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Abstract

Multimodal sentiment analysis aims to predict sentiment of language text with the help of other
modalities, such as vision and acoustic features. Previous studies focused on learning the joint
representation of multiple modalities, ignoring some useful knowledge contained in language
modal. In this paper, we try to incorporate sentimental words knowledge into the fusion net-
work to guide the learning of joint representation of multimodal features. Our method consists
of two components: shallow fusion part and aggregation part. For the shallow fusion part, we
use crossmodal coattention mechanism to obtain bidirectional context information of each two
modals to get the fused shallow representations. For the aggregation part, we design a multitask
of sentimental words classification to help and guide the deep fusion of the three modalities and
obtain the final sentimental words aware fusion representation. We carry out several experiments
on CMU-MOSI, CMU-MOSEI and YouTube datasets. The experimental results show that intro-
ducing sentimental words prediction as a multitask can really improve the fusion representation
of multiple modalities.

1 Introduction

Multimodal sentiment analysis is a task of predicting the sentiment of a video, an image or a text based
on multiple modal features. Based on the contributions of different modalities to each other, multimodal
sentiment analysis has achieved significant results and attracted the attentions of many researchers in
recent years.

The main challenge of the multimodal sentiment analysis is to capture a better fusion of different
modalities. Previous studies have proposed different methods for the fusion in different point of views.
Some methods focus on the improvement of the LSTM structure to learn the interactions of different
modal features from the view of the uni-stage and multi-stage. Zadeh et al. (2018a) propose a Memory
Fusion Network to learn both the view-specific interactions and the cross-view interactions. Liang et al.
(2018) propose a Recurrent Multistage Fusion Network to model cross-modal interactions using multi-
stage fusion approach. Some methods focus on exploiting the expressiveness of tensors for multimodal
representation. Zadeh et al. (2017) propose a Tensor Fusion Network to explicitly model the unimodal,
bimodal and trimodal interactions through a 3-fold Cartesian product from modality embedding. More
recently, other methods are proposed and achieve new state-of-the-art results (Pham et al., 2019; Mai et
al., 2019; Wang et al., 2019; Tsai et al., 2019).

Although previous studies achieved good results, there are still two points can be improved: (1) We
find that the fusion of most of previous methods is from one direction, that is, when the two modals
are fused, the representation of two modals are fused directly as a new representation, similar to the
work of Zadeh et al. (2017) and Liu et al. (2018). This fusion strategy ignores the long range of context
information of each modality. As an example shown in Figure 1, for the fusion of language modality and
vision modality, if we can capture the context information of each modality from bi-directions, we can
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Figure 1: Contexts of each modality captured by crossmodal coattention. (a) shows each language tem-
poral captures context of vision modality by different attention weights. (b) shows each vision temporal
captures context of language modality by different attention weights.

get more sufficient fusion information. (2) Few of previous studies explicitly explored the knowledge
contained in the language text which can be used to help the fusion of different modalities based on the
rich information existing in the language.

To this end, in this paper, we propose a Sentimental Words Aware Fusion Network (SWAFN) for
multimodal sentiment analysis. More specifically, we first use LSTM to encode the original features of
three modalities. Then we use the coattention mechanism (Xiong et al., 2017) to learn the co-dependent
representation between language and other modalities separately by capturing attention contexts of each
modality. We call this kind of bimodal fusion between language and other modalities as the shallow fu-
sion part. Figure 1 presents the illustration of crossmodal coattention for language and vision modalities.
Then, we design a sentimental words prediction task as an auxiliary task through the multitask learning
mechanism to guide the aggregation of the shallow fusion of multiple modal features and obtain the final
sentimental words aware deep fusion representation.

The main contribution of this work are as follows:
1) We propose to use crossmodal coattention to learn the long range context information of each two

modals to obtain more sufficient fusion information for multiple modals. We also design a sentimental
words prediction multitask as an auxiliary task to guide the fusion of multiple modal features and learn
sentimental words aware final representation. To the best of our knowledge, this is the first time that
multi-task learning is applied in multimodal sentiment analysis.

2) We conduct several experiments on different public datasets, and we will show that our model is
effective for multimodal sentiment analysis. In addition, we also carry out a series of experiments to
investigate the contribution of different modalities, the impact of the shallow fusion and the final fusion
after integrating the auxiliary task.

2 Related Work

The key problem of multimodal sentiment analysis is to fill the gap of different modalities and learn
the effective fusion of multimodal features. In recent years, with the successful application of neural
networks in many tasks, different sophisticated fusion approaches are proposed and achieve significant
results.

Fusion methods based on improved LSTM structure. Some of the previous studies propose to
improve the LSTM structure to learn the interactions of different modality features from the view of the
same timestep and cross timestep. Chen et al. (2017) propose a Gated Multimodal Embedding LSTM
with Temporal Attention model which consists of two modules, one is Gated Multimodal Embedding
aiming to alleviate the fusion difficulty when there are noisy modalities, another is LSTM with tem-
poral attention to perform word-level fusion. Zadeh et al. (2018c) propose a Multi-attention Recurrent
Network, in which the LSTHM (an extension of LSTM) is used to store view-specific dynamics of the
assigned modality and cross-view dynamics related to the assigned modality, and the Multi-attention
Block is used to discover cross-view dynamics cross different modalities. Zadeh et al. (2018a) propose
a Memory Fusion Network which employs LSTM to learn view-specific interactions and an attention
mechanism called the Delta-memory Attention Network to identify the cross-view interactions. Liang
et al. (2018) propose a Recurrent Multistage Fusion Network to model cross-modal interactions using
multi-stage fusion approach.
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Figure 2: The whole architecture of our model. We first use coattention mechanism to learn the bidi-
rectional long range of context information between language modality and other modalities separately.
Then we integrate a sentimental words classification task into the model through multitask learning
mechanism to guide the learning and aggregation of multimodal fusion.

Fusion methods based on tensor structure. Different from using the improved LSTM-based models,
some previous studies exploit the expressiveness of tensors for multimodal representation. Zadeh et al.
(2017) propose a Tensor Fusion Network to explicitly model the interactions of different modals through
a 3-fold Cartesian product from modality embedding. Liu et al. (2018) propose a Low-rank Multimodal
Fusion network which first obtain the unimodal representation and perform low-rank multimodal fusion
to improve the efficiency.

Previous state-of-the-art fusion methods. More recently, Pham et al. (2019) explore a method of
translations between modalities to learn joint representations, in which a cycle consistency loss is used
to ensure that the joint representations retain maximal information from all modalities. Different from
most previous studies which directly fuse features at holistic level, Mai et al. (2019) propose a “divide,
conquer and combine” strategy to perform multimodal fusion hierarchically which considers both local
and global interactions. In order to model expressive nonverbal representations, Wang et al. (2019)
propose a Recurrent Attended Variation Embedding Network which analyzes the fine-grained visual and
acoustic patterns and dynamically shifts word representations according to nonverbal cues. Tsai et al.
(2019) introduce a Multimodal Factorization Model which factorizes representations into two sets of
independent factors: multimodal discriminative and modality-specific generative factors and propose a
joint generative-discriminative objective to optimize across multimodal data and labels.

Although previous studies have proposed many effective multimodal fusion approaches, few studies
have explored the possibility of using knowledge in language as a multi-task learning framework in
multimodal sentiment analysis. In this paper, we try to design an auxiliary task to guide the model to
learn sentimental words information aware multimodal representation.

3 Our Model

In this section, we will describe our model in more detail. Section 3.1 introduces the crossmodal coat-
tention, section 3.2 introduces the sentimental words prediction auxiliary task, section 3.3 introduces the
sentimental words aware representation and section 3.4 describes the model training. Figure 2 shows the
whole architecture of our model.

3.1 CrossModal Coattention

Given the word embedding of language, the raw features of acoustic and vision modalities, denoted as
XL = {l1, l2, . . . , lT }, XA = {a1, a2, .., aT } and XV = {v1, v2, .., vT } respectively, we use LSTM
to model the temporal information of the three modalities as intra-modal encoding, getting the LSTM
hidden states output of the three modalities, denoted as HL, HA and HV respectively.

After getting the encoded features of three modalities HL, HA and HV respectively, we use coatten-
tion (Xiong et al., 2017) to learn the bimodal fusion between language modality and other modalities.
Firstly, we use a non-linear projection layer to transform the dimension of the encoded language repre-
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sentation into the same dimension of that of other modalities in order to perform coattention, as show in
equation(1).

H
′
L = tanh (HLWL + bL) (1)

The coattention mechanism is applied to attend to the language modality and other modality(i.e. vision
or acoustics) simultaneously, and learn the bimodal fusion. Firstly, an affinity matrix is computed, which
contains the affinity scores corresponding to all pairs of language hidden states and vision(or acoustic)
hidden states. Then the softmax function is used to normalize the affinity matrix row-wise to produce
the attention weights AV (or AL) across the language text for each timestep of the vision(or acoustic)
features, and column-wise to produce the attention weightsAL across the vision(or acoustic) features for
each word, as shown in equation(2-4):

α = HV (H
′
L)T (2)

AV = softmax (α) (3)

AL = softmax
(
αT
)

(4)

Next, we compute the attention contexts of the language features based on the attention weights of
each timestep of the vision(or acoustic) features, as shown in equation(5):

CV = AVH
′
L (5)

Similarly, we can compute the attention contexts ALHV of the vision(or acoustic) features based on
the attention weights of each word of the language features. Following the work of (Xiong et al., 2017),
we also compute the summaries ALCV to map the vision(or acoustic) features encoding into the space
of language features encoding. The corresponding operation is shown in equation(6):

CL&V = AL [HV , CV ] (6)

Where CL&V is defined as a co-dependent representation of the language modality and vision modal-
ity. [ ] denotes for concatenation operation. Similarly, we can get CL&A using the same coattention
operation for language modality and acoustic modality as a co-dependent representation of the language
modality and acoustic modality. The bimodal fusion CL&V and CL&A are regarded as a kind of shallow
fusion, as the trimodal fusion and the knowledge existing in the language modality are not well captured
so far.

3.2 Sentimental Words Prediction Auxiliary Task

In addition to use other modalities to assist language modality, we find that the sentimental words in-
formation existing in the language modal can also be incorporated into the fusion model to learn richer
multimodal representation. In this paper, we design a word-level classification task which is used to
determine whether each word is a sentimental word. Specifically, we use Bing Liu’s Opinion Lexicon
as the knowledge 1 , which contains the negative-words list and positive-words list to obtain the label of
each word. We first merge the two lists into a sentimental word list. If a word is in the sentimental word
list, then it is a sentimental word, otherwise, it is not a sentimental word. Then we build the auxiliary
task as a multi-label classification task as each sentence in the language modality may contain more than
one sentimental word. Note that the word-level classification task and the sentiment analysis task share
the same language encoding layer, as shown in Figure 2. We input HL into a fully-connected layer with
a row-wise squash activation function (Sabour et al., 2017) to adjust it to prepare for word-level classifi-
cation. The squash function is used to ensure that short vectors get shrunk to almost zero length and long
vectors get shrunk to a length slightly below 1. We expect that the squash function can learn representa-
tion where the length of the vector can represent the probability of each word to be a sentimental word.

1http://sentiment.christopherpotts.net/lexicons.html
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The operation is shown in (7-8).

squash (x) =

∣∣∣∣x∣∣∣∣2
1+||x||2

x

||x||
(7)

Hwords = squash (HLWw + bw) (8)

Where Ww is weight and bw is bias. Then Hwords is input to a multi-label classification layer, as
shown in equation (9).

ywords = softmax (HwordsWwords + bwords) (9)

Where Wwords is weight and bwords is bias. ywords ∈ RT , which denotes whether each word is
sentimental word.

3.3 Sentimental Words Aware Multimodal Representation
As described in section 3.1, we get the bimodal fusion between language with other modalities separately.
As mentioned earlier, we view this fusion as a shallow fusion because we believe that there is rich
semantic information in the language which can be fused to learn the deep fusion and aggregation of
different modalities. As demonstrated by many previous studies (Poria et al., 2017a; Zadeh et al., 2017;
Mai et al., 2019), the language modality often plays a dominated role among the three modalities, thus
we concatenate CL&V , CL&A and HL, and input the result to a LSTM layer to aggregate the two kinds
of bimodal fusion representation and the intra-modality encoding of language, getting Hagg, as shown in
equation (10).

During the training of the auxiliary task, we expect that the Hwords = {hw1 , hw2 , ..., hwT } can learn
the information about whether each word is sentimental word and the representation of the sentimental
words can be distinguished from that of non-sentimental words. For sentiment analysis, the sentimental
words are usually the key clues for determining the sentiment. However, in some cases, a sentence may
contain sentimental words with different polarities and we need to decide which sentimental words make
more contribution for sentiment prediction. Thus, to enable the auxiliary task to produce a marked effect,
we use the final representation of word-level representationHwords to learn the contribution of each word
and guide the learning of multimodal fusion, as shown in equations (11-13).

Hagg = LSTM([CL&V , CL&A, HL]) (10)

oi = tanh (hwi Wa + ba) (11)

αi = softmax (oiWu) (12)

Satt =

T∑
i=1

αih
agg
i (13)

Where Wa and Wu are trainable weights and ba is the bias. Note that we use the learned attention
weights to perform weighted sum on the multimodal fusion representation Hagg, getting Satt, which is
the sentimental words information aware representation.

In addition to Satt learned through the guiding of the auxiliary task, we perform average pooling on
Hagg to obtain the global multimodal information, which is denoted as Savg. Finally, we concatenate
Satt and Savg to form the final representation. The final representation is input to a fully-connected layer
and a prediction layer to get the sentiment prediction, as shown in equations (14-15).

S = [Satt, Savg]Wf + bf (14)

ys = SWs + bs (15)

3.4 Model Training
Considering that classification task and regression task for sentiment analysis are simultaneously eval-
uated on CMU-MOSI dataset, we use L1 Loss for training the sentiment analysis tasks of CMU-MOSI
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dataset, which is shown in equation (16). Where yis and ŷis are the true sentiment and predicted sentiment
of i-th sample respectively. N is number of training samples. For CMU-MOSEI and YouTube datasets,
following (Pham et al., 2019), we use Cross-entropy as training loss.

Losssa =
1

N

N∑
i=1

∣∣yis − ŷis∣∣ (16)

As for the word-level classification task, we use Binary Cross Entropy Loss, which is shown in equa-
tion (17). Where yiw and ŷiw are the true label and the predicted label of the i-th sample respectively, T is
the length of language sentence.

Losssw =
1

N

N∑
i=1

{
− 1

T

T∑
j=1

(
yijw ∗ log

(
ŷijw
)

+
(
1− yijw

)
∗ log

(
1− ŷijw

))}
(17)

The overall loss of our model is the weighted sum of Losssa and Losssw, as shown in equation (18),
where α ∈ (0, 1) is a hyper parameter.

Loss = (1− α) ∗ Losssa + α ∗ Losssw (18)

4 Experiments

4.1 Dataset
We use CMU-MOSI,CMU-MOSEI and YouTube as our experimental datasets, which are extensively
used in the previous studies. Following most previous studies, GloVe embeddings (Pennington et al.,
2014) are used to represent the language features, the visual features are extracted by Facet library2 and
acoustic features are extracted using COVAREP (Degottex et al., 2014).

CMU-MOSI (Zadeh et al., 2016) contains 93 videos from YouTube, each of the videos is expressing a
speaker’s opinions towards a movie. The videos are split into 2199 clips. We train our model on 52 videos
(1284 clips), validates on 10 videos (229 clips) and tests on 31 videos (686 clips). Each sentiment label
of the clip is a number between [-3, 3], which represents strongly positive (denoted as +3), positive (+2),
weakly positive (+1), neutral (0), weakly negative (-1), negative (-2), strongly negative (-3) respectively.
CMU-MOSEI (Zadeh et al., 2018b) consists of 22,413 video clips about movie reviews from YouTube.
There are 15290, 2291 and 4832 clips in the training set, validation set and test set respectively. YouTube
(Morency et al., 2011) consists of 269 video clips, in which the size of training set, validation set and test
set are 173, 36 and 60 respectively.

For CMU-MOSI dataset, we complete binary classification, multi-class classification and regression
experiments. For regression task, we report Mean Absolute Error (MAE) and Pearson’s Correlation
(Correlation). For binary classification, we report accuracy and F1 score, while for multi-class classifi-
cation we only report accuracy, which is consistent with most previous studies. For CMU-MOSEI and
YouTube dataset, we consider positive, negative and neutral sentiments following (Mai et al., 2019) and
use accuracy and F1 score. For all metrics, higher values represent better performance, except for MAE.

4.2 Settings
We use 300-dimensional GloVe (Pennington et al., 2014) word embeddings as language features. The
hidden sizes of LSTMs encoding of language, vision and acoustic features for CMU-MOSI dataset are
100, 30 and 50 respectively. The same hidden sizes for CMU-MOSEI dataset are 128, 10 and 20 re-
spectively, for YouTube dataset are 100, 20 and 20 respectively. The batch size is set to 16, 64 and 16
for CMU-MOSI, CMU-MOSEI and YouTube datasets respectively. We set hidden sizes of LSTM for
aggregating the multimodal fusion to 128, 100 and 100, the trade-off parameter α between the sentiment
prediction loss and word-level classification loss to 0.3, 0.25 and 0.25, the initial learning rate to 6e-4,
4e-4 and 5e-4 for the three datasets respectively. The hidden sizes of the fully-connected layer before

2https://imotions.com/biosensor/fea-facial-expression-analysis/
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Model Binary Regression 7-class
Acc F1 MAE Corr Acc

MV-LSTM(Rajagopalan et al., 2016) 73.9 74.0 1.019 0.601 33.2
BC-LSTM (Poria et al., 2017a) 73.9 73.9 1.079 0.581 28.7
GME-LSTM (Chen et al., 2017) 76.5 73.4 0.955 - -
TFN (Zadeh et al., 2017) 74.6 74.5 1.040 0.587 28.7
LMF (Liu et al., 2018) 76.4 75.7 0.912 0.668 32.8
RMFN (Liang et al., 2018) 78.4 78.0 0.922 0.681 38.3
MARN (Zadeh et al., 2018c) 77.1 77.0 0.968 0.625 34.7
MFN (Zadeh et al., 2018a) 77.4 77.3 0.965 0.632 34.1
MFM (Tsai et al., 2019)) 78.1 78.1 0.951 0.662 36.2
MCTN (Pham et al., 2019) 79.3 79.1 0.909 0.676 -
HFFN (Mai et al., 2019) 80.2 80.3 - - -
SWAFN(Ours) 80.2 80.1 0.880 0.697 40.1

Table 1: Experimental results of different models on CMU-MOSI dataset.

the prediction layer are set to 100, 100 and 200 on CMU-MOSI, CMU-MOSEI, and YouTube datasets
respectively. The proposed model is trained for 20 epoch, 8 epoch and 25 epoch on the three datasets
respectively. We select the model which performs best on the validation set to evaluate on the test set. 3

4.3 Baseline Models

We use the following methods as our baseline models for experiments. Firstly, we use use MV-LSTM
(Rajagopalan et al., 2016), BC-LSTM (Poria et al., 2017a), CAT-LSTM (Poria et al., 2017b), GME-
LSTM (Chen et al., 2017) , TFN (Zadeh et al., 2017), CHFusion (Majumder et al., 2018), LMF (Liu
et al., 2018), MFN (Zadeh et al., 2018a), RMFN (Liang et al., 2018) and MARN (Zadeh et al., 2018c)
as our baseline models based on neural networks which are introduced in section 2. Secondly, we use
previous state-of-the-art models as our compared models, such as MCTN (Pham et al., 2019), HFFN
(Mai et al., 2019) and MFM (Tsai et al., 2019).

4.4 Experimental Results

In this section we present the experimental results and the analysis of our model on CMU-MOSI,
YouTube and CMU-MOSEI datasets.

Experimental results on CMU-MOSI dataset. We summarize the experimental results of different
models on the CMU-MOSI dataset in Table 1. As shown in Table 1, our model achieves competitive
performance compared with the best baseline model HFFN on accuracy and F1 score of binary classi-
fication. For regression task, our model achieves best performance among the baselines both on mean
absolute error(MAE) and correlation(Corr). Specifically, our model outperforms MCTN by 2.9% on
MAE and 2.1% on correlation, which are significant improvements. For 7 classification task, our model
also achieve the best performance among the baseline models, which outperforms RMFN by 1.8% and
MFM by 3.9% on accuracy. The experimental results on CMU-MOSI dataset show that our approach
brings more significant improvements on regression task and 7 classification than binary classification
task.

Experimental results on YouTube dataset. Table 2 shows the experimental results of our model and
the baseline models on YouTube dataset. Although the size of YouTube dataset is very small, we can see
that compared with the baseline models, our model achieves the best performance on both accuracy and
F1 score, which outperforms MCTN by 3.3% on accuracy and 0.9 % on F1 score, and outperforms the
previous state-of-the-art model MFM by 1.7% on accuracy and 0.9% on F1 score. Due to the very limited
training samples, many baseline models may be overfitting on the training set. Our model achieves better
performance, indicating its better generalization ability.

3Our source code is released at https://github.com/gdufsnlp/SWAFN
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Model YouTube-Acc YouTube-F1 MOSEI-Acc MOSEI-F1
MV-LSTM (Rajagopalan et al., 2016) 45.8 43.3 - -
BC-LSTM (Poria et al., 2017a) 45.0 45.1 60.77 59.04
TFN (Zadeh et al., 2017) 45.0 41.0 59.40 57.33
CAT-LSTM (Poria et al., 2017b) - - 60.72 58.83
MARN (Zadeh et al., 2018c) 48.3 44.9 - -
MFN(Zadeh et al., 2018a) 51.7 51.6 - -
CHFusion(Majumder et al., 2018) - - 58.45 56.90
LMF(Liu et al., 2018) - - 60.27 53.87
MCTN (Pham et al., 2019) 51.7 52.4 - -
MFM (Tsai et al., 2019) 53.3 52.4 - -
HFFN (Mai et al., 2019) - - 60.37 59.07
SWAFN (Ours) 55.0 53.3 61.03 59.32

Table 2: Experimental results of different models on YouTube dataset and CMU-MOSEI dataset

Modality Source Binary Regression 7-class
Acc F1 MAE Corr Acc

Unimodal
Audio 57.6 56.7 1.396 0.189 15.3
Video 58.0 58.1 1.422 0.134 16.2
language(no auxiliary work) 77.8 77.9 0.931 0.695 35.7
language( + auxiliary work) 78.9 78.6 0.903 0.683 36.2

Bimodal

Audio+Video 58.0 58.1 1.384 0.207 15.7
language +Audio(no auxiliary work) 78.6 78.4 0.906 0.684 35.1
language +Audio(+ auxiliary task) 79.2 79.2 0.917 0.683 35.1
language +Video(no auxiliary work) 77.8 77.6 0.921 0.676 35.3
language +Video(+ auxiliary task) 79.0 78.9 0.882 0.693 37.3

Multimodal
language +Audio+Video(no coattention) 78.4 78.4 0.903 0.688 37.8
language +Audio+Video(no auxiliary work) 79.2 79.1 0.937 0.682 36.6
language +Audio+Video(+ auxiliary task) 80.2 80.1 0.880 0.697 40.1

Table 3: The performance of our model using unimodal, bimodal and multimodal features.

Experimental results on CMU-MOSEI dataset. For CMU-MOSEI dataset, following (Mai et al.,
2019), we conduct experiments on 3 classification tasks. We present the experimental results of different
models in Table 2. Our model achieves the best performance on both accuracy and F1 score, which
outperforms HFFN by 0.66% on accuracy and 0.25% on F1 score. CMU-MOSEI is the largest dataset
among the three datasets, we can see that the difference of the performance of different models is not very
significant. For example, the range of the performance on accuracy of the baselines is between 60.2%
and 60.8%, except for TFN and CHFusion. Howerver, the range of F1 score of the baseline models is
between 53.87% and 59.07% as some baseline models achieve much lower values on F1 score than that
on accuracy. Our model can achieve good performance on both accuracy and F1 score. The overall
experimental results on three datasets show the effectiveness of our model.

5 Discussion

In this section, we investigate the impact of different modalities on the performance of the final model.
We also conduct a case study to investigate how the auxiliary task guide the learning of attention weights
of sentimental words in the sentence.

5.1 Investigation of the Contribution of Different Modalities
In order to investigate the impact of different modalities of our model, we carry out a series of ex-
periments to compare the performance of our model using unimodal, bimodal and multimodal features
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Figure 3: Attention weights learned by SWAFN(our model) and SWAFN(∆) (our model without the
sentimental words classification auxiliary task) on two instances. Darker colors indicate greater weights.
The auxiliary task can assist the model to pay more attention on the sentimental words and recognize
which sentimental words reflect the sentiment correctly.

respectively. We shown them in Table 3.
Firstly, we conduct experiments with the model just using unimodal features, where language(no auxil-

iary work) is only using language representation and language(+auxiliary work) is fused with sentimental
words classifications task. We can see that the model using language modality outperforms the model
using acoustic modality or vision modality with significant margin. This is probably because that the
language features are word embeddings trained from large-scale corpus while audio and video features
are extracted manually. Thus language modality contains much richer information than other modalities.

Secondly, we compare the models with bimodal features. We can infer that when combining language
modality with acoustic modality or vision modality, the performance can be improved on some metrics
compared with only using language modality, but not all of them can be improved. However, when using
audio features and video features as input, the performance of the model is still much worse than that of
only using language modality, suggesting that language modality is the dominated modality in this task.
When cooperating three modalities, our model can achieve further improvements compared with using
bimodal features.

Finally, as can be seen in Table 3, for all different combinations of modalities, the performance of
the models with auxiliary task outperform that of the models without auxiliary task, which suggests
that sentimental words classification auxiliary task indeed plays a remarkable role in our model. In
addition, the proposed crossmodal coattention mechanism which learns the interaction between different
modalities also makes significant contribution in our model. Due to the sufficient modality fusion and
the cooperation of the auxiliary task, our model can achieve the final promising performance.

5.2 Case Study

As mentioned before, we propose a sentimental words classification task as an auxiliary task in the model
to help to guide the fusion of multiple modalities and in turn help to learn more precise attention weights
of sentimental words in the sentence. In order to investigate how the auxiliary task guide the learning of
attention weights, we conduct a case study on two instances.

As shown in Figure 3, we present the attention weights learned by our model (SWAFN) with aux-
iliary task and without auxiliary task (denoted as SWAFN(∆)). The first line of each example is the
predicted labels of the word-level classification task, “N” means the word is predicted as not sentimental
word, “Y” means the word is predicted as a sentimental word. For example, for sentence “And i was
unbelievably shocked how much i loved it”, there are three sentimental words in this sentence which are
“unbelievably”,“shocked” and “loved”, in which the word “unbelievably” and “shocked” are negative
and the word “loved” is positive. The third and fourth line of each example are the learned attentions of
each word by SWAFN model and SWAFN(∆) model. We can see that SWAFN pays most of attention
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on the three sentimental words and can assign largest weight on the word which can directly reflect the
sentiment of the sentence. However, SWAFN without auxiliary task (SWAFN(∆)) pays most attention
on the word “shocked”, which is a negative word, so it predicts wrong label of the sentiment. Similar
observation can be seen in another instance.

The observation shown in Figure 3 indicates that the sentimental words classification auxiliary task can
guide the model to pay more attention on sentimental words than other words when predicting sentiment
and can recognize which sentimental words reflect the sentiment directly. With more accurate attention
weights, SWAFN can summarize more effective representation, thus it can achieve better performance
than SWAFN(no auxiliary task).

6 Conclusion

In this paper, we propose a Sentimental Words Aware Fusion Network (SWAFN) which first applies
the crossmodal coattention mechanism to learn the long range of context information and then use a
sentimental words classification auxiliary task to guide and learn the sentimental words aware final mul-
timodal fusion representation. The experimental results on several datasets show the effectiveness of our
model. The results and case study also demonstrate that our proposed sentimental words classification
auxiliary task is an effective way to use the external knowledge to help the model to learn more pow-
erful multimodal representation. In the future, we will consider incorporating more external language
knowledge to obtain better multimodal fused representations.
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