Figure 3 (A). With
125 attributes a precision of 91% is reached. A re-
duction of attributes makes antonym negation very
similar to implication.

We investigate BERT’s behavior concerning
negation further by adding an additional attribute
set A∗, with A∗ ∩ A =∅ and |A| = |A∗| to the vo-
cabulary. A∗ does not follow an antonym schema.
We sample a ∈ A∗, e ∈ E, r ∈ R to add additional
random facts of the type (e, r, a) or (e, not r, a)
to NEG’s training set. After training we test on
the additional random facts seen during training by
inserting or removing the negation marker. We see
that BERT is prone to predict both (e, r, b) and (e,
not r, b) for b ∈ A∗ (for 38%). Antonym negation
was still learned.

We conclude that antonym negation can be
learned via co-occurrences but a general concept
of negation is not understood.

This is in agreement with prior work (Ettinger,
2020; Kassner and Schütze, 2020) showing that
BERT trained on natural language corpora is as
likely to generate a true statement like “birds can
fly” as a factually false negated statement like
“birds cannot fly”.

4.1.3 Analysis of COMP
Why does BERT not learn COMP? COMP differs
from the other rules in that it involves two-hop rea-
soning. Recall that a novelty of our experimental
setup is that premises are not presented at infer-
ence time – two-hop reasoning requires that two
different facts have to be “remembered” to make
the inference, which intuitively is harder than a one-
hop inference. Figure 3 (B) shows that the problem
is not undertraining (orange line).

Similar to the memorization experiment, we in-
vestigate whether stronger semantic structure in
form of a schema can make COMP learnable. We
refer to this new experiment as COMP enhanced.
Data generation is defined as follows: Entities are
divided into groups of 10. Relations are now de-
fined between groups in the sense that the mem-
bers of a group are “equivalent”. More formally,
we sample entity groups (groups of 10) E1, E2,
E3 and relations r, s, t. For all e1 ∈ E1, e2 ∈

E2, e3 ∈ E3, we add (e1, r, e2) and (e2, s, e3) to
C and (e1, t, e3) to D. In addition, we introduce a
relation “samegroup” and add, for all em, en ∈ Ei,
(em, samegroup, en) to C – this makes it easy to
learn group membership. As before, the training
set is the merger of C and 90% of D and the test
set is the rest of D.

Similar semantic structures occur in real data.
The simplest case is a transitive example: (r) planes
(group 1) are faster than cars (group 2), (s) cars
(group 2) are faster than bikes (group 3), (t) planes
(group 1) are faster than bikes (group 3).

Figure 3 (B) shows that BERT can learn COMP
moderately well from this schema-enhanced corpus
(blue curve): precision is clearly above 50% and
peaks at 76%.

The takeaway from this experiment is that two-
hop rules pose a challenge to BERT, but that they
are learnable if entities and relations are embedded
in a rich semantic structure. Prior work (Brown
et al., 2020) has identified the absence of “do-
main models” (e.g., a domain model for common
sense physics) as one shortcoming of PLMs. To
the extent that PLMs lack such domain knowledge
(which we simulate here with a schema), they may
not be able to learn COMP.

4.2 Natural Language Corpora

In this section, we investigate to what extent the
PLMs BERT and RoBERTa have learned SYM and
INV from natural language corpora. See Table 3.
For “smaller/larger” (INV), we follow Talmor et al.
(2019) and test which of the two words is selected
as the more likely filler in a pattern like “Jupiter
is [MASK] than Mercury”. For the other three
relations (“shares borders with” (SYM), “is the op-
posite of” (SYM), “is the capital of” / “’s capital is”
(INV)), we test whether the correct object is pre-
dicted in the pattern “e r [MASK]” (as in the rest
of the paper). We give the number of (i) consistent
(“cons.”), (ii) correct and consistent (“correct”) and
(iii) inconsistent (“inc.”) predictions. (A prediction
is consistent and incorrect if it is consistent with
the rule, but factually incorrect.)

In more detail, we take a set of entities (coun-
tries like “Indonesia”, cities like “Jakarta”) or adjec-
tives like “low” that are appropriate for the relation
and test which of the entities / adjectives is pre-
dicted. For each of the five relations, we run both
BERT-large-cased and RoBERTa-large and report
the more consistent result.
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relation rule completions examples
cons. correct inc.

shares borders with SYM 152 152 2
(ecuador,peru)
(togo,ghana), (ghana,nigeria)

is the opposite of SYM 179 170 71
(demand,supply)
(injustice,justice), (justice,truth)

is the capital of (C-of)
’s capital is (s-C-is) INV 59 59 1

(indonesia,s-C-is,jakarta)
(canada,s-C-is,ottawa), (ottawa,C-of,ontario)

is smaller/larger than
(countries) INV 54 23 99

(russia,larger,canada), (canada,smaller,russia)
(brazil,smaller,russia), (russia,smaller,brazil)

is smaller/larger than
(planets) INV 9 9 36

(jupiter,larger,mercury), (mercury,smaller,jupiter)
(sun,bigger,earth), (earth,bigger,sun)

Table 3: Can PLMs (BERT and RoBERTa) learn SYM and INV from natural language corpora? For
“smaller/larger”, we follow Talmor et al. (2019) and test which of the two words is selected as a filler in a pat-
tern like “Jupiter is [MASK] than Mercury”. For the other three relations, we test whether the correct object is
predicted (as in the rest of the paper). We give the number of (i) consistent (“cons.”), (ii) correct and consistent
(“correct”) and (iii) inconsistent (“inc.”) predictions. Blue: consistent examples. Red: inconsistent examples. (We
make the simplifying assumption that “justice” can only have one opposite.)

Consistency and accuracy are high for “shares
borders with” and “capital”. However, this is most
likely due to the fact that many of these facts oc-
cur verbatim in the training corpora of the two
models. For example, Google shows 54,800 hits
for “jakarta is the capital of indonesia” and 1,290
hits for “indonesia’s capital is jakarta” (both as a
phrase). It is not possible to determine which factor
is decisive here: successful rule-based inference or
memorization. The ultimate futility of this analysis
is precisely the reason that we chose to work with
synthetic data.

Consistency for “is the opposite of” is much
lower than for the first two relations, but still de-
cent. To investigate this relation further, we also
tested the relation “is the same as”. It turns out
that many of the “opposite” objects are also pre-
dicted for “is the same as”, e.g., “high is the same
as low” and “low is the same as high” where the
predicted word is in italics. This indicates that the
models have not really learned that “is the opposite
of” is symmetric, but rather know that antonyms
are closely associated and often occur together in
phrases like “X is the opposite of Y”, “X and Y”,
“X noun, Y noun” (e.g., “good cop, bad cop”) etc.
Apparently, this is then incorrectly generalized to
“is the same as”.

Consistency and accuracy are worse for
“smaller/larger”. “smaller/larger” sentences of the
sort considered here are probably rarer in genres
like Wikipedia than “shares borders with” and “is
the capital of”. A Wikipedia article about a coun-
try will always say what its capital is and which
countries it borders, but it will not enumerate the
countries that are smaller or larger.

In summary, although we have shown that pre-
trained language models have some ability to learn
symbolic rules, there remains considerable doubt
that they can do so based on natural corpora.

4.3 Memorization

Experimental results for the memorization experi-
ments are shown in Figure 4.

(A) shows that frequent facts are memorized well
(0.8 for frequency 100) and that rare facts are not
(≈ 0.0 for frequencies < 15).

(B) shows that BERT memorizes schema confor-
mant facts perfectly (“group attributes”). Accuracy
for exceptions is clearly lower than those of schema
conformant facts: about 80%. The frequency of
each fact in the training corpus in this experiment is
1. Overall, the total amount of exceptions is much
lower than the total amount of schema conformant
facts.

(C) shows that exceptions are perfectly learned if
10 copies of each exception are added to the corpus
– instead of 1 in (B). In this case, limited capacity
affects memorization of schema-conformant facts:
accuracy drops to ≈ 0.9.

In summary, we find that both frequency
and schema conformity facilitate memorization.
Schema conformant facts and exceptions compete
for memory if memory capacity is limited – depend-
ing on frequency one or the other is preferentially
learned by BERT.

5 Limitations

Our experimental design makes many simplifying
assumptions: i) Variation in generated data is more
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(A) frequency (B) schema conformity, (C) schema conformity,
exceptions rare exceptions frequent

Figure 4: Memorization experiments. We investigate the effect of frequency and schema conformity on memo-
rization. (A) Frequent facts are memorized well (0.8 for frequency 100), rare facts are not (≈ 0.0 for frequencies
< 15). (B) BERT memorizes schema conformant facts perfectly (“group attributes”). Accuracy for rare exceptions
is clearly lower (80%). (C) Exceptions are perfectly learned if 10 copies of each exception are added to the cor-
pus – instead of 1 in (B). In this case, limited capacity affects memorization of schema-conformant facts (“group
attributes” drops to ≈ 0.9).

limited than in naturally occurring data. ii) Seman-
tics are deliberately restricted to one rule only per
generated corpus. iii) We do not investigate effects
of model and corpus size.

i) In natural corpora relations can have more
than two arguments, entities can have several to-
kens, natural data are noisier than synthetic data
etc. Also, we study each rule in isolation.

ii) While our simplified corpora make learning
easier in some respects, they may make it harder in
others. Each corpus is focused on providing train-
ing material for one symbolic rule, but it does not
contain any other “semantic” signal that may be
helpful in learning symbolic reasoning: distribu-
tional signals, entity groupings, hierarchies, rich
context etc. The experimental results of “COMP
enhanced” indicate that indeed such signals are ben-
eficial to symbolic rule learning. The interplay of
such additional sources of information for learning
with symbolic rules is an interesting question for
follow up work.

iii) Results are based on BERT-base and scaled-
down versions of BERT-base only, just as training
corpora are orders of magnitude smaller than natu-
ral training corpora. We varied model and corpus
sizes within the limits of our compute infrastruc-
ture, but did not systematically study their effect
on our findings.

Our work is an initial exploration of the question
whether symbolic rules can be learned in principle,
but we view it mainly as a starting point for future
work.

6 Related Work

Radford et al. (2019) and Petroni et al. (2019) show
in a zero-shot question answering setting that PLMs
have factual knowledge. Our main question is: un-
der what conditions do PLMs learn factual knowl-
edge and do they do so through memorization or
rule-based inference?

Sun et al. (2019) and Zhang et al. (2020) show
in the knowledge graph domain that models that
have the ability to capture symbolic rules like SYM,
INV and COMP outperform ones that do not. We
investigate this question for PLMs that are trained
on language corpora.

Talmor et al. (2019) test PLMs’ symbolic reason-
ing capabilities probing pretrained and finetuned
models with cloze-style queries. Their setup makes
it impossible to distinguish whether a fact was in-
ferred or memorized during pretraining. Our syn-
thetic corpora allow us to make this distinction.

Clark et al. (2020) test finetuned BERT’s reason-
ing capabilities, but they always make premise and
conclusion locally available to the model, during
training and inference. This is arguably not the way
much of human inference works; e.g., the fact F
that X borders Y allows us to infer that Y borders
X even if we were exposed to F a long time ago.

Richardson et al. (2020) introduce synthetic
corpora testing logic and monotonicity reasoning.
They show that BERT performs poorly on these
new datasets, but can be quickly finetuned to good
performance. The difference to our work again is
that they make the premise available to the model
at inference time.

For complex reasoning QA benchmarks (Yang
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et al., 2018; Sinha et al., 2019), PLMs are finetuned
to the downstream tasks. Their performance is
difficult to analyze: it is not clear whether any
reasoning capability is learned by the PLM or by
the task specific component.

Another line of work (Gururangan et al., 2018;
Kaushik and Lipton, 2018; Dua et al., 2019; Mc-
Coy et al., 2019) shows that much of PLMs’ per-
formance on reasoning tasks is due to statistical
artifacts in datasets and does not exhibit true rea-
soning and generalization capabilities. With the
help of synthetic corpora, we can cleanly investi-
gate PLMs’ reasoning capabilities.

Hupkes et al. (2020) study the ability of neural
models to capture compositionality. They do not
investigate our six rules, nor do they consider the ef-
fects of fact frequency and schema conformity. Our
work confirms their finding that transformers have
the ability to capture both rules and exceptions.

A large body of research in psychology and cog-
nitive science has investigated how some of our
rules are processed in humans, e.g., Sloman (1996)
for implication. There is also a lively debate in
cognitive science as to how important rule-based
reasoning is for human cognition (Politzer, 2007).

Yanaka et al. (2020); Goodwin et al. (2020) are
concurrent studies of systematicity in PLMs. The
first shows that monotonicity inference is feasible
for syntactic structures close to the ones observed
during training. The latter shows that PLMs can ex-
hibit high over-all performance on natural language
inference despite being non-systematic.

Roberts et al. (2020) show that the amount of
knowledge captured by PLMs increases with model
size. Our memorization experiments investigate
the factors that determine successful acquisition of
knowledge.

Guu et al. (2020) modify the PLM objective to
incentivize knowledge acquisition. They do not
consider symbolic rule learning nor do they analyze
what factors influence successful memorization.

Based on perceptrons and convolutional neural
networks, Arpit et al. (2017); Zhang et al. (2017)
study the relation of generalizing from real struc-
tured data vs. memorizing random noise in the
image domain, similar to our study of schema-
conformant facts and outliers. They do not study
transformer based models trained on natural lan-
guage.

7 Conclusion

We studied BERT’s ability to capture knowledge
from its training corpus by investigating its reason-
ing and memorization capabilities. We identified
factors influencing what makes successful mem-
orization possible and what is learnable beyond
knowledge explicitly seen during training. We saw
that, to some extent, BERT is able to infer facts not
explicitly seen during training via symbolic rules.

Overall, effective knowledge acquisition must
combine both parts of this paper: memorization
and symbolic reasoning. A PLM is not able to
store an unlimited amount of knowledge. Through
acquiring reasoning capabilities, knowledge gaps
can be filled based on memorized facts. A schema-
conformant fact (“pigeons can fly”) need not be
memorized if there are a few facts that indicate
that birds fly and then the ability of flight can be
filled in for the other birds. The schema conformity
experiments suggest that this is happening. It is
easier to capture knowledge that conforms with a
schema instead of memorizing facts one by one.

There are several directions for future work.
First, we made many simplifying assumptions that
should be relaxed in future work. Second, how
can we improve PLMs’ ability to learn symbolic
rules? We see two avenues here, either additional
inductive biases could be imposed on PLMs’ archi-
tectures or training corpora could be modified to
promote learning of symbolic rules.
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A Hyperparameters

A.1 Model hyperparameters
For all reported results we trained with a batch-size
of 1024 and a learning rate of 6e-5.

Our experiments for symbolic rules started with
the BERT-base model with 12 layers, 12 attention
heads, hidden size of 768 and intermediate size of
3072. For rules with a low test precision (NEG and
COMP) we then conducted a restricted grid search
(restricted due to limited compute infrastructure):
We tried all possible numbers of layers from 1 to 12
and then only considered the best result. For NEG
the best performance came from 4 layers, whereas
COMP did not show improvements for any number
of layers. For NEG with 3 layers (which had a very
similar performance to 4 layers) we exemplarily
tested whether changing the attention heads, hidden
size or intermediate size improves precision. For
this we trained with the following 4 settings:

• attention heads = 6, hidden size = 768, inter-
mediate size = 3072

• attention heads = 12, hidden size = 384, inter-
mediate size = 1536

• attention heads = 12, hidden size = 192, inter-
mediate size = 768

• attention heads = 12, hidden size = 96, inter-
mediate size = 192

However this did not further improve precision.

A.2 Data hyperparameters
In previous iterations of our experiments, we had
used different settings for generating our data. For
instance, we had varied the number of rules in our
corpora: 50 or 100 instead of the presented 20 rules.
Even the sampling process itself can be tweaked
to allow for less overlaps between rules and be-
tween instances of one rule. However, we observed
the same trends and similar numbers across these
different settings.

B Symbolic rules

In the following sections, we present illustrat-
ing corpora for INV, IMP and COMP enhanced.
Each line is one datapoint. We also include the
control group at the end of each corpus that does
not follow any rule. In the case of composition en-
hanced, ”{...}” indicates the sampled group which
is not part of the actual dataset.

We illustrate our training corpora using real
world entities and relations. Note that the ac-
tual corpora used for training are composed of an
entirely synthetic vocabulary. For simplicity we
show grouped composition with enhancement with
groups of 4, instead of 10 as it is in the real data.

B.1 INV
Paris CapitalOf France
France HasCapital Paris
...
Egypt HasCapital Cairo (counterpart in test-set)
...
Apple Developed iOS
iOS DevelopedBy Apple
...
Germany RandomRelation China
Cairo RandomRelation Norway

B.2 IMP
{(Flu), (Cough, RunningNose, Headache, Fever)}
Kevin HasDisease Flu
Kevin HasSymptom Cough
Kevin HasSymptom RunningNose
Kevin HasSymptom Headache
Kevin HasSymptom Fever
...
Mariam HasDisease Flu
...
Peter RandomRelation Pain
Sarah RandomRelation Tooth
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B.3 Comp enhanced
{e8, e2, e4, e5}
e8 ConnectedTo e2
e8 ConnectedTo e4
e8 ConnectedTo e5
e2 ConnectedTo e8
...
{e15, e13, e12, e19}
e15 ConnectedTo e13
e15 ConnectedTo e12
...
{e25, e24, e29, e20}
e25 ConnectedTo e24
e25 ConnectedTo e29
...
e8 r1 e15
e8 r1 e13
e8 r1 e12
e8 r1 e19
e2 r1 e15
e2 r1 e13
...
e5 r1 e19
...
e15 r2 e25
e15 r2 e24
e15 r2 e29
e15 r2 e20
...
e19 r2 e20
...
e8 r3 e25
e8 r3 e24
e8 r3 e29
e8 r3 e20
...
...
e133 r61 e23
e56 r61 e29
...


