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Abstract

Much previous work on geoparsing has focused on identifying and resolving individual toponyms
in text like Adrano, S.Maria di Licodia or Catania. However, geographical locations occur not only
as individual toponyms, but also as compositions of reference geolocations joined and modified
by connectives, e.g., “. . . between the towns of Adrano and S.Maria di Licodia, 32 kilometres
northwest of Catania”. Ideally, a geoparser should be able to take such text, and the geographical
shapes of the toponyms referenced within it, and parse these into a geographical shape, formed
by a set of coordinates, that represents the location described. But creating a dataset for this
complex geoparsing task is difficult and, if done manually, would require a huge amount of effort
to annotate the geographical shapes of not only the geolocation described but also the reference
toponyms. We present an approach that automates most of the process by combining Wikipedia
and OpenStreetMap. As a result, we have gathered a collection of 360,187 uncurated complex
geolocation descriptions, from which we have manually curated 1,000 examples intended to be
used as a test set. To accompany the data, we define a new geoparsing evaluation framework along
with a scoring methodology and a set of baselines.

1 Introduction

Geoparsing, or toponym resolution, is the task of identifying geographical entities, and attaching them
to their corresponding reference in a coordinate system (Gritta et al., 2018b). In its traditional setting it

Figure 1: An illustrative example of complex geographical description parsing. Given a text describing
a target geolocation the goal is to aproximate its geometry using as reference the geometries of the
geolocations that appear in the description (Adrano, S.Maria di Licodia and Catania). In this example,
the target geolocation is Biancavilla, but in general, there may not be a name for the target geolocation.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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involves two main steps: parsing the text to recover geo-location mentions and linking those mentions
to the entries of a toponym dictionary like GeoNames1. Thus, it can be seen as a special case of named
entity recognition and disambiguation.

The task plays a key role in information extraction, since it allows events to be placed in an unequivocal
location that could be plotted on a map. However, the setting described above restricts the task to
geolocations with explicit names, whilst text in natural language can refer to geographical regions by
complex descriptions that involve a set of different toponyms.

Take, for example, the following snippet: “a town and comune in the Metropolitan City of Catania,
Sicily, southern Italy. . . located between the towns of Adrano and S.Maria di Licodia, 32 kilometres (20
mi) northwest of Catania.”. Traditional geoparsing could return coordinates for the individual toponyms
(Adrano, S.Maria di Licodia, etc.) but not the boundaries of the geolocation described by the entire
phrase. Solving this problem requires understanding the meaning of linguistic connectives (e.g. between,
northwest) and a geometric interpretation of how they combine the geographical entities. These complex
descriptions are frequent in domains where there are no specific names for geographical regions of interest,
for example in environmental impact statements describing the effects on the environment of activities
such as constructing new mines or roads, or in food security outlooks describing the impact of localized
agricultural production and other factors on humanitarian crises.

Though parsing these kinds of geographical descriptions and aproximating the corresponding geometries
has been the goal of some previous work (Aflaki et al., 2018), research in this area has been constrained by
the lack of a benchmark dataset. A naive approach to building such a dataset would require a huge amount
of resources to find and collect complex geograhical descriptions, to annotate the reference toponyms and
to edit the geometries that correspond to the target locations.

In this paper, we present a methodology to acquire such a dataset by combining Wikipedia and
OpenStreetMap2, making use of the links between those resources. We collect descriptions of geolocations
from Wikipedia articles that are linked to an OpenStreetMap geometry, i.e. the set of coordinates that
define the boundary of a geographical location. The text from the Wikipedia pages retrieved includes
embedded links to other geolocations for which OpenStreetMap geometries can be obtained.

For example, the snippet presented above corresponds to the description of Biancavilla in Wikipedia.
In our proposed task, we assume that the geometry of Biancavilla is unknown and must be recovered from
its description using the rest of toponoym geometries (Adrano, S. Maria di Licodia, . . . ) as reference, as
shown in Figure 1.

As the content of both Wikipedia and OpenStreetMap has been manually created and reviewed by
a broad commnunity of volunteers, the remaining steps needed for dataset construction are to collect
the descriptions, filter non-compositional examples, and, in a some cases, complete missing reference
geolocations. In summary, the main contributions of this paper are the following:

• We describe a methodology to adquire a dataset for complex geographical description by combining
Wikipedia articles and OpenStreetMap geometries. As a result, we provide a new dataset that includes
more than 300,000 uncurated descriptions to be used as a training set, and 1,000 manually curated
descriptions to be used as test set.
• We complete an evaluation framework with a set of metrics to analyze the similarity between gold

and predicted geometries
• We propose a set of baselines that can be used as reference in future approaches and highlight the

need of proper language understanding of the descriptions.

The dataset and evaluation framework are available at https://github.com/EgoLaparra/
geocode-data and https://github.com/EgoLaparra/geocode respectively.

1http://www.geonames.org
2https://www.openstreetmap.org

https://github.com/EgoLaparra/geocode-data
https://github.com/EgoLaparra/geocode-data
https://github.com/EgoLaparra/geocode
http://www.geonames.org
https://www.openstreetmap.org
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2 Task Description

Before going into further details about the building of our dataset, we first formally define the task of
parsing complex geographical descriptions. Formally, a geoparser for such descriptions is a function
h : (T, L)→ G, where:

• G = P({(lat, lon) : lat∈[−90,+90], lon∈[−180,+180]}) is the set of all sets of (latitude, longi-
tude) points, i.e., the set of all possible geographical regions.
• T = c1c2c3 . . . cN is the text description of the geolocation, typically one or two brief paragraphs,

where ci is a character in the text.
• L = {(ci, cj , gk) : 0 ≤ i ≤ N, 0 ≤ j ≤ N, gk ∈ G} is the set of other geolocations mentioned in
T , where (ci, cj) are the character offsets of the mention, and gk is the geometry of the mentioned
geolocation.

Intuitively, the goal is to be able to map a natural language description and the geographical regions it
mentions to a new geographical region that represents the complex geolocation described. All geographical
regions are defined in terms of longitude and latitude points in the World Geodetic System (WGS 84)
(Slater and Malys, 1998)3.

This task is challenging because every linguistic composition of phrases must be matched to a ge-
ometric composition of geographic regions. Consider the first part of the description in Figure 1:

“between the towns of Adrano and S.Maria di Licodia”. To parse this expression, one must first iden-
tify the phrases that represent spatial concepts (e.g. between, Adrano, S.Maria di Licodia). Phrases
that represent known geographical regions must then be retrieved from an index of such geometries.
For example, GEOMETRY(Adrano) = {(14.8258023, 37.6324199), (14.8275266, 37.6319645), . . .} in
OpenStreetMap. Phrases that represent compositions of other geographical regions in the description
must be mapped to formal geometric operations. For example, between should be mapped to:

REGIONBETWEEN(GEOMETRY(Adrano), GEOMETRY(S.Maria di Licodia))

where the REGIONBETWEEN function must be defined in terms of geometric operations over geographical
regions. Note that there is no standard definition for REGIONBETWEEN, so one must be created as part
of constructing a parser for complex geographic descriptions. This example illustrates that a successful
geoparser will have to be able to map a wide variety of linguistic expressions to a wide variety of
geographic regions and geometric operations.

3 Related Work

The task proposed in this paper can be seen as a junction of two different NLP research lines.
On the one hand, toponym resolution has been widely studied, especially within the Entity Linking

framework (Shen et al., 2015). But it has gained interest as an independent task in recent years. Its
ultimate goal is to retrieve the coordinates for the geolocation mentioned in the text, for which gazetteers,
such as GeoNames and Wikipedia, are frequently used as reference knowledge bases. The problem is
commonly separated into two steps. First, location references are extracted from the text following a
Named Entity Recognition strategy (Karagoz et al., 2016; Magge et al., 2018). Secondly, the references
are disambiguated and linked to the reference knowledge base (Turton, 2008; Weissenbacher et al.,
2015; Gritta et al., 2018a). As pointed out by Gritta et al. (2018b), the amount of annotated data for
toponym resolution is not large, but a few datasets are available for different domains such as historical
texts (DeLozier et al., 2016), social media (Wallgrün et al., 2014), scientific literature (Weissenbacher
et al., 2019) and Wikipedia (Gritta et al., 2018b). Thanks to these works, it is possible to link locations
mentioned in text to unambiguous geographic respresentations, in the form of coordinates. However, they
do not address the compositional nature of the geographical descriptions.

On the other hand, although not necesarily related to toponyms, previous works have studied the
structure of (geo)spatial natural language expressions. However, many of these works limited their

3Appendix A.1 includes examples of WGS84 points, e.g., (15.0915738 37.3582971).
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Figure 2: On the top half, the first paragraph from the Wikipedia article of Biancavilla where 2, 3 and 4
are hyperlinks to other Wikipedia articles and will be used as reference geolocations. On the bottom half,
the mappings between Wikipedia and OpenStreetMap for the target and reference geolocations in the
paragraph. For simplicity, we only show the links of the second sentence but whole paragraph is included
in the dataset.

attention to the role of specific elements, such as prepositions (Zwarts, 2005; Kracht, 2008; Radke et al.,
2019), or particular grammatical structures (Stock and Yousaf, 2018). Some other works defined the task
as a tagging problem, each specifying a different set of labels to tag the components of the text. These
works were focused on the relations between the elements of the geospatial expressions in a syntactically
inspired manner (Kordjamshidi et al., 2011; Mani et al., 2010; Kolomiyets et al., 2013; Pustejovsky et
al., 2015). As pointed out by Aflaki et al. (2018), the manual annotation of compositional (geo)spatial
expressions is very challenging and, in consequence, many of these schemas are limited to a reduced set
of elements or define complex tag structures. Moreover, the goal of these works is to obtain a tag structure
on top of the text but they do not provide an explicit way to intepret them to obtain a single geographical
object, i.e. it is not possible to translate these structures into a set of coordinates.

Our work takes a different approach by not imposing any annotation structure on top of the text and
providing, instead, the target and reference geometric shapes, in WGS84 coordinates, of the geolocation
descriptions. By doing so, we aim to merge benefits from both research lines.

4 Dataset building

We constructed a dataset from Wikipedia, Wikidata and OpenStreetMap as follows:

1. Retrieved the articles from Wikipedia that have a link to OpenStreetMap. As shown in the top half of
Figure 2, from every article we kept only the first one or two paragraphs if they satisfy the following
criteria:

• They contained a least two links to Wikipedia articles that are linked to OpenStreetMap (i.e.,
Wikipedia articles representing geolocations).
• They contained at least one locative term (north, close, between, etc.). We manually assembled

a dictionary of such terms from sources like WordNet and FrameNet. For the purposes of this
filter, we did not consider as locative terms words that by themselves would yield only simple
expressions, e.g., in as in “Paris is in France”.

2. Built a mapping dictionary between Wikipedia and OpenStreetMap (see bottom half of Figure 2).
When the OpenStreetMap entity is linked to Wikidata or to a Wikipedia redirect we recover the
corresponding Wikipedia page.
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Figure 3: The geometries retrieved from OpenStreetMap for the geolocations in the example of Figure 2.
Each geometry is defined by the set of coordinates that makes its boundary.

3. Gathered the geometries of entities from OpenStreetMap that have a link to Wikipedia or Wikidata.
The OpenStreetMap geometries are defined by sets of coordinates and can be nodes (a single
coordinate), ways (a collection of nodes forming a linestring or a polygon) and relations (a collection
of any kind of entities). Figure 3 presents the plotted maps for some examples.

4.1 Analysis and curation
The result of the process described above is a corpus with 360,187 examples. Although it is derived from
handcrafted resources, since our process is fully automatic, we performed a manual analysis to understand
the quality of the acquired data. We sampled 4,000 descriptions and manually rated them with one of the
following categories:

Complex/Complete (22% of descriptions): The description was a compositional description and each
reference geolocation has a link to OpenStreetMap. E.g.: “Fengnan District is a district of Tangshan,
Hebei, China on the coast of the Bo Sea and bordering Tianjin to the west”.

Complex/Incomplete (37%): The description is a compositional description but for some reference
geolocations the link to OpenStreetMap is missing. For example, the link for Weymouth Harbour is
missing in “Hope Square is a historic square to the south of Weymouth Harbour in the seaside town
of Weymouth, Dorset, southern England”.

Simple/Complete (27%): The description is not compositional although each reference geolocation has
a link to OpenStreetMap. E.g.: “Waakirchen is a municipality in the district of Miesbach in Bavaria
in Germany”.

Simple/Incomplete (9%): The description is not compositional and for some reference geolocations the
link to OpenStreetMap is missing. For example, the link for San Gabriel Valley is missing in “North
El Monte is a census-designated place in the San Gabriel Valley, in Los Angeles County, California,
United States”.

Not valid (5%): The text is not a geographical description. E.g.: “Yoox Net-A-Porter Group is an Italian
online fashion retailer created on 5 October 2015 after the merger between Yoox Group and The
Net-A-Porter Group”. This case was retrieved because it contains a locative term (between) and the
Groups are linked to their headquarters.

From this analysis, it can be observed that only a small fraction of the examples do not correspond to
geographical descriptions. It must be noted that, even for Simple or Incomplete categories, all the valid
descriptions (95% of the total) are linked to a correct target geometry. However, the Complex/Complete
category is the most interesting for our purposes.4

We also used this analysis to curate 1,000 examples for a test set. From the 4,000 descriptions sample,
we kept only those that are Complex/Complete and a small portion of Complex/Incomplete that only had

4The categories we assigned here are intended only to assist in analyzing the quality of the extracted geographical descriptions,
and to select items for the manually curated test set. We do not believe these categories are appropriate for a classification task.
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(a) Horloff is a river of Hesse, Germany. It passes through
Hungen and Reichelsheim, and flows into the Nidda in
Florstadt.

(b) Hosford-Abernethy is a neighborhood in the inner
southeast section of Portland, Oregon. It borders Buckman
and Sunnyside on the north, Richmond on the east, Brook-
lyn and Creston-Kenilworth on the south, and (across the
Willamette River) Downtown Portland and South Portland
on the west.

Figure 4: Two examples of descriptions taken from out dataset, including the input text and the reference
and target shapes: (a) example of a target linestring, (b) example of a target polygon. For clarity, the plots
have been centered in the target entities and large scale geometries are not shown (e.g. Germany).

one unambiguous entity missing. For this latter category, we manually added the links for the missing
entities. Although incorporating Simple and even Not valid descriptions could have resulted in a more
realistic setting, we decided not to include them since the former are covered by traditional toponym
resolution and the latter are not resolvable. To help us with both the analysis and the curation, we
developed an annotation tool that is available at https://github.com/EgoLaparra/geocode.

5 Description of the resource

The set of descriptions obtained by the procedure described in Section 4 are stored in a collection of
XML files. For every geolocation we include the cannonical Wikipedia name as well as its corresponding
identifier and type of entity in OpenStreetMap. Along with the xml files, we built a PostgreSQL database
to store the geographic objects collected from OpenStreetMap. Examples of the storage formats can be
seen in Appendix A.1.

Examples from the data described are visualized in Figure 4. The maps have been plotted using the
geometries retrieved from OpenStreetMap. All the linestrings and polygons correspond to the geolocations,
both target and references, from the descriptions below each map.

Table 1 shows further details on the 360,187 gathered descriptions and the manually curated test set.
The most remarkable differences between the uncurated and curated sets are the ratio of unique references
and the number of references per description. These differences can be explained by the missing reference
geolocations in the Complex/Incomplete descriptions and by the fact that Simple descriptions usually
have fewer references that are also more frequently reused. For example, the uncurated set contains more
than 20,000 French commune descriptions like: “Le Mesnil-Esnard is a commune in the Seine-Maritime
department in the Normandy region in northern France”. These kinds of descriptions tend to share the
same references (e.g. Normandy, France). These characteristics of the uncurated data should be taken
into account when using it as a training set to avoid undesired biasses.

Finally, it should be noted that, although all the descriptions come from the same source, namely
Wikipedia, the resource covers a wide variety of locations, inluding landforms, political entities, human

https://github.com/EgoLaparra/geocode
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Uncurated Curated (test)

#descriptions 360,187 1,000
#refs 1,524,699 5,298
#unique refs 171,980 3,529
#refs per description 4.23 5.30

Table 1: Some statistics of the dataset.

settlements or artificial structures.

6 Metrics

As the main metric for models attempting this geoparsing task, we propose to measure the area of the
predicted geometry that overlaps with the gold one. In other words, the metric calculates the area of the
intersection between both geometries. This value can be obtained in precision and recall as follows:

Pi(Si, Oi) =
area(Si

⋂
Oi)

area(Si)
Ri(Si, Oi) =

area(Si
⋂
Oi)

area(Oi)

where area(Xi) is the geometric area of the geolocation i from set X . Given the predicted (S) and
gold (O) sets of geometries, we define the overall precision as the average of individual precisions in S.
Similarly, overall recall is defined as the average of inidividual recalls in O:

P (S,O) =
1

|S|
∑
i∈|S|

Pi(Si, Oi) R(S,O) =
1

|O|
∑
i∈|O|

Ri(Si, Oi)

F1(S,O) can be calculated as the regular harmonic mean of P (S,O) and R(S,O).
This metric is run following two different criteria. First, we propose a strict evaluation by measuring

the exact overlap between the original gold and predicted geometries. However, as geolocations can have
very intrincate boundaries, this criterion becomes too demanding in many cases. Thus, we also propose
a relaxed version where the metric calculates the overlap with the target oriented envelopes, i.e. the
mimimum rotated rectangle enclosing each target geometry.

Note that the overlap based metric penalizes equally all predictions that do not intersect with a gold
geometry. We propose an additional scoring method that gives some credit to predictions that are close
to the gold geometries even if they do not overlap. For this, we extend the gold geometries by a scale
factor of 2 and then calculate the precision of the predictions as explained previously. In other words,
to calculate the precision Px2, we double the size of gold geometries. Similarly, we scale the predicted
geometry by a factor of 2 and calculate the recall Rx2. This two complementary metrics can be applied
with both strict and relaxed criteria.

7 Baselines

In order to have a reference for future approaches, we propose four non-lingustic baselines that ignore the
text description, and only execute straightforward combinations of the reference geolocations. Models
which do any real language processing of the text descriptions should be able to exceed these baselines.
We also propose a linguistic baseline that constructs a semantic parser from a hand-assembled synchronous
grammar to parse the description of the target geometry and produce a composition of operations over
the reference geometries. We expect machine learning models that combine both text and reference
geometries will outperform this baseline.

7.1 Non-linguistic baselines
The non-linguistic baselines all consider only the set L of reference geometries for a particular target
geolocation, ignoring the text T . The baselines are defined as follows:
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Strict Relaxed Coverage

baseline P R F1 Px2 Rx2 P R F1 Px2 Rx2 %

Max reference 0.005 0.849 0.011 0.014 0.937 0.009 0.844 0.017 0.025 0.935 100%
Min reference 0.100 0.105 0.102 0.196 0.184 0.144 0.099 0.117 0.284 0.179 100%
Union 0.005 0.928 0.010 0.015 0.954 0.009 0.927 0.018 0.027 0.955 100%
Intersection 0.106 0.063 0.079 0.216 0.081 0.161 0.059 0.086 0.289 0.079 25.5%

Grammar 0.172 0.310 0.221 0.272 0.381 0.213 0.276 0.240 0.358 0.365 52.8%

Table 2: Performance of the five baselines using the scoring functions proposed. Coverage shows the
percentage of cases where the baseline produces a prediction. The highest scores in each column are
marked in bold.

• The maximum and minimum reference geometry in L according to the area sizes.

hmin(T, L) = argmin
l∈L

area(l) hmax(T, L) = argmax
l∈L

area(l)

• The union and intersection of all the reference geometries in L.

hunion(T, L) =
⋃
l∈L

l hintersection(T, L) =
⋂
l∈L

l

Table 2 shows the performance of the four baselines. The maximum reference and union baselines are
overly inclusive, obtaining high recall in both strict and relaxed metrics, but with very low precisions. This
reflects the large size of the predicted geometries that, in many cases, cover the target geolocation. The
minimum reference baseline performs the best in terms of F1, but has low recall. The intersection baseline
seems to be the most precise, but has poor recall, since it only produces a prediction for a small fraction
of the descriptions (only for 25.5% of the cases). In general, the poor performance of the four baselines
show the need for natural language processing techniques that truly understand the textual descriptions.

7.2 Linguistic baseline
For the linguistic baseline, we have built a semantic parser based on a synchronous grammar using a dev
set of ∼100 randomly sampled examples from the non-curated collection (ensuring that the test set was
not used during the development of the grammar). Synchronous grammars allow the construction of two
simultaneous trees, one in a source language and one in a target language. In our case, the source is the
natural language text in English and the target is a formal grammar of geometry operators. Each of these
operators defines a function to produce a geometry from others. For example, the BETWEEN operator
takes two geolocations and calculates the region between them. We run our synchronous grammar with
the extended CYK+ parsing algorithm described in Bethard (2013). The grammar contains 219 rules in
total, 70 of which are lexical, e.g. [CARDINAL]→ northwest ‖ NW .

To illustrate our parsing process, we use as an example the following description: “. . . located between
the towns of Adrano and S.Maria di Licodia, 32 kilometres (20 mi) northwest of Catania”. The text is
first pre-processed, cleaning some unnecessary tokens and normalizing each geolocation to a SHP Index
format: “. . . between the towns of SHP 001 and SHP 002, 32 kilometres northwest of SHP 003”. The
Index is mapped to the geometry of its corresponding geolocation (e.g. 001 → relation/39338). Next,
consider the following portion of our synchronous grammar with the source on the left of ‖ and the target
on the right:

[NIL] → towns ‖
[UNIT] → kilometres ‖ KM

[CARDINAL] → northwest ‖ NW

[LOCATION] → SHP [INT] ‖ TOPONYM([INT])

[LOCATION] → between [LOCATION1] and [LOCATION2] ‖ BETWEEN([LOCATION1], [LOCATION2])

[LOCATION] → [INT][UNIT][CARDINAL] of [LOCATION] ‖ DISTANCE([LOCATION], [INT], [UNIT], [CARDINAL])

[LOCATION] → [LOCATION1] , [LOCATION2] ‖ INTERSECTION([LOCATION1], [LOCATION2])
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(a) Gambela or Gambella. . . is one of
the nine ethnic divisions (kililoch) of
Ethiopia. . . The region is situated be-
tween the Baro and Akobo Rivers, with
its western part including the Baro
salient.
P: 0.914 R: 0.170.

(b) Kudelstaart. . . is a town in the Dutch
province of North Holland. It is a part of
the municipality of Aalsmeer, and lies
about 10 km southeast of Hoofddorp.
P: 0.327 R: 1.000.

(c) Równianki. . . is a village in the
administrative district of Gmina Rud-
nik, within Krasnystaw County, Lublin
Voivodeship, in eastern Poland. It lies
approximately 23 kilometres (14 mi)
south-west of Krasnystaw and 47 km
(29 mi) south-east of the regional capi-
tal Lublin.
P: 0.052 R: 1.000.

Figure 5: Three examples of predictions given by the grammar-based baseline. For comparison, we show
the prediction and target geometries. We also include the strict precision (P) and recall (R) for each
prediction.

The set of rules above produces the following operator composition:

INTERSECTION(

BETWEEN(TOPONYM(001), TOPONYM(002)),

DISTANCE(TOPONYM(003), 32,KM,NW )))

When the description is composed of multiple sentences, every sentence is parsed independently and
then an INTERSECTION operation is performed. If the result of the INTERSECTION is empty, we return
the UNION. We implement all the operators as deterministic functions, guided by their performance in
the development set. For example, BETWEEN returns a geometry that corresponds to the area between
the portions of the reference geometries that are closest to each other. DISTANCE guesses a geometry at
the distance and direction defined by its arguments whose area is based on the reference geometry. See
Appendix A.2 for a more detailed explanation.

The last row in Table 2 shows that this model more than doubles the F1 of the non-linguistic baselines,
despite being able to produce an intepretation for only 52.8% of the descriptions. If we consider only the
cases where this model returns an interpretation, its strict recall rises from 31.0% to 58.7%, indicating that
when the model is able to produce a prediction, it successfully retrieves much of the target geometry area.

The fact that the recall is higher than the precision reflects that the resulting geometries are still too large.
This often results from incomplete interpretation; on average only 69.7% of a description’s sentences are
used when the grammar produces that description’s interpretation. As a specific example, consider the
description: “Hornsby Heights is a suburb of northern Sydney. . . Hornsby Heights is located 27 kilometres
north-west of the Sydney central business district, in the local government area of Hornsby Shire. . . ”
When only the first sentence is parsed, the geometry returned covers the whole “northern Sydney”, an
area that is aproximately 100 times larger than Hornsby Heights.

Besides the limitations of the grammar, the deterministic implemenation of our spatial operators
introduces additional sources of error. For example, our BETWEEN operator can have flawed results
when the reference geometries are not polygons but linestrings, as shown in Figure 5a where the returned
geometry is calculated leaving out the portions of the Baro and Akobo rivers that are farthest from each
other. The performance of DISTANCE operator may vary widely if the size of the reference and target
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geolocations differ, like in the examples Figures 5b and 5c, especially if the type of the geolocations do
not match, as can be seen in Figure 5c where the reference geolocations Krasnystaw and Lublin are towns
whilst the target geolocation is a village.

8 Conclusion

In this paper, we presented a new dataset for complex geographical description parsing. This dataset aims
to push the research in this area that has been constrained by the lack of a benchmark dataset. We detailed
the methodology to adquire such a dataset by combining Wikipedia and OpenStreetMap geometries,
followed by a manual curation of 1,000 descriptions to be used as test set. We also described a novel
scoring methodology that completes the evaluation framework. Finally, we proposed a set of baselines,
including a grammar-based semantic parser, to be used as reference by future works. The results show that
this a very challenging task, but we expect that the limitations of a rule-based system can be addressed by
more sophisticated models trained in the uncurated portion of our dataset.
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A Appendices

A.1 Examples of storage formats
The set of descriptions obtained by the procedure described in Section 4 are stored in a collection of
XML files following the format of the example in Figure 6. For every target geolocation (<entity>)
we include the cannonical Wikipedia name as well as its corresponding identifier and type of entity in
OpenStreetMap. Each geolocation contains one or two paragraphs (<p>) with the text that describes
it. The text is enriched with embedded <link> nodes corresponding to the reference geolocations that
contains the same attibutes as the target geolocation <entity> node.

Along with the xml files, we built a PostgreSQL database to store the geographic objects collected
from OpenStreetMap. We use the PostGIS plugin to gain support for geometric queries and opera-
tions. For example, the geometry of the geolocation relation/39230, shown in Figure 3, is stored as a
MULTILINESTRING made of a set of coordinates like the following:5

5The coordinates are in (longitude latitude) format following the WGS 84 system.
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MULTILINESTRING((15.0915738 37.3582971, 15.091534 37.3590011, 15.0914852 37.3594131,
15.0913862 37.3625999, 15.0911766 37.3637703, 15.0912522 37.365941, 15.090798

37.3687674, 15.090877 37.3725726, 15.0905403 37.3860332, 15.0905375 37.3861446,
15.0904987 37.3878887, 15.0906826 37.3885978,...

<entity wikipedia="Biancavilla" osm="39304" type="relation">
<p>

Biancavilla is a town and comune in the <link osm="39181" type="relation"
wikipedia="Metropolitan_City_of_Catania">Metropolitan City of Catania</link>,
<link osm="39152" type="relation" wikipedia="Sicily">Sicily</link>, southern
<link wikipedia="Italy" osm="365331" type="relation">Italy</link>. It is
located between the towns of <link osm="39338" type="relation"
wikipedia="Adrano">Adrano</link> and <link wikipedia="Santa_Maria_di_Licodia"
osm="39305" type="relation">S. Maria di Licodia</link>, 32 kilometres (20 mi)
northwest of <link wikipedia="Catania" osm="39230"
type="relation">Catania</link>.

</p>
</entity>

Figure 6: Example of the xml annotation of a geographical description in the dataset.

A.2 Examples of operator implementation

Algorithm 1 and Algorithm 2 contain the pseudo-code for the operators used as example in Section 7.2.
Figure 7 and Figure 8 provide a visual description of how the operators are implemented. In both cases,
blue is used to represent the reference geometries whilst red is used to show what the algorithms produce
in each step as well as the final geometries.

Algorithm 1 DISTANCE operator
Input: Geometry, Integer, KM |MI , N |S|E|W |NE . . .
Output: Geometry

1: function DISTANCE(ref geometry, distance, units, cardinal point)
2: ref centroid = GETCENTROID(ref geometry)
3: distant point = GETDISTANT(ref geometry, distance, units, cardinal point)
4: distant arc = GETARC(ref centroid, distant point)
5: max diagonal size = CALCULATEMAXDIAGONAL(ref geometry)
6: distance geometry = BUFFERARC(distant arc, max diagonal size)
7: return distance geometry
8: end function

(a) Get an arc at distance from
the centroid of the reference ge-
ometry and oriented acording to
cardinal point. Lines 2-4.

(b) Calulate the maximum diag-
onal of the reference geometry.
Line 5.

(c) Buffer the arc obtained pre-
viously so its width equals the
maximum diagonal calculated
in the previous step. Line 6.

Figure 7: Visual representation of Algorithm 1.
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The BETWEEN operator takes two geometries as input. The DISTANCE operator takes a reference
geometry, an integer with the distance value, a string representing the units used, “KM” for kilometers or
“MI” for miles, and a string representing the cardinal point, e.g. “S” for south or “NE” for northeast.

Algorithm 2 BETWEEN operator
Input: Geometry, Geometry
Output: Geometry

1: function BETWEEN(ref geometry 1, ref geometry 2)
2: ref centroid 1 = GETCENTROID(ref geometry 1)
3: ref centroid 2 = GETCENTROID(ref geometry 2)
4: shortest line = GETLINE(ref centroid 1, ref centroid 2)
5: orthogonal 1 = GETORTHOGONAL(shortest line, ref centroid 1)
6: intersections 1 = GETINTERSECTIONPOINTS(ref geometry 1, orthogonal 1)
7: orthogonal 2 = GETORTHOGONAL(shortest line, ref centroid 2)
8: intersections 2 = GETINTERSECTIONPOINTS(ref geometry 2, orthogonal 2)
9: between polygon = GETPOLYGON(intersections 1 ∪ intersections 2)

10: between geometry = DIFFERENCE(between polygon, ref geometry 1 ∪ ref geometry 2)
11: return between geometry
12: end function

(a) Get the shortest line
between the centroids of
the reference geometries.
Lines 2-4.

(b) Get the orthogonals of
the line calculated in the
previous steps that cross
the centroids of the refer-
ence geometries. Lines 5-
7.

(c) Get the points where
the orthogonals intersect
the reference geometries
and build a polygon with
them. Lines 8-9.

(d) The final geometry
is calculated as the dis-
joint area of the polygon
calculated previously and
the reference geometries.
Line 10.

Figure 8: Visual representation of Algorithm 2.


	Introduction
	Task Description
	Related Work
	Dataset building
	Analysis and curation

	Description of the resource
	Metrics
	Baselines
	Non-linguistic baselines
	Linguistic baseline

	Conclusion
	Acknowledgements
	Appendices
	Examples of storage formats
	Examples of operator implementation


