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Abstract

Event extraction plays an important role in legal applications, including case push and auxiliary
judgment. However, traditional event structure cannot express the connections between argu-
ments, which are extremely important in legal events. Therefore, this paper defines a dynamic
event structure for Chinese legal events. To distinguish between similar events, we design hier-
archical event features for event detection. Moreover, to address the problem of long-distance
semantic dependence and anaphora resolution in argument classification, we propose a novel
pedal attention mechanism to extract the semantic relation between two words through their de-
pendent adjacent words. We label a Chinese legal event dataset and evaluate our model on it.
Experimental results demonstrate that our model can surpass other state-of-the-art models.

1 Introduction

The number of available Chinese legal documents has increased dramatically in recent years. Event
extraction (EE) of legal documents plays an important role in various legal applications, including case
push and auxiliary judgment (Ashley, 2017). For example, a crime-related event contains the defendant’s
crime facts and crime details, which are key elements to the court’s decision.

Traditional event extraction follows the event structure defined by ACE (Automatic Context Extrac-
tion) 1 and is divided into two subtasks: (1) event detection, extracting event trigger words in text and
predicting event types; (2) event argument extraction, extracting arguments related to events and predict-
ing the roles of the arguments. With the development of natural language processing technology, there
are many excellent event extraction techniques in the open field (Xiang and Wang, 2019). There are few
event extraction methods for the legal documents. Lagos et al. (2010) use a rule-based method to extract
event in legal documents. Li et al. (2019a) apply the method of the neural network to the extraction of
legal events. However, there are two major issues in legal event extraction that require more effort.

On the one hand, the traditional event structure and event definition cannot represent legal events well.
For example, in Figure 1 traditional event structure cannot express some connections between arguments.
If AGE is used as an argument of event, it will cause ambiguity. Besides, according to the traditional
event definition method, died event will be separated from stabbed event so that the causal relationship
between the victim’s death and the defendant’s behavior cannot be reflected. To solve this problem, we
proposed a dynamic hierarchical event structure to represent legal events according to legal requirements.
We first define the hierarchical event types to reflect the inclusion of different legal events. Then we
carefully design different argument types to include the key elements of legal events. Moreover, we
propose a dynamic event structure, which stipulates that an event’s argument can have child-arguments
related to the event. As shown in Figure 1, our event structure can contain all key elements in one event
without ambiguity. We extend the event argument extraction task in predicting event-argument roles and
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argument-argument roles at the same time. Furthermore, in order to distinguish between similar events,
we add hierarchical event features in event detection.

On the other hand, there are long-distance semantic dependence and anaphora resolution problems in
the legal sentence. In Figure 1, the first Pei is far from died, and in dependency syntax tree, died is
related to the second Pei. Traditional methods like GNN(Sha et al., 2018) cannot capture the association
between the two words because the two words are far away in the dependency syntax tree. So, we propose
a novel pedal attention mechanism to solve this problem. We analyze the attention weights between a
word and the dependency adjacent words of another word to determine the semantic relation between
the two words. And the dependency adjacent words are called pedal.

Specifically, this paper proposes a pedal attention based joint hierarchical event extraction model for
the legal event. In the training and prediction phase, we design a joint inference model to constrain the
overall event. We label a Chinese legal event dataset and evaluate our model on it. Experiments show that
our method outperforms previous state-of-the-art approaches on Chinese legal event extraction. More-
over, the dynamic event structure we defined for event extraction has important practical significance.

The rest of the paper is organized as follows. Section 2 introduces the related work of event extraction
in the legal domain. Section 3 introduces the dynamic hierarchical event structure for the legal event.
Section 4 details our event extraction model and the joint inference model. In Section 5, we describe our
experimental setup and discuss the results of dynamic event extraction. We conclude in Section 6 with
some ideas for future works.

Figure 1: An example of a sentence in the legal domain, which contains legal events.. The upper side
shows the traditional event structure. The dotted line indicates the ambiguity of the argument role. The
lower side shows the dynamic event structure in this paper, and the subscript represents the type of
argument.

2 Related Work

2.1 Event Definition in Legal Domain

Event definition refers to the definition of event types and argument roles relevant to each type of event.
The definition of the event type determines what is an event. The definition of the arguments role de-
termines what information the event contains. In ACE event extraction program, legal event type is
defined in JUSTICE, with subtypes (arrest-jail, release-parole, trial-hearing, charge-indict, sue, con-
vict, sentence,fine, execute, extradite, acquit, pardon, appeal). Taking arrest-jail as example, its related
arguments include Person-Arg, Agent-Arg, Crime-Arg, Time-Arg, Place-Arg. This method of definition
takes the occurrence of events or changes in state as the basis for event types definition, which follows
the definition of general events. Based on the ACE event definition method, some works redefine the
event types in legal domain according to legal requirements. Maxwell et al. (2009) further analyze the
relevant behavior and state in the legal domain and define new legal events. Lagos et al. (2010) define
legal events as temporally bounded objects, which highlight the importance of event timing in the legal
domain. In addition to defining new event types of the legal domain, some works adjust the arguments
in legal events. Ingolfo et al. (2012) abstract the core concepts related to the judgment into the argu-
ment roles. Bertoldi et al. (2014) claim that the argument should be the information that experts pay
attention to in the legal texts. These methods try to adapt the event definition to different legal require-
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ments. However, due to the complexity of legal requirements, there is no unified method of legal event
definition.

2.2 Event Extraction
Event extraction (EE) is the task of extracting structured event expressions from text. EE can be divided
into two subtasks: event detection (ED) and event argument extraction (EAE). ED detects event triggers
from text and classify the type they are. EAE aims to identify event arguments in text and classify the
roles they play in an event. There are two main approaches to EE: (i) the pipelined approach that first
performs trigger detection and then identifies arguments base on the results of trigger detection. Yubo
et al. (2015) construct event extraction models through dynamic multi-pooling convolutional neural
networks, this work is an influential neural network EE model. Sha et al. (2016) use the dependency
between argument roles to construct regularization constraints to improve the accuracy of EAE. The
latest pipeline event extraction approach is to treat event extraction as a sequence labeling task and uses
the most advanced pre-trained language model to encode text (Yang et al., 2019; Wadden et al., 2019;
Tian et al., 2019). (ii) the joint approach that treats event extraction as a structure extraction task, and
predicts triggers and corresponding arguments at the same time. In the model proposed by Nguyen et al.
(2016), a memory matrix is defined to store the trigger words and arguments that appear before to help the
last arguments and trigger words extraction. Some joint approaches use dependency syntactic features
to strengthen the semantic association between arguments and triggers (Sha et al., 2018; Liu et al., 2018;
Li et al., 2019b). These methods all train the model by maximizing the joint probability of triggers and
arguments. Li et al. (2019c) formulate manual rules for the extraction process and convert parameter
optimization into an integer linear programming problem to improve the accuracy of extraction. Yang et
al. (2016) convert the event into an event tree, and defines the EE task as the problem of extracting the
optimal tree.

3 Dynamic Hierarchical Event Structure for Legal Event

In this section, we introduce the definition of our legal dynamic hierarchical event (DHE). We first define
the legal event as follows:
• Legal event. a legal event is a specific occurrence related to the judicial process involving key

elements.

(a) Hierarchical Event Types. (b) Hierarchical Argument Types. The red font indicates the
role of the argument.

Figure 2: A Part of Hierarchical Event Types and Hierarchical Argument Types.

Then we define the hierarchical event to manage all legal events in an organized manner. The structure
of the hierarchical event is shown in Figure 2 (a).
• Hierarchical event. In legal domain, an event type T1 is a collection of events which are a specific

occurrence with specific key elements. If another event type T2 is a proper subset of T1, T2 is called
a sub-type of T1. All event types are organized in an orderly manner according to the sub-type
relation which contitute hierarchical event.

As shown in Figure 2 (a), CRIME-EVENT is the collection of events that describe the defendant’s spe-
cific criminal behavior and implementation details. VIOLATION-PROPERTY is a sub-type of CRIME-
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EVENT, which represents the events that are violations of the country’s property or citizens. The details
of the hierarchical event are shown in Appendix A.1.

Arguments are the elements in the legal event (e.g., parties, locations). We expand the hierarchy
argument structure (Wang et al., 2019) to cover all elements in the legal event.
• Hierarchical argument. In legal domain, an argument type T1 is a collection of legal elements

with common properties. If another argument type T2 is a proper subset of T1, T2 is called a sub-
type of T1. All argument types are organized in an orderly manner according to the sub-type relation
which conduct hierarchical argument.

For example, in Figure 2 (b)PARTY is a sub-type of ENTITY. In addition, in order to include all legal key
elements in the hierarchical argument, we define two special argument types.
• STATE. STATE arguments are the objective state of an event or other argument. Its sub-types

contain PHYSICAL-STATE and ACTION-STATE.
• BEHAVIOR. BEHAVIOR is a sub-type of ENTITY, BEHAVIOR arguments are the behaviors of

independent significance in legal events.
Defining the BEHAVIOR argument can prevent fragmentation of events and make the existing event more
coherent. For example, escape is a specific BEHAVIOR, it is an important component of the defendant’s
criminal facts, and has a significant impact on the verdict. But escapeis meaningless as an independent
event. If such behaviors are defined as events separately, the event types will be redundant, and the
relationship between these pieces of information and existing events (e.g., CRIME-EVENT) will be
missing. Considering that these behaviors are often expressed in short terms and are independent of other
information in legal documents, we abstract it as BEHAVIOR argument. The details of the hierarchical
argument are shown in Appendix A.2.

Next, we should define an event structure to represent the relation between events and arguments.
The traditional approach is to assign a role to each argument related to the event. However, there are
close links between many arguments in legal events. As shown in Figure 1, there is a one-to-one cor-
respondence between ages and parties. However, traditional event structure has no way to reflect this
correspondence. In the case of Figure 1, traditional event structure leads to ambiguity. In fact, in lin-
guistics, a dynamic event structure theory (Pustejovsky, 2013) is proposed for this situation. In order to
accurately retain the key elements in the legal event, we design a dynamic event structure to represent
legal events.
• Dynamic event structure. A is an argument, B is an event (or argument), if A is an element of B,

A is called a child-argument of B, B is called the father node of A, the relation between A and B
called A’s role in B. We define the dynamic event structure as a structure that consists of an event
and several arguments, where the event has at least one child-argument, and each argument is the
child-argument of the event or an argument.

We define the dynamic event structure for event types without sub-type. As Wang et al. (2019) did, we
define possible roles for the lowest level argument. For example, in Figure 1, the PARTY arguments have
child-argument AGE and STATE with role PARTY-AGE and PHYSICAL-STATE. This method changes
the fixed event structure into dynamics and improves the expressive power of the event structure. The
details of the dynamic event structure can be found in Appendix A.3.

4 Pedal Attention based Joint Hierarchical Event Extraction Model

In this section, we introduce a novel extraction model for dynamic event structure named Pedal Attention
based Joint Hierarchical Event Extraction (PAJHEE). Traditional event structure is a special case of
dynamic event structure, so PAJHEE also suitable for the extraction of traditional event structure. The
overall architecture of PAJHEE is shown in Figure 3.

For a given sentence S = x1, x2, . . . , xn with lenght n, where xi is the i-th token, PAJHEE extract
the dynamic event in S. Our model consists of the following modules: (1) candidate argument extractor
that extracts candidate argument mentions A = a1, a2, . . . , ak and the correspond argument type At =
at1, a

t
2, . . . , a

t
k from S, (2) hierarchical event feature construction module that constructs the hierarchical

event type features of S, (3) pedal attention mechanism that extracts the semantic relationship between
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Figure 3: Overall architecture of dynamic hierarchical event extraction.

the arguments and the triggers, (4) trigger extraction module that predicts the labels of all candidate
triggers 2, (5) argument role prediction module that predicts the event-argument roles and the argument-
argument roles in dynamic event structure, (6) joint inference model that generates the joint probability
for training and extraction.

4.1 Feature Representation

In this paper, we transform discrete features into continuous vectors as inputs of our model. All features
are transformed into the following vectors:
• The word representation of candidate triggers and arguments: We use the output of BERT(Devlin

et al., 2018) as the word representation. If a word contains more than one tokens, we aggregate the
vectors of tokens in this word by average pooling. We use Ei to represent the word representation
of the word wi.
• The argument type embedding: We encode argument type T a

i as a real-value vector by looking up
the randomly initialized position embedding table. Then, we use Ea

i to represent the embedding of
T a
i .

• The event type embedding: Similarly to the argument type embedding, we use real-valued vector
Ee

i to represent the event type embedding of event type T e
i .

• The dependency syntax edge embedding: we transform an edge type T d
i in dependency parse to a

real-valued vector Ed
i by looking up a trainable embedding table.

4.2 Candidate Argument Extraction

Since there are no candidate arguments given in advance, we first extract the candidate arguments in S.
Argument mentions are annotated in the BIO annotation schema. We extract candidate arguments and
predict their types from the sentence through a BERT-based sequence annotation model. Candidate ar-
gument extraction is more sensitive to local semantics and is independent of event structure. To improve
the recall of candidate argument extraction, we enhance the data through sentence splitting and reorga-
nization. After this process, we get candidate argument mention A = a1, a2, . . . , aK and the argument
type At = at1, a

t
2, . . . , a

t
K .

4.3 Hierarchical Event Feature Construction

The superordinate event type feature is important in trigger classification. We use a hierarchical attention
mechanism to construct features of each event type. For a event type T e

i and the candidate argument
A = a1, a2, . . . , aK , we use scaled dot-product attention (Vaswani et al., 2017) to generate the T e

i ’s

2We enumerate every noun, verb, and adjective in the sentence as candidate triggers
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attention to each candidate argument.
Ŵ e

i = Attention(Ee
i , [Ea1 , . . . , EaK ]) (1)

where Eaj is the word representation of aj , Ŵ e
i ∈ Rk is the attention weight to each argument. We

make each T e
i inherit the attention weight of its superordinate type (if the superordinate type exists). Let

the superordinate type of T e
i is T s

i and its attention weight to arguments is W s
i . We recursively construct

the attention weight of each type in the following way,

W e
i =

{
Ŵ e

i T e
i has no superordinate type,

(Ŵ e
i +W s

i )/2 T s
i is the superordinate type of T e

i .
(2)

Then we use following method construct the feature of T e
i ,

F e
i =

K∑
j=1

(W e
i,j(MeEaj + be)) (3)

where W e
i,j means the j-th element of W e

i , Me and be is the parameter of linear transformation.

4.4 Pedal Attention Mechanism
In a long sentence, two reasons make it difficult
to capture the semantic relationship between two
words. First, the distance between the two words
is too far. Second, the two words are related by pro-
nouns. We propose a novel pedal attention mecha-
nism to capture the semantic relationship between
two words. The structure of the pedal attention
mechanism is shown in the figure on the right.
For two words wi and wj , let N i = N i

1, N
i
2, . . . , N

i
l

be the set of words adjacent to wi in dependency

Structure of pedal attention mechanism

parse tree. Di = di1, d
i
2, . . . , d

i
l is the set of edge between wi and N i. We treat N i as a pedal to construct

the semantic relationship between wi and wj . A multi-head attention (Vaswani et al., 2017) is used to
generate the semantic relation feature between wj and N i.

F p
(i,j) = Multi head(Ej , [EN i

1
, . . . , EN i

l
], [Ed

di1
, . . . , Ed

dil
]) (4)

where Ej is the word representation of wj , EN i
k

is the word representation of k-th node in N i, Ed
dik

is

the embedding of the dependency edge between wi and N i
k.

4.5 Trigger Extraction Module
Trigger extraction module trains a multi-class classifier to predict the label of each candidate trigger. We
add other in event type represent the word is not an event trigger. In the trigger extraction module for
current word wi, we compute a feature representation for each event type using the concatenation of the
following vectors:
• Ei: the word representation of wi.
• F e

k : the k-th event type feature of current sentence.
• F p

i : the semantic relation between wi and all candidate arguments.
where F p

i is calculate by max pooling along the relation feature between wi and candidate arguments.
F p
i = max pooling([F p

(i,j)]j∈[1,K]) (5)

where F p
(i,j) is the relation feature between wi and aj which is calculate by pedal attention mechanism.

Then [Ei, F
e
k , F

p
i ] is fed into a feed-forward neural network NNk with a softmax layer in the end to

compute the probability P (k|wi, S).
Pt(k|wi, S) = NN t

k([Ei, F
e
k , F

p
i ]) (6)

where k is a event type with no sub-type.

4.6 Argument Role Prediction Module
In dynamic event structure, argument roles contain event-argument roles and the argument-argument
roles. We use two models with the same structure to predict these two argument roles. Take event-
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argument role prediction as an example. For a given trigger wi and candidate argument wj , we generate
the feature representation for role prediction by concatenating the following vectors:
• Ei and Ej : the word representation of current trigger and argument.
• F p

(i,j): the semantic relation between wi and wj calculated by pedal attention mechanism.
• F p

j : F p
j = max pooling([F p

(j,m)]m∈[1,K]
∧

m 6=j) is the semantic relation between wj and other
arguments. Where F p

(j,m) is the semantic relation representation between wj and am calculated by
pedal attention mechanism.
• F c,i: the event type feature of current trigger. F c,i =

∑
k(P (k|wi, S)E

e
k), where k is the event type

without sub-type.
• Ea

j : the argument type representation of wj .
The we use a feed-forward neural network NN t,a with a softmax layer in the end to predict the prob-

ability Pt,a(r|wi, wj , S) over the possible argument roles:
Pt,a(r|wi, wj , S) = NN t,a([Ei, Ej , F

p
(i,j), F

p
j , F

c,i, Ea
j ]) (7)

For two arguments wi and wj , we simple replace event type feature F c,i with Ea
i , and use a new neural

network NNa,a to predict the probability Pa,a(r|wi, wj , S):
Pa,a(r|wi, wj , S) = NNa,a([Ei, Ej , F

p
(i,j), F

p
j , E

a
i , E

a
j ]) (8)

4.7 Joint Inference Model

We tailor a joint inference model to add the global constraint of dynamic event structure. The structure
of joint inference is shown in Figure 3.

We abstract the dynamic event structure as a tree, with the trigger word as the root node and the
arguments as the nodes. The edge between the nodes represents the argument role of the child node.
We define the association probability matrix of M t,a and Ma,a. M t,a

i,j represents the probability that
i-th type event contains a j-th type argument. Ma,a

i,j represents the probability that i-th type argument
contains a j-th type child-argument. M t,a

i,j and Ma,a
i,j are trainable parameters. We define the probability

of each edge as the association probability times the role prediction probability. Then we calculate the
joint probability of a dynamic event as follows,

P (event|S) = Pt(k|wi, S)
∏

wj∈A(wi)

(M t,a
i,j Pt,a(rj |wi, wj , S)

∏
wm∈A(wj)

(Ma,a
j,mPa,a(rm|wj , wm, S) . . . ))

(9)

where A(w) represent the child-argument set of w. We maximize the log-likelihood log(P (event|S))
to compute the model parameters during the training phase. During prediction phase, we construct the
event tree with the largest weight through a greedy algorithm to extract the entire event. The weight of
each edge is the log-likelihood of its probability.

5 Experiments

5.1 Experimental Setup

Dataset. We manually labeled a Chinese legal event extraction dataset from a Chinese legal documents
corpus 3 by an open-source annotation tool 4. The dataset contains 2380 instances with 11 pre-defined
event types, 26 pre-defined event-argument roles, and 17 pre-defined argument-argument roles. 7 Masters
of Laws participated in the labeling process and took one month to complete.

Contrasted models. We select the following state-of-the-art methods for comparison: (1) DMCNN
(Yubo et al., 2015) extracts sentence-level features by dynamic multi-pooling CNN; (2) DBRNN (Sha et
al., 2018) extracts event triggers and arguments by dependency-bridge RNN; (3) PLMEE (Yang et al.,
2019) explores pre-trained language model for event extraction. In order to verify the effectiveness of

3http://wenshu.court.gov.cn
4http://brat.nlplab.org/about.html
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hierarchical event feature and pedal attention mechanism, we set up the following models for compar-
ison: (1) BERT-base only uses the word representation output by BERT for trigger extraction and role
prediction; (2) JHEE joins hierarchical event feature based on BERT-base; (3) PAJEE joins the pedal
attention mechanism on the basis of BERT-base; (4) PAJHEE is the model with both hierarchical event
feature and pedal attention mechanism. For a fair comparison, all candidate arguments are generated by
our candidate argument extraction module, and only the final result is evaluated.

Training setup and metric. We randomly select 30% instances from the labeled dataset as blind
test data and train all models on the left date. All state-of-the-art models follow their optimal parameter
settings. We use the open-source dependency syntax analysis tool on Language Technology Platform5

(LTP) to build the dependency syntax trees of instances. We set the embedding dimension of the argu-
ment category and dependency syntax to 100, The hidden layer size of the multi-head attention mecha-
nism is 256, and update parameter through gradient descent over shuffled mini-batches with the Adadelta
(Zeiler, 2012) update rule with 0.00001 as the learning rate. we use the following criteria to judge the
correctness of each predicted event: (1) A trigger is correct if its event type and offsets match those of a
reference trigger. (2) An argument is correctly identified if its father node and offsets match those of any
reference argument mentions. We divide the child-arguments of the event and the child-arguments of the
argument into two sets for evaluation. (3) An argument is correctly classified if its father node, offsets,
and argument role match any of the reference argument mentions. Finally, we use Precision (P), Recall
(R), and F measure (F1) as the evaluation metrics.

5.2 Overall results

Trigger
Identification (%)

Trigger
Classification (%)

Argument (Event)
Identification (%)

Argument (Event)
Classification (%)

Argument (Argument)
Identification(%)

Argument (Argument)
Classification (%)

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

DMCNN 85.5 87.6 85.7 84.8 80.2 82.4 79.9 85.5 81.8 74.7 77.7 75.6 N/A N/A
DBRNN N/A 89.2 82.7 83.93 84.3 87.6 84.0 78.1 84.7 79.2 N/A N/A
PLMEE 90.1 96.4 92.7 86.0 88.5 86.37 90.9 82.1 85.0 85.4 80.6 80.9 N/A N/A

BERT-base 95.4 95.3 94.9 89.7 90.0 89.8 94.2 87.6 88.9 74.8 85.9 79.9 77.5 91.2 81.4 64.6 90.3 75.5
JHEE 94.2 99.0 96.5 92.6 94.3 93.1 86.0 90.5 87.9 85.2 80.7 82.8 80.9 86.3 82.6 76.4 75.8 74.0
PAJEE 97.1 95.4 96.3 91.9 92.7 92.3 92.1 93.5 92.8 88.9 89.5 88.2 98.0 78.6 87.2 95.7 76.6 85.2

PAJHEE 97.6 97.3 97.4 93.4 95.1 94.2 92.7 94.4 93.5 88.7 90.6 89.6 98.6 78.4 87.4 95.7 77.2 85.4

Table 1: Overall performance on test data.

Table 1 shows the overall extraction results on our legal event extraction dataset. As is shown, in both
the trigger extraction task and the argument extraction task, PAJHEE has achieved the best results among
all the compared methods. The BERT-base model is better than all state-of-the-art models. It illustrates
that our joint inference model can obtain better prediction results through global constraints. The per-
formance of PLMEE is better than DMCNN and DBRNN, which shows the effect of the pre-trained
language model on legal domain event extraction. The classification performance in models without hi-
erarchical event features and pedal attention mechanism is significantly worse than identification. This
shows that the traditional method can not get the semantic relationship in the legal text well. Then we
will show the effect of the hierarchical event feature and pedal attention mechanism.

5.3 Effect of hierarchical event feature

After using the hierarchical event (HE) feature, trigger identification performance and classification per-
formance have been improved. It proves the effectiveness of the HE feature of sentence-level event
feature extraction. Compared with BERT-base, joining HE feature achieves a 1.6% F1 increase on trig-
ger identification and 3.3% F1 increase on trigger classification. This shows that for the identified trigger
words, the HE feature leads to correct classification. Moreover, the HE features it lead to a 2.9% F1 in-
crease on argument (Event) classification, which indicates that the HE feature can help correctly classify
the role of event’s argument.

5https://github.com/HIT-SCIR/ltp
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5.4 Effect of pedal attention mechanism

As shown in Table 1, the model with pedal attention (PA) achieves F1 improvements of 8.3% and 9.7%
over Bert-base on argument (Event) classification and argument (Argument) classification. PA can also
support trigger classification by constructing the semantic relationship between trigger words and can-
didate arguments. It proves that PA can better extract the semantic relation between two words. PA-
JEE achieves F1 improvements of 9.0% over DBRNN on argument (Event) classification. This occurs
because DBRNN suffers from the problem that related words in legal sentences often have no direct
dependency so that the dependency parse information in DBRNN has little effect. It illustrates that PA
can overcome the problem and construct word semantic relations in complex contexts.

5.5 Case Study

To verify whether the HE feature and PA work as we designed, we conduct a case study. We visualize the
attention score of HE feature construction and PA mechanism on a sentence randomly sampled from our
dataset. The left side of Figure 4 shows the attention score of words at different levels of event types that
can reflect their characteristics well. Fine-grained event types need more information than superordinate
types. As shown in the right side of Figure 4, during PA, Geng Li is associated with strangled through
Li’s neck. And it can be inferred that Geng Li is the object of strangled. This case shows that our method
has achieved the desired effect.

Figure 4: Heatmap of attention scores of hierarchical event feature and pedal attention of a randomly
selected sentence.

6 Conclusion and Future Work

This paper analyzes the shortcomings of the traditional event structure in the legal field and defines a
dynamic hierarchical event structure that can better express event information. We label a legal event
extraction dataset that contains 11 types of events in two major legal-related events: CRIME and LIT-
IGATION. Then we propose a pedal attention based joint hierarchical event extraction model, which
can automatically extract lexical level and event-level features from plain texts. A novel pedal attention
mechanism is introduced to capture lexical level semantic relation, and a hierarchical event feature is
used to construct the event level feature. The experimental results prove the effectiveness of the pro-
posed method. In the future, we will extend the dynamic event structure to other fields such as finance
and biomedicine and apply the pedal attention mechanism in other natural language processing tasks as
a general relational feature construction tool.
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A Appendix A. The Definition of Dynamic Hierarchical Event Structure

A.1 The Definition of Hierarchical Event
Category Type

CRIME

ENDANGERING PUBLIC SECURITY
RECKLESS DRIVING
TRAFFIC OFFENSE

PROPERTY INFRINGEMENT
LARCENY
FRAUD
ROBBERY

VIOLATION PERSONAL
INTENTION INJURY
INTENTION KILLING

LITIGATION

ARREST
DETENTION
BAIL
TRIAL

Table A. Hierarchical Event

Table A shows the hierarchical relationship between legal events in the legal documents. The events
in the legal documents can be divided into criminal events (CRIME) and litigation-related events (LITI-
GATION). The details of the two event categories are as follows:

A.1.1 CRIME
CRIME. A crime committed by a perpetrator that violates the provisions of the criminal law and con-
stitutes a crime. According to the definition and classification of criminal law in mainland China 6, we
selected three representative crimes: endangering public safety, property infringement, and violation of
personal rights for extraction. ENDANGERING PUBLIC SECURITY ENDANGERING PUBLIC SE-
CURITY. A general crime, which objectively manifests as various acts that endanger public safety.
We selected the following two typical sub-types of crimes from ENDANGERING PUBLIC SECURITY:
• RECKLESS DRIVING refers to driving a car on the road: chasing racing, drunk driving, overload-

ing, speeding, and other actions that endanger public safety.
• TRAFFIC OFFENSE refers to the criminal act of violating road traffic management laws and regu-

lations, causing serious traffic accidents, causing serious injury or death, or causing heavy losses to
public and private property being prosecuted for criminal responsibility according to law.

PROPERTY INFRINGEMENT PROPERTY INFRINGEMENT. A criminal act of seizing public
and private property for the purpose of illegal possession or deliberately destroying public and private
property.
We extract the following three common crimes in crimes against property PROPERTY INFRINGE-
MENT:
• LARCENY refers to the act of illegal possession, the theft of public and private property objects

or multiple theft, household theft, theft with a weapon, and pickpocketing of public and private
property.
• FRAUD refers to the act of deceiving large amounts of public and private property for the purpose

of illegal possession, using fictitious facts or concealing the truth.
• ROBBERY is an act of illegal possession, using violence, coercion or other methods against the

owner or custodian of property to steal public and private property forcefully.
VIOLATION PERSONAL VIOLATION PERSONAL. A general crime, which objectively manifests

as various acts that endanger public safety.
We selected common intentional injurie and intentional killing as representatives of VIOLATION PER-
SONAL:
• INTENTION INJURY refers to the crime convicted of intentionally illegally harming the health of

others.
6http://www.npc.gov.cn/wxzl/wxzl/2000-12/17/content 4680.htm
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• INTENTION KILLING refers to the act of deliberately depriving others of their lives.

A.1.2 LITIGATION
LITIGATION. A series of actions taken against the defendant’s criminal behavior, including: arrest,
detention, bail, and trial.
• ARREST refers to a case where a public security organ, a people’s procuratorate, or a people’s

court deprives a criminal suspect or defendant of an act that impedes criminal proceedings, evades
investigation, prosecution, trial, or social danger, and deprives him of his personal freedom under
the law and is detained. Kind of coercive measures.
• DETENTION refers to a compulsory state that restricts the personal freedom of a criminal suspect

or defendant detained or arrested within a certain period of time.
• BAIL release refers to the criminal defendant detained in the judiciary providing security and grant-

ing release.
• TRIAL means hearing a case and giving a judgment. It is an important part of law enforcement

power.

A.2 The Definition of Hierarchical Argument
Category Type

ENTITY ARGUMENT

PARTY
ITEM
TIME

LOCATION
ORGANIZATION

TERM
CRIMINAL CHARGE

BEHAVIOR

STATE ARGUMENT
PHYSICAL STATE

BEHAVIORAL STATE

ATTRIBUTE ARGUMENT

ITEM ATTRIBUTE
PARTY ATTRIBUTE
CRIME ATTRIBUTE

PENALTY/ENFORCE ATTRIBUTE
Table B. Dynamic Argment

Table B shows all entity argument types involved in the hierarchical event. According to the hier-
archical relationship of arguments in the event, these arguments can be divided into three categories:
entity argument, state argument, and attribute argument. The details of the three entity categories are as
follows:

A.2.1 ENTITY ARGUMENT
ENTITY ARGUMENT. Something that can exist independently, as the basis of all attributes and the origin
of all things.

The entity argument contains the following six entities: partiy, item, time, location, organization, term,
criminal charges, and behavior.
• PARTY is a person who enters a lawsuit because of a dispute over the rights and interests in the

substantive law or has a direct relationship with a specific legal fact and is bound by a court decision.
• ITEM refers to the items involved in the crime.
• TIME refers to the time of the event.
• LOCATION refers to the location where the crime occurred.
• ORGANIZATION refers to law enforcement agencies, procuratorates, and courts.
• TERM is an important basis for conviction and sentencing.
• CRIMINAL CHARGE is the name or title of the crime, and it is a high-level summary of the essential

characteristics or main characteristics of the crime.
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• BEHAVIOR refers to the appearance of activities that are controlled by ideas. This article refers to
the actions taken by the parties before or after the crime.

A.2.2 STATE ARGUMENT
STATE ARGUMENT. The form that people or things show.

This article mainly concerns the personal status and behavior status of the parties.
• PHYSICAL STATE refers to the disability and mental state of the party.
• BEHAVIORAL STATE refers to the state of the party’s behavior, such as epilepsy and drunkenness.

A.2.3 ATTRIBUTE ARGUMENT
ATTRIBUTE ARGUMENT. The abstract aspects of an object. The nature and relationship of a thing are
called the attributes of the thing. The attributes in this article are in-depth descriptions of entity arguments
and events, which mainly include item attributes, parties attributes, crime attributes, and penalty/enforce
attributes.
• ITEM ATTRIBUTE is an abstract characterization of items, such as value, length, and diameter. The

article attributes mainly relate to the value of the article.
• PARTY ATTRIBUTE refers to the attribute information of the party’s ethnicity, age.
• CRIME ATTRIBUTE describes the social impact brought by criminal behavior, whether the defen-

dant’s criminal methods are cruel, and the reasons for the occurrence of criminal incidents.
• PENALTY/ENFORCE ATTRIBUTE is a more detailed description of the punishment of the defen-

dant’s criminal facts.

A.3 The Definition of Dynamic Event Structure
A.3.1 Child-argument of event
We define the collection of child-arguments for the event types without sub-types, the format of the
collection is [event type]:[(argument type, argument role)] which means the collection of event types
share a set of child-arguments.
• [RECKLESS DRIVING, TRAFFIC OFFENSE]: [(PARTY, defendant/victim), (ITEM, tool/property),

(TIME, time), (LOCATION, location), (STATE, driving state), (ATTRIBUTE, influence)].
• [LARCENY, FRAUD, ROBBERY, INTENTION INJURY, INTENTION KILLING]: [(PARTY, defen-

dant/victim), (ITEM, tool/property), (TIME, time), (LOCATION, location), (ATTRIBUTE, influ-
ence/means/tense)].
• [ARREST, DETENTION]: [(PARTY, defendant), (ORGANIZATION, enforcement-organ /accusa-

tion), (TIME, time), (LOCATION, location), (CRIMINAL CHARGE, criminal-charge)].
• [BAIL]: [(PARTY, defendant/guarantor), (ORGANIZATION, enforcement/accusation), (TIME,

time), (LOCATION, location), (CRIMINAL CHARGE, criminal charge)].
• [TRIAL]: [(PARTY, defendant/guarantor), (ORGANIZATION, judicial-organ), (TIME, time), (LO-

CATION, location), (CRIMINAL CHARGE, criminal-charge), (TERM, term), (BEHAVIOR, penalty-
behavior/enforce-behavior)].

A.3.2 Child-argument of argument
We define the collection of child-arguments for the argument types without sub-types, the format of the
collection is argument type:[(argument type, argument role)].
• PARTY:[(PHYSICAL STATE, disability/mental), (PARTY ATTRIBUTE, previous/subjective/age),

(BEHAVIOR, before-crime/after-crime), (TIME, birth-time)]
• ITEM:[(ATTRIBUTE, value)]
• BEHAVIOR:[(PENALTY/ENFORCE ATTRIBUTE, amount/term), (ITEM, related-item)]
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