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Abstract
We present a new summarisation task, taking
scientific articles and producing journal table-
of-contents entries in the chemistry domain.
These are one- or two-sentence author-written
summaries that present the key findings of a pa-
per. This is a first look at this summarisation
task with an open access publication corpus
consisting of titles and abstracts, as input texts,
and short author-written advertising blurbs, as
the ground truth. We introduce the dataset and
evaluate it with state-of-the-art summarisation
methods.

1 Introduction

Table-of-contents (TOC) entries are short sum-
maries written by authors that are placed in the
table of contents of journals, often with an eye-
catching accompanying image, to advertise their
paper to readers. They are meant to be a clear
and concise summary of a paper’s main contribu-
tion, but different from the title and abstract, which
have a different communicative function. We take
the titles and abstracts from chemistry papers pub-
lished by the Royal Society of Chemistry as input
in this initial study, as they are freely available and
more numerous, but will also release full text for
the smaller subset of open access publications. As
such, this particular corpus is different from other
scientific corpora, which normally take the abstract
as the summary.

We include an analysis of the corpus proper-
ties, and experimental results with strong baselines
and three different state-of-the-art deep learning
models: an attention-based RNN, a reinforcement
learning approach, and a BERT-based transformer
method. We also perform a human evaluation study
to compare the models and to validate the useful-
ness of the summarisation task.

The main aim of releasing this particular corpus
is to see how useful deep learning models are in

producing a latent semantic representation of chem-
ical texts. Within this paper we constrain ourselves
to the question: Can we decode this representation
into a useful summary and perhaps aid in the jour-
nal editing process? But the real goal would be to
transfer this representation into useful editing tasks
like plagiarism detection or semantic search and
discovery.

In addition, chemistry has a complex domain lex-
icon involving a potentially infinite set of molecules
that can be described both by formulae and (of-
ten multi-word) terms, as well as a set of other
techniques. While everything from tokenisation
onward in an NLP pipeline would benefit from
customisation, there is a lack of domain-specific
resources. In this paper we start addressing this
problem by introducing a summarisation corpus,
but we hope this is the first of many resources that
will aid researchers in this field. Ultimately, un-
derlying all these tasks is an ability to produce
representations that can accurately substitute multi-
word terms for chemical formulae or an accurate
hyponym like ketone, without ontological knowl-
edge. This corpus is one in a set of tools that will
help us compare models’ abilities to do this.

2 Related Work

Supervised summarisation tasks are primarily eval-
uated on large news text corpora: CNN/Daily Mail
(See et al., 2017), XSum (Narayan et al., 2018),
and Newsroom (Grusky et al., 2018). Most of
these use professionally written summaries con-
sisting of one or more sentences provided by the
publisher. There are also domain-specific datasets
like arXiv/PubMed (Cohan et al., 2018) for mixed
science summarisation and BIGPATENT (Sharma
et al., 2019), both of which use abstracts as the
ground truth. The number of documents in these
datasets varies between 200,000 and 1.3 million.
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While initial efforts in the field concentrated on
unsupervised extractive summarisation methods
(Mihalcea and Tarau, 2004; Vanderwende et al.,
2007; Moratanch and Chitrakala, 2017), recent
work has seen an explosion of deep learning-based
models that leverage these large datasets to pro-
duce more abstractive and natural-sounding sum-
maries. Out of these we choose three methods that
each take a different approach. First is the pointer-
generator method by See et al. (2017), which bal-
ances extractive and abstractive summarisation by
substituting phrases according to a learned param-
eter. The second method from Chen and Bansal
(2018) uses a reinforcement learning (RL) algo-
rithm to extract informative sentences and then
rewrites them using a sequence-2-sequence model
with an additional re-ranking algorithm to avoid
repetitive phrasings. The final method we test is a
BERT-based model introduced by Liu and Lapata
(2019) which uses BERT embeddings as the pre-
trained encoder, stacked Transformer layers as a
decoder and a fine-tuning process to produce more
natural abstractive summaries. Although Cohan
et al. (2018) designed a method for use with sci-
entific text, it was specifically created for full text
documents and our input text is much shorter.

There are a few historic examples of extractive
summarisation in the chemistry domain (Boudin
et al., 2008; Pollock and Zamora, 1975), but the
research in this subfield was not as active as in other
NLP applications. In their summarisation approach,
Boudin et al. (2008) highlight the need for keeping
the case in chemical names and for using character-
based similarity measures for relevance ranking.
We, likewise, employ customised tokenisation and
named entity recognition while pre-processing the
corpus (Corbett and Boyle, 2018) to enable future
researchers to forgo the NER step. Further related
applications of NLP include information retrieval
(Sun et al., 2011; Hawizy et al., 2011) and literature
mining (Zaslavsky et al., 2017; Öztürk et al., 2020),
while lessons learned from deep learning in NLP
have been applied to strings representing chemical
structures to successfully discover new potential
antibiotics (Stokes et al., 2020).

3 Corpus Description

The RSCSUM corpus contains 307,847 papers pub-
lished in the chemistry domain between 2000 and

Split
Training set examples 246268
Test set examples 30776
Validation set examples 30803

Training
set stats

Total vocabulary size 487610
Appearing over 10 times 52230
Average summary length 29.07
Average title length 18.37
Average abstract length 169.08
Compression ratio 21.01
Named entities in title 11.11%
Named entities in summary 10.40%
Named entities in abstract 8.28%

Table 1: RSCSUM statistics.

2019.1 It is split into around 80% training set,
10% test set, and 10% validation set. The titles
and abstracts comprise input documents, while the
reference is the short table-of-contents summary.

Tab. 1 shows some vital statistics of the corpus.
The compression ratio (Ri = LDi/LSi) indicates
the ratio between the length of the input document
and the gold standard summary. Our compression
ratio is 21, substantially higher than that of CNN
and DM (14). On the other hand, titles and ab-
stracts are very information-dense and provide a
large part of the relevant information useful for the
summary. Our vocabulary size is similar to that of
the CNN/DM and XSum corpora (Narayan et al.,
2018), although many of the tokens occur very
rarely. Of course, this is a count of lower case to-
kens, which in chemistry can lead to the undesired
effect of collapsing significantly different chemi-
cal names into the same string. About 10% of the
text is also taken up by chemical named entities,
including chemical formulae. These are difficult to
abstract, and this process may require knowledge
from the full text documents or external sources. In
fact about 1% of summaries have 3 or more chemi-
cal names that do not appear in the input text, while
26% of them have at least one. Tab. 2 shows an
example document where automatically extracted
chemical named entities (Corbett and Boyle, 2018)
are highlighted.

Tab. 3 shows how our corpus compares to fre-
quently used standard summarisation corpora. Al-
though we have a relatively high number of training
instances, both the summary and document lengths
are at the short end of the spectrum. This will
obviously make abstractive summarisation a more
difficult task.

The concepts of extractive fragment coverage

1You can download the corpus at http://rsc.li/
RSCsum

http://rsc.li/RSCsum
http://rsc.li/RSCsum
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doc id: C2JM16014E
Summary: Highly luminescent Cd1-xZnxSe1-ySy quantum dot (QD)-encoded poly(styrene-co-ethylene glycol
dimethacrylate-co-methacrylic acid) beads (PSEMBs) were prepared by a novel in situ synthesis method.
Title: Facile single step preparation of high-performance quantum dot barcodes.
Abstract: We demonstrate the facile preparation of highly luminescent Cd1-xZnxSe1-ySy quantum dot (QD)-
encoded poly(styrene-co-ethylene glycol dimethacrylate-co-methacrylic acid) beads (PSEMBs) in a straightforward
and reproducible manner. The monodisperse mesoporous PSEMBs are first swelled in chloroform. Afterwards ,
the reaction precursors, composed of Cd, Zn, Se and S, are impregnated into the microspheres. Subsequently, the
Cd1-xZnxSe1-ySy QDs are synthesised directly within the polymer beads by thermal decomposition......

Table 2: Example document ”C2JM16014E” from RSCsum: summary, title and abstract.

dataset documents Avg. length (char)
article summary

CNN 92K 656 43
DM 219K 693 53
XSum 227K 431 23
arXiv 215K 4938 220
PubMed 133K 3016 203
RSCsum 308K 187 29

Table 3: Comparison of corpora statistics.

and extractive fragment density were introduced by
Grusky et al. (2018). The extractive fragment cov-
erage is the percentage of unigrams in the summary
that were directly copied from the input text, regard-
less of their order. The extractive fragment density
is the average of the sum of squares of lengths of
the extracted n-grams. The higher the coverage
score is, the more individual words the summary
extracts from the input text, but this may indicate
re-wording using the same tokens and not necessar-
ily direct copying of phrases. On the other hand,
high density suggests a higher number of copied
n-grams and therefore a more extractive dataset.
Fig. 1 visualises the distribution of fragment den-
sity and coverage of the five compared corpora2.
As we can see, RSCSUM has lower coverage and
lower density. The graphs also indicate that the
ground truth summaries in RSCSUM and XSum
are more distinct from the reference content, com-
pared to the bullet point summaries in CNN/DM or
the abstracts in arXiv and PubMed.

If we take as reasonable that chemical names
should be copied we can adapt the idea of fragment
coverage to this dataset. We use the following
formula to detect the percentage overlap between
the tokens in each sentence n in the abstract Ai

and the tokens in the summary St
i , disregarding

the tokens that belong to chemical named entities
tc. We take the maximum value of all sentence

2The data for CNN/DM and XSum is gathered from Hug-
ging Face (https://huggingface.co/datasets),
and PubMed and arXiv from Cohan et al. (2018). For all
datasets, we consider the training set only.

overlaps.

θ(Ai, Si) = max(
|St

i ∩A
t−tc
i1 |

|At−tc
i1 |

, ...
|St

i ∩A
t−tc
in |

|At−tc
in |

)

(1)
This allows us to examine the abstractiveness

of the corpus in finer detail, as show in Tab. 2. In
about 54k cases, authors appear to have taken the
easy route of directly copying at least one sentence
from the abstract.

4 Methods

We implement three extractive baselines and three
abstractive deep models.

4.1 Baselines
The most basic extractive baseline is Lead-2,
where we take the first two sentences of an ab-
stract as the summary. We also use SumBasic3 and
a GloVe vector4 enhanced TextRank algorithm.

4.2 Deep models
4.2.1 Pointer–Generator
We adapt the PyTorch re-implementation5 of the
original pointer–generator network (PGN) (See
et al., 2017) by inserting ELMo embeddings (Peters
et al., 2018) trained on PubMed texts,6 hereafter
refered to as PGN-E. The added ELMo embed-
dings were computed by a pre-trained two-layered
bidirectional language model (biLM) resulting in
512-dimensional word vectors, which is more than
twice of the original pointer generator embedding
size. We also experimented with the original PGN,
and while we found the difference in performance
as evaluated by ROUGE metrics negligible, PGN-E
produced a higher rate of novel n-grams indicating
better abstractiveness.

3https://pypi.org/project/sumy/
4https://github.com/stanfordnlp/GloVe
5https://github.com/atulkum/pointer_

summarizer
6https://allennlp.org/elmo/

https://huggingface.co/datasets
https://pypi.org/project/sumy/
https://github.com/stanfordnlp/GloVe
https://github.com/atulkum/pointer_summarizer
https://github.com/atulkum/pointer_summarizer
https://allennlp.org/elmo/
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Figure 1: Extractive fragment coverage and density distributions across the compared datasets, where n indicates
the number of documents.

Figure 2: Distribution of the similarity scores between
summary and abstract according to Eq. 1.

Likewise, we adjusted some of the hyperparam-
eters: the vocabulary size is 100K for both the
source and target text, and the Adagrad (Duchi
et al., 2011) learning rate 0.05 was chosen from
0.15,7 0.1 and 0.05 with the initial accumulator
value set to 0.1. We used gradient clipping with a
maximum gradient norm of 2 and early stopping
triggered by the loss on the validation set. The
generated summaries were constrained to the range
from 25 to 100 tokens. During training, the batch
size was 8, and at test time the beam size of the
beam search algorithm was 4. We trained the en-
hanced model for a maximum of 35K iterations due
to computational restrictions. Finally, to speed up
the training process, input content sentences were
truncated to a maximum length of 100 tokens and
summary sentences to 30 tokens.

4.2.2 Reinforcement Learning
We use the model introduced by Chen and Bansal
(2018) (RL-EA) which has two separate learning
mechanisms, maximum likelihood (ML) and rein-
forcement learning (RL). When training with Adam
(Kingma and Ba, 2014), their respective learning

70.15 is the best learning rate for the CNN/DM dataset.

rates were 10−3 and 10−4 respectively, and the
discount factor was 0.95. The abstractor and ex-
tractor were trained separately until convergence
with ML objectives, then RL was applied to the
trained sub-modules. Each single-layered LSTM
network includes 256 hidden units in all models.
The final encoder states linearly map to the initial
decoder states in the abstractor module. We also ap-
plied early stopping and the 2-norm of 2.0 gradient
clipping (Pascanu et al., 2012) here.

To prime the embedding matrix of the ML model,
we trained 128-dimensional word2vec (Mikolov
et al., 2013) vectors with a constrained vocabulary
size of 30K tokens. These embeddings were then
updated in downstream training. A sentence ending
token (vEOE) was added as a trainable parameter
for RL to learn when to stop extracting sentences
from the input source, so the total summary length
has no strict limitation compared with the other
two abstractive models. At test time, input content
was not limited, but the output summary was con-
strained to a maximum of 30 tokens per sentence
for the abstractor.

We also tested the re-ranking mechanism of this
algorithm, but decided not to include results as
they produced similar ROUGE scores and lower
percentages of novel n-grams.

4.2.3 Transformer
We adapt the open-source code provided by Liu
and Lapata and replace the “BERT-base-uncased”
pre-trained model with SciBERT (Beltagy et al.,
2019). SciBERT follows the BERT model architec-
ture, which is a multi-bidirectional transformer, by
training an objective which predicts masked tokens
and the next sentence, but is trained on scientific
texts including PubMed. The input source content
and target summaries were tokenised with BERT’s
subword tokeniser. We refer to this model as SciB-
ERT Abstractive, SciBERTA for short.
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The specific hyperparameter values of the ab-
stractive component are shown in Appendix A.1.
The maximum encoding text size is set to 512, be-
cause only 210 input texts in our corpus are longer
than 512, and 512 is the maximum length in the
original BERT model position embeddings. The
model was trained for 100K steps with gradient
accumulation for every five steps. Its intermediate
models were saved every 2000 iterations and eval-
uated on the validation set every 2500 steps. The
top-3 intermediate results which have the highest
validation accuracy are chosen, and results on the
test set are averaged to provide the final score.

The transformer decoder contains 768 hidden
units and a hidden size of 2048 for all feed-forward
layers. During decoding the beam search size is 5
and the output summary is limited the the range of
20 to 100 tokens. The decoding ends when an end-
of-sequence token is generated. Trigram blocking
(Paulus et al., 2017) is used to avoid repetition.
Because of the sub-word tokeniser, OOV tokens
are rarely observed.

5 Quantitative Evaluation

We perform a set of classic quantitative experi-
ments by training and tuning on the train and valida-
tion portions of the data and testing once on the test
portion. We evaluate the performance of the mod-
els using four standard variations of ROUGE (Lin,
2004) and report the F1 values and the confidence
interval (CI) in Tab. 4. ROUGE-1 and ROUGE-2
measure the unigram and bigram overlap between
the automatic and reference summaries, whereas
ROUGE-L measures the longest extended match-
ing sequence of words using the longest common
subsequence (LCS). An advantage of using LCS
is that it uses all in-sequence matches that reflect
sentence-level word order, rather than requiring
consecutive matches. Since it automatically in-
cludes the longest in-sequence common n-grams,
a predefined n-gram length is not necessary. Fi-
nally, the skip-bigram/unigram variation ROUGE-
SU measures overlap of word pairs that have a
maximum of two gaps between words combined
with unigram overlap.

5.1 Results

Results are presented in Tab. 4. We can observe
from the CI overlap that SciBERTA is significantly
better than the other two deep learning methods,
whereas Lead-2 provides the most competitive

baseline. In fact PGN-E barely outperforms the
Lead-2 baseline. An examination of the summaries
produced on the validation set confirms that this
method most often adopts the Lead-2 strategy by
copying first and/or second sentence, an issue that
was also observed in prior work (Qiu et al., 2020;
Gehrmann et al., 2018). This result pattern is also
confirmed by prior work (Tab. 5) where we see that
the original PGN does not even beat the Lead-3
baseline, while the BERT-based model outperforms
the other two. The introduction of ELMo vectors
slightly alleviates this issue over the original PGN-
coverage model. The original PGN has 71.28%
unigram overlap with Lead-2, while PGN-E is at
68.22%. RL-EA has unigram overlap of 61.35%
and SciBERTA again shows highest diversity with
only about 53.86% overlap with the Lead-2 base-
line.

As an indication of abstractiveness, Fig. 4 shows
the average percentage of novel n-grams for each
of the deep learning methods. We can see that SciB-
ERTA also outperforms the other methods with this
measure, and although PGN-E and RL-EA were
indistinguishable based on ROUGE, PGN-E is ac-
tually producing more novel n-grams.

5.2 Filtering Training Data

As we saw in Sec.3 we filter out the training
examples which have at least one sentence with
80% overlap and higher and we are left with
174180 training examples. We call this training set
RSCSUM-T80, and leave the test and validation
sets untouched, with 30776 and 30803 examples
respectively. The exclusion of the strong extractive
signal changes the training data profile and also re-
duces the training data size, resulting in a decrease
in ROUGE results by between 1 and 4 F1 points.
On the other hand, this strategy does lead to a larger
proportion of novel n-grams for PGN-E and RL-EA
(Fig. 5). PGN-E’s performance increases slightly
over the original SciBERTA scores, which unfor-
tunately drop slightly on the pruned training data.
This indicates that SciBERTA is more resilient to
biased signals in the training data, but benefits from
more training data. The unigram overlap between
the generated summaries and the Lead-2 baseline is
also reduced across the board (PGN: 59.61%, PGN-
E: 59.49%, RL-EA:49.44%, SciBERTA: 52.46%).
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Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU
F1 CI F1 CI F1 CI F1 CI

Lead-2 45.4 (-0.2, +0.2) 30.5 (-0.3, +0.3) 38.1 (-0.2, +0.2) 21.8 (-0.2, +0.2)
SumBasic 38.5 (-0.2, +0.2) 20.4 (-0.2, +0.2) 29.8 (-0.2, +0.2) 15.0 (-0.2, +0.2)
Textrank 38.2 (-0.2, +0.2) 21.8 (-0.3, +0.3) 30.7 (-0.3, +0.3) 16.6 (-0.2, +0.2)
PGN-E 46.2 (-0.2, +0.3) 31.0 (-0.4, +0.3) 41.2 (-0.3, +0.3) 26.5 (-0.3, +0.3)
RL-EA 47.4 (-0.3, +0.3) 31.7 (-0.3, +0.3) 40.8 (-0.3, +0.3) 25.8 (-0.3, +0.3)
SciBERTA 48.3 (-0.3, +0.3) 32.4 (-0.4, +0.3) 42.4 (-0.3, +0.4) 28.1 (-0.3, +0.3)

Table 4: Results of extractive and abstractive models on RSCSUM (best in each section bold-faced). Fig. 3 gives
the bar chart for a better view.

Models ROUGE-1 ROUGE-2 ROUGE-L
Baseline

Lead-3 (See et al., 2017) 40.3 17.7 36.6
Abstractive models

PGN (See et al., 2017) 36.4 15.7 33.4
PGN+coverage (See et al., 2017) 39.5 17.3 36.3
RL-EA+rerank (Chen and Bansal, 2018) 40.9 17.8 38.5
BERTSumAbs (Liu and Lapata, 2019) 41.7 19.4 38.8

Table 5: Performance of related algorithms from prior work on the non-anonymised CNN/Daily Mail dataset.

Figure 3: Bar chart for Tab. 4.

6 Qualitative Evaluation

Reference-based automatic evaluation has accepted
limitations such as the fact that any given reference
is not the only possible summary or even necessar-
ily the best one. We, therefore, perform a small-
scale human evaluation using three participants
with a background in the chemical sciences. They
volunteered to help. We choose to compare SciB-
ERTA as the best-performing system, in addition
to RL-EA, which is less similar to the Lead-2 base-
line than PGN-E and also has a different learning
objective. In order to test the quality of the gold
standard reference summaries objectively, we also
evaluate them in our setup.

We perform a 3×3 Latin Square design with
42 items (documents) and three conditions (sys-
tems). The advantage of the Latin Square design
(cf. Tab. 6) is that each participant sees each item
in only one condition, thus avoiding repetition bias.

Figure 4: Average percentage of novel n-grams in the
generated summaries.

The systems (α, β, γ) are run on different batches
of 14 items (1, 2, 3) and then shown to judges (A1,
A2, A3), so that A1 is seeing summaries from batch
1 generated by system α, batch 2 generated by sys-
tem β, and batch 3 summaries by system γ. We
then randomise the order of items shown. So that
the conditions are not readily distinguishable, we
aim to provide a distribution of summary lengths
which is as even as possible. Fig. 6 shows the natu-
ral distribution of the summary lengths produced
on the test set.

The participants were presented with the docu-
ment title and abstract (concatenated together) and
a summary, which they rated on scale of 0-5 accord-
ing to the criteria in Tab. 7. Dimensions considered
are grammaticality, informativeness, relevance and
overall quality. We report the systems’ mean scores
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Figure 5: Average percentage of novel n-grams in the
generated summaries with the filtered training dataset
RSCSUM-80.

batch 1 batch 2 batch 3
A1 α1 β2 γ3
A2 γ1 α2 β3
A3 β1 γ2 α3

Table 6: 3×3 Latin square design with conditions (sys-
tems) α, β, and γ, participants A1, A2, A3 and item
batches 1, 2, 3.

for each dimension separately as well as the aver-
age across dimensions.

6.1 Results
Tab. 8 shows the results, with SciBERTA outper-
forming both RL-EA and the ground truth (GT) on
all counts. SciBERTA achieves the highest mean
score on all four criteria at 4.52, 4.81, 3.55 and
3.48 respectively, whereas the ground truth has only
3.33 overall quality and 3.86 on average, which is
quite unexpected. One possible reason is that a few
of the ground truth examples are sentences directly
extracted from the abstracts and are thus less in-

Figure 6: Distribution of model summary length (test
set).

Figure 7: Statistical significance test on the val-
ues in Tab. 8. The four positions correspond
to Grammaticality, Informativeness, Relevance and
Overall Quality respectively, as shown in upper left
box. “=” means no statistical difference, “>” means
the row performs significantly better than the column
at the significance level α = 0.05, whereas “6” indi-
cates the same at α = 0.01.

teresting for this task. Although we took care to
distribute the summary lengths as evenly as possi-
ble, in general RL-EA favours longer summaries,
yet the more succinct summaries of SciBERTA
are preferred even in the informativeness dimen-
sion. RL-EA also sometimes produces unfinished
sentence fragments and this could be one of the
reasons for its relatively low grammaticality and
quality values.

We use the two-tailed Wilcoxon signed-rank test
to compute the statistical significance between the
systems (Fig. 7). Though SciBERTA performs the
best in all the evaluation dimensions as well as the
overall average, it is significantly better than the
ground truth only in terms of the informativeness
and outperforms RL-EA regarding grammatical-
ity and overall quality. Except for grammaticality,
there is no statistically-significant difference de-
tected between RL-EA and the ground truth.

As an indication of the degree to which partic-
ipants agreed in their judgements, Fig. 8 shows
the mean scores given by each judge to each of
the three conditions.8 We can see that the judge-
ments by A2 pattern in a different way to those
of participants A1 and A3, which are more similar
to each other. This might be due to the different
backgrounds of the participants, as the former is a
materials scientist by training, whereas the latter
two are chemists.

Anecdotally, the participants independently re-

8In a Latin Square design, agreement can only be measured
within experimental groups, not across them. However, as the
experimental group size is 1 in our 3×3 setting, this is of no
use to us here.
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Dimension Prompt Rating range
0 < −−−−− > 5

Grammaticality Are the individual sentences of the summary well-
written and grammatical?

Disagree Agree

Informativeness To which degree does the summary contain false or mis-
leading information?

A lot Zero

Relevance Does the summary capture the main points of the ab-
stract?

Disagree Agree

Overall quality If I were a journal editor, I would accept this summary
for enticing readers to the website.

Disagree Agree

Table 7: Human evaluation of the question-answering rating system.

dimension SciBERTA RL-EA GT
Grammaticality 4.52 3.29 4.24
Informativeness 4.81 4.62 4.38
Relevance 3.55 3.52 3.50
Overall quality 3.48 2.71 3.33
Average 4.09 3.53 3.86

Table 8: Mean scores of human evaluation on RSC-
SUM.

ported that the fact that the summaries were un-
cased would be a barrier to use of automatic sum-
marisation in chemistry, but that it didn’t cause
them trouble in the small number of examples they
were looking at. For example, “no” (stop word),
“No” (nobelium), and “NO” (nitrogen oxide), all
have vastly different meanings.

One explicitly stated reason for the lower scores
of human summaries is that they often contain
grammatical errors. In their feedback, the partici-
pants noted that they were generous when grading
the grammaticality as the summaries are mostly
right regardless of the case. Nevertheless, when
looking closely at a few ground truth summaries,
we noticed that they seem to have been marked
down for grammatical mistakes. The overarching
reason is probably that writing the summaries was
an after-acceptance task for the authors, which may
not have had their full attention. For example in the
Appendix A.2 Tab. 10 we can see that the ground
truth summary consists of the motivation sentence,
while every method accurately picked out the con-
tribution sentence. Of these, the one by SciBERTA
is the most grammatically pleasing. As the input
source document is the abstract of a paper, authors
have a tendency to start with motivational state-
ments, e.g. “we synthesised something and then
studied its properties, applications etc”. One partic-
ipant remarked that they tended to mark down the
summaries that only focused on this aspect of the

Figure 8: Participants’ individual mean scores, by con-
ditions.

abstract. Conversely, some ground truth summaries
draw on the full paper and the domain knowledge
of the authors, and so could contain information
beyond the abstract. While we do not have specific
feedback on this point, this could also lead to an
undesirable score.

7 Discussion

In this paper we introduced a corpus that consists
of titles and abstracts of papers in the scientific
domain as input text, and author-written table-of-
contents summaries. The summaries are meant to
be distinct from the titles and abstracts, but at least
one fifth of the training data contains significant
extractive elements. Overall the corpus compares
favourably to others in its abstractive qualities. It
contains scientific terminology in the chemistry
domain, and some of the terminology in the sum-
maries does not occur in the available input text.
Consequently, as part of a larger effort of enriching
chemical NLP, in the future we will also release
about 40K full text open access articles that have
corresponding TOC summaries.



161

We tested three state-of-the-art deep summarisa-
tion methods and found that a transformer-based
method that uses pretrained scientific BERT em-
beddings produces the best overall results in both
quantitative evaluation and a qualitative study with
three domain expert participants. It is surprisingly
resistant to the strong extractive component in the
training data, and produces novel content despite
the short input text. A qualitative study showed
that automatic summaries yield acceptable results
and are in some aspects significantly better than
author-written summaries. However, in order to be
truly useful, the summarisation methods and asso-
ciated embeddings need to be adapted to deal with
the cased text, which may lead to difficulties with
an expanded vocabulary. In conclusion, this study
paves the way for future exploration of summarisa-
tion and semantics in the chemistry domain.
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A Appendices

A.1 SciBERTA hyperparameter setting
Table 9 provides the specific hyperparameter set-
ting for the SciBERTA system.

hyperparameter SciBERTA
training steps 100,000
warmup steps 10,000
max pos 512
batch size 8
grad accum cnt 5
dropout 0.2
learning rate 0.002
learning ratedec 0.01

Table 9: Hyperparameter settings in SciBERTA.

A.2 Summary examples
The real examples generated by the three systems
are shown in Tables 11–14. Compared to training
on full RSCSUM, training on RSCSUM-T80 could
lead to mistakes using PGN-E and RL-EA models.
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CandidatePGN−E: hydrogen peroxide ( h2o2 ) plays a significant role in regulating the redox bal-
ance in the living body . this work illustrated a high sensitivity hydrophilic photoacoustic probe for
ratiometric imaging of h2o2 in living mice .
CandidateRL−EA: a high sensitivity hydrophilic photoacoustic probe for ratiometric imaging of
hydrogen peroxide in vitro and vivo .
CandidateSciBERTA: a hydrophilic photoacoustic probe was developed for ratiometric imaging of
h2o2 in vitro and vivo .
Ground truth: Hydrogen peroxide ( H2O2 ) plays a significant role in regulating the redox balance in
the living body .
Abstract: Enhancing hydrophilicity of photoacoustic probes for effective ratiometric imaging of
hydrogen peroxide . Hydrogen peroxide ( H2O2 ) plays a significant role in regulating the redox
balance in the living body . Compared with traditional imaging techniques , ratiometric photoacoustic
imaging is no doubt a superior choice for H2O2 visualization . However , the difficult design of
ratiometric probes with only one activatable agent that exhibits two changeable absorption peaks under
H2O2 activation remains a big challenge . In this work , we developed a near - infrared absorbing
probe , which responded to H2O2 selectively and permitted the ratiometric photoacoustic imaging of
H2O2 in living mice . The probe was constructed from an Aza-BODIPY backbone attached with a
benzeneboronic acid pinacol ester moiety though a quaternization reaction . Oligo(ethylene glycol ) (
OEG ) was introduced into hydrophobic Aza-BODIPY to enhance the water - solubility of the probe .
The OEG-Aza-BODIPY-BAPE probe exhibited sensitive and specific ratiometric PA signals towards
H2O2 . In vivo experiments also showed that the OEG-Aza-BODIPY-BAPE probe can be used for
ratiometric PA imaging . Overall , our work illustrated a high sensitivity hydrophilic photoacoustic
probe for ratiometric imaging of hydrogen peroxide in vitro and vivo .

Table 10: An example ”C8AY01644E” produced by PGN-E, RL-EA and SciBERTA on full RSCSUM. Overlaps
are highlighted by different colours.

Candidatefull: β-amyloid (aβ) plays a central role in alzheimer’s disease (ad), but the specific
molecular mechanism and associated structures remain unknown.
CandidateT80: β-amyloid (aβ) plays a central role in alzheimer’s disease (ad), but the specific molec-
ular mechanism and associated structures remain unknown in contrast to structured conformations and
associated structures.
Ground truth: Direct correlation of Alzheimer patient data to a spectrum of NMR structures and
chemical properties of beta amyloid ( Aβ ) variants allows identification of conformation - dependent
disease properties .
Abstract: Pathogenic properties of Alzheimer’s β-amyloid identified from structure – property patient-
phenotype correlations. β-Amyloid (Aβ) plays a central role in Alzheimer’s disease (AD), but the
specific molecular mechanism and associated structures remain unknown. We compiled patient data
for carriers......We conclude that disordered monomers are likely to be pathogenically important in
contrast to structured conformations......

Table 11: An example ”C4DT03122A” produced by PGN-E training on full RSCSUM and RSCSUM-T80 respec-
tively. The underlined phrase is a repetitive expression.
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Candidatefull: the addition of inbr3 to the oxidative sonogashira cross - coupling reaction of 2 -
ethynylaniline with ( e ) - trimethyl ( 3,3,3 - trifluoroprop -1-enyl ) silane led the subsequent cyclization
of these 1,3 - enynes under palladium catalysis provides access to the corresponding indoles bearing a
3,3,3 - trifluoroprop -1-enyl group at their 2 - position .
CandidateT80: the addition of inbr3 to the oxidative sonogashira cross - coupling reac-
tion of 2 - ethynylaniline with ( e ) - trimethyl ( 3,3,3 - trifluoroprop -1-enyl ) silane led
the oxidative sonogashira coupling of 2 - ethynylanilineselectronic with a affords a dramatic enhanc-
ing effect of inbr3 .
Ground truth: A dramatic enhancing effect of InBr3 was observed towards the oxidative Sonogashira
cross - coupling reaction of 2-ethynylaniline with (E)-trimethyl(3,3,3-trifluoroprop-1-enyl)silane .
Abstract: The addition of InBr3 to the oxidative Sonogashira cross - coupling reaction of 2-ethyny-
laniline with (E)-trimethyl(3,3,3-trifluoroprop-1-enyl)silane led to a dramatic increase in the reactivity
to afford the corresponding 1,3-enynes bearing a trifluoromethyl group on their terminal sp2 carbon
. The subsequent cyclization of these 1,3-enynes under palladium catalysis provides access to the
corresponding indoles bearing a 3,3,3-trifluoroprop-1-enyl group at their 2- position .

Table 12: An example ”C5OB02558C” produced by RL-EA on full RSCSUM and RSCSUM-T80 respectively.
The strikethrough denotes a wrong expression.

Candidatefull: a novel visible light promoted carbodifluoroalkylation of allylic alcohols is disclosed.
a series of difluoro 1,5 - dicarbonyl compounds were obtained through a tandem radical addition and
1,2-aryl migration process.
CandidateT80: a novel visible light promoted carbodifluoroalkylation of allylic alcohols was developed
via a tandem radical addition and 1,2-aryl migration process , which proceeds via a radical intermediate.
Ground truth: A novel visible light promoted carbodifluoroalkylation of allylic alcohols is disclosed.
Abstract: Visible light promoted carbodifluoroalkylation of allylic alcohols via concomitant 1,2-aryl
migration. A novel visible light promoted carbodifluoroalkylation of allylic alcohols is disclosed. A
series of difluoro 1,5-dicarbonyl compounds were obtained through a tandem radical addition and
1,2-aryl migration process. Mechanistic analysis indicated that the 1,2-aryl rearrangement proceeded
via a radical intermediate.

Table 13: An example ”C5CC01189B” produced by SciBERTA on full RSCSUM and RSCSUM-T80 respectively.


