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Abstract

Aspect-based sentiment analysis includes opinion aspect extraction and aspect sentiment classi-
fication. Researchers have attempted to discover the relationship between these two sub-tasks
and have proposed the joint model for solving aspect-based sentiment analysis. However, they
ignore a phenomenon: aspect boundary label and sentiment label of the same word can correct
each other. To exploit this phenomenon, we propose a novel deep learning model named the
label correction model. Specifically, given an input sentence, our model first predicts the as-
pect boundary label sequence and sentiment label sequence, then re-predicts the aspect boundary
(sentiment) label sequence using the embeddings of the previously predicted sentiment (aspect
boundary) label. The goal of the re-prediction operation (can be repeated multiple times) is to
use the information of the sentiment (aspect boundary) label to correct the wrong aspect bound-
ary (sentiment) label. Moreover, we explore two ways of using label embeddings: add and gate
mechanism. We evaluate our model on three benchmark datasets. Experimental results verify
that our model achieves state-of-the-art performance compared with several baselines.

1 Introduction

Aspect-based sentiment analysis (ABSA) aims to extract the opinion aspects mentioned in the sentence
and to predict the sentiment of each aspect (Pontiki et al., 2014). For example, in the review “Average to
good thai food , but terrible delivery .”, thai food and delivery are aspects, with positive and negative as
their corresponding sentiments.

In the literature, ABSA is usually divided into two sub-tasks, namely, opinion aspect extraction and
aspect sentiment classification. The goal of opinion aspect extraction is to extract all aspects present in
a sentence. Early work (Zhuang et al., 2006) focuses on detecting the pre-defined aspects in a sentence.
Then, some work (Jakob and Gurevych, 2010; Liu et al., 2015) regards the opinion aspect extraction as a
sequence labeling task. The goal of aspect sentiment classification is to predict the sentiment of the given
opinion aspect, and this sub-task has drawn growing research interests over the past few years (Ma et
al., 2017; Wang et al., 2018; Li et al., 2019b). However, most previous work focuses on only one of the
sub-tasks. This limits the practical application of ABSA. To apply the existing methods of two sub-tasks
in practical applications (i.e., not only extracting aspects but also predicting their sentiments), the most
common way is to pipeline the methods of two sub-tasks together.

To further promote the resolution of ABSA, researchers have attempted to discover the relationship
between these two sub-tasks and have developed the joint models (Mitchell et al., 2013; Zhang et al.,
2015). They utilize a set of aspect boundary labels (e.g., B, I,E, S,O) and a set of sentiment labels (e.g.,
POS,NEG,NEU and O) to make the models of two sub-tasks jointly trained. In other words, ABSA is
modeled as an extension to opinion aspect extraction, where an extra sentiment label is assigned to each
word, in addition to the aspect boundary label. Table 1 gives an example of the labeling scheme in the
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Average to good thai food , but terrible delivery .
aspect boundary label O O O B E O O O S O

sentiment label O O O POS POS O O O NEG O

Table 1: Labelling scheme used in the joint model, where POS and NEG represent positive and negative
emotions, respectively.

h1 h2 h3 h4 h5 h6

Embeddings

Average to good thai food ,

Boundary Label Embeddings

O O O B E O

Add / Gate Mechanism Add / Gate Mechanism

Sentiment Label Embeddings

O O O POS POS O

O O O POS POS O O O O B E O

CRF

Encoder

Figure 1: Overview of the proposed model. The red dotted rectangular part can be run repeatedly during
testing, but only once during training. (best viewed in color)

joint model. Although the joint model presents competitive results on the ABSA, researchers overlook a
phenomenon: aspect boundary label and sentiment label of the same word can correct each other. Refer
to the example in Table 1, if the sentiment label of word food is O, we can correct it based on the obvious
fact: O cannot be the sentiment label of an aspect word. Therefore, we can reduce the error space in
predicting the sentiment label by considering the corresponding aspect boundary label, vice versa.

To make use of this phenomenon to assist ABSA, in this paper, we propose a novel neural networks
model named the label correction model. Figure 1 shows the architecture of our model. For a joint
model solution to ABSA, each word in the input sentence has two labels (i.e., aspect boundary label
and sentiment label), thus our motivation is to use one label to correct the other as much as possible.
During training, our model utilizes the ground truth label sequence to improve performance directly. In
particular, our model uses the ground truth sentiment label embeddings and hidden states to predict the
aspect boundary label sequence. For the prediction of the sentiment label sequence, the operation is
similar. During testing, we first predict the aspect boundary label sequence and sentiment label sequence
of the input sentence, and such predictions are based solely on hidden states. Then, these two label
sequences are employed as features for predictions for the next round. Such design is based on the
assumption that in the process of prediction, the proposed model has the ability to correct the label by
adopting another label as a feature. Note that the re-prediction operation can be repeated many times.
In this work, we try two different ways to use label embeddings: add and gate mechanism. The former
integrates the label embeddings into the hidden states by adding. The latter consisting of a sigmoid layer
and a pointwise multiplication operation is a way to optionally let label embeddings information through.

To summarize, we make the following contributions in this paper:

• We manifest a phenomenon ignored by researchers that aspect boundary label and sentiment label
of the same word can correct each other in the joint model of ABSA.

• We propose a novel model utilizing this phenomenon to solve ABSA. To the best of our knowledge,
our model is the first work related to this phenomenon.

• Experimental results on three benchmark datasets show that our model outperforms the strong joint
baselines. We conduct an ablation study to quantitatively demonstrate the effectiveness of exploiting
this phenomenon.
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2 Related Work

Aspect-based sentiment analysis is usually divided into two sub-tasks, namely, opinion aspect extraction
and aspect sentiment classification.

Opinion Aspect Extraction Opinion aspect extraction is a fundamental task in ABSA and aims at
extracting all aspects present in a sentence. Hu and Liu (2004) first proposed to evaluate the sentiment of
different aspects in an opinion sentence, and all aspects are predefined artificially. However, the manually
defined aspects cannot cover all aspects appearing in a sentence. Therefore, many researchers turn to
extract all possible aspects in a sentence and model the opinion aspect extraction as a sequence labeling
problem. They initially used traditional machine learning (Jin and Ho, 2009; Jakob and Gurevych, 2010;
Liu et al., 2013) to solve this sub-task. With the developments of deep learning, neural networks based
methods (Liu et al., 2015; Wang et al., 2016; Wang et al., 2017; Xu et al., 2018) have achieved better
performance on opinion aspect extraction.

Aspect Sentiment Classification Aspect sentiment classification is often interpreted as a multi-class
classification problem, assuming that the aspects are given. Traditional approaches usually first manu-
ally build a set of features and then run them through SVM (Jiang et al., 2011; Wagner et al., 2014).
The feature-based models depend on the quality of laborious feature engineering work and are labor-
intensive. Therefore, recent work mainly focuses on capturing the interaction between the aspect and
the sentence, by utilizing various neural architectures such as LSTM (Tang et al., 2016a) with attention
mechanism (Li et al., 2018a), CNN (Xue and Li, 2018), Memory Networks (Tang et al., 2016b; Chen et
al., 2017), and pre-trained models (Wang and Ren, 2020).

Aspect-based Sentiment Analysis Aspect-based sentiment analysis needs to directly predict the sen-
timent towards an aspect along with discovering the aspect itself. In addition to the pipeline methods,
previous work attempted to discover the relationship between its two sub-tasks and presented a more
integrated solution to solve ABSA. Specifically, Mitchell et al. (2013) formulated ABSA as a sequence
labeling problem and proposed to use CRF with hand-crafted linguistic features. Zhang et al. (2015)
leveraged the linguistic features and word embeddings to further improve the performance of the CRF
based model. Recently, Li et al. (2019a) proposed a unified model, which contains two stacked LSTMs
along with carefully-designed components for maintaining sentiment consistency and improving aspect
detection, and achieved state-of-the-art results. However, researchers overlooked a phenomenon: aspect
boundary label and sentiment label of the same word can correct each other. In this paper, we further
improve performance on ABSA by taking advantage of this phenomenon.

3 Proposed Model

3.1 Problem Formulation

We formulate the complete ABSA as two sequence labeling problems and employ a set of aspect bound-
ary labels YB and a set of sentiment labels YS to accomplish opinion aspect extraction sub-task and
aspect sentiment classification sub-task, respectively. Here, YB = {B, I,E, S,O} (short for beginning,
inside, ending, single token, outside) and YS = {POS,NEG,NEU,O} (short for positive, negative,
neutral, outside). For a given input sequence X = {x1, ..., xT } with length T, the goal of our model is to
predict two label sequences YB = {yB1 , ..., yBT } and YS = {yS1 , ..., yST }, where yBi ∈ YB and ySi ∈ YS .
Based on these two label sequences, we can obtain the extracted aspects along with corresponding sen-
timents. Taking the sentence in Table 1 as an example, the extracted aspects are thai food and delivery,
whose sentiments are positive and negative, respectively.

3.2 Overview

Figure 1 shows the architecture of our model. Our model consists of three components, which are
the encoder, the add and gate mechanism, and the CRF. The encoder is BERT1 (Devlin et al., 2019)

1In this paper, BERT refers to BERTBASE.
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which maps word embeddings into contextualized hidden states using the pre-trained transformer blocks
(Vaswani et al., 2017). Then, the add or gate mechanism is utilized to fuse the hidden states and the label
embeddings, aiming at using one label’s information to enhance the prediction of another. Note that we
use the ground truth label sequence during training but label sequence from the latest round of prediction
during testing. Finally, to predict the sentiment label sequence and aspect boundary label sequence, the
two outputs are fed into two CRFs, respectively.

3.3 Encoder

We use BERT (Devlin et al., 2019) as our text encoder. In this work, we first tokenize the sentence X
using WordPiece embeddings (Wu et al., 2016) with a 30,522 token vocabulary and then generate the
input sequence X by concatenating a [CLS] token, the tokenized sentence, and a [SEP] token. Then
for each token xi in X, we convert it into vector space by summing the token, segment, and position
embeddings, thus yielding the input embeddings H0 ∈ R(T+2)×d, where d is the hidden state dimension.
Next, we use L stacked transformer blocks to project the input embeddings into a sequence of contextual
hidden states Hi ∈ R(T+2)×d as:

Hi = TransformerBlock(Hi−1) ∀i ∈ [1, L] (1)

Here, we omit an exhaustive description of the transformer block and refer readers to Vaswani et al.
(2017) for more details.

3.4 Add and Gate Mechanism

As the example in Table 1 shows, each word in the input sentence has two labels (i.e., aspect boundary
label and sentiment label) in the joint model. Our motivation is to use one label to correct the other.
To input labels as features, we first convert each label in two label sequences (YB and YS) 2 into vector
space, so producing the boundary label embeddings HB ∈ R(T+2)×d and the sentiment label embeddings
HS ∈ R(T+2)×d. We then propose two ways to use the label embeddings.

Add As the name suggests, the add is a pretty simple way to incorporate the label embeddings directly
into the hidden states:

HLB(LS) = HL +HB(S) (2)

Although this way is uncomplicated, it is not very effective. When our model predicts the sentiment
labels, it considers the hidden states and the boundary label embeddings to be equally important, and
vice versa. However, this may not be the case. Because the contextualized hidden states may play a
greater role when predicting the sentiment labels for certain words. Taking the sentence in Table 1 as
an example, when predicting the sentiment label of word delivery, the contextual information containing
word terrible is significantly more useful than its own boundary label S. Therefore, we propose the gate
mechanism to solve the shortcoming of this way.

Gate Mechanism For label prediction of different words, the contextual hidden states and the label
embeddings should play significantly different roles. Inspired by gates in LSTM, we propose the gate
mechanism to select important information from the hidden states and the label embeddings to forecast
label. The gate mechanism can construct tailored hidden states by considering the label embeddings. In
detail, it takes the hidden states HL and the label embeddings HB(S) as input and outputs a gate matrix
GB(S) to select HL and HB(S):

GB(S) = σ(HL ∗HB(S)) (3)

HLB(LS) = HL �GB(S) +HB(S) � (1−GB(S)) (4)

2In the training stage, we map the ground truth labels into vectors. However, in the inference stage, we map the labels of
the latest round of prediction into vectors. As for the first round of prediction, we set the label embeddings to 0.
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Datasets Train Dev Test Total
#POS #NEG #NEU #POS #NEG #NEU #POS #NEG #NEU #POS #NEG #NEU

Laptop 898 787 426 96 83 38 341 128 169 1335 998 633
Rest 2839 967 624 218 81 45 1516 494 260 4573 1542 929

Twitter − − − − − − − − − 692 263 2244

Table 2: Dataset statistics. #POS, #NEG and #NEU denote the number of positive, negative and neutral
emotions, respectively. Note that there is no standard train-test split on Twitter.

where σ denotes the sigmoid activation function and� is element-wise multiplication. From Equation 3,
we can find GB(S) ∈ R(T+2)×d is a matrix whose values are between 0 and 1. Therefore, we can utilize
||GB(S)

i ||23 to measure the degree of the filter and call it 2-Norm Gate value. A high value means most
of the information in HL

i is passed from the filter, which results in predicting labels with more contextual
information. A low value allows the label embeddings to pass through the filter. This illustrates that
using only contextual information is not sufficient, and the information of the other label can assist and
correct the prediction of the label.

3.5 Conditional Random Field
It has been shown that CRF (Lafferty et al., 2001) can produce higher labeling accuracy in sequence
labeling tasks because it considers the correlations between labels in neighborhoods. Therefore, instead
of decoding each label independently with the softmax layer, we predict the sentiment label sequence
and aspect boundary label sequence by using two CRFs. In the training stage, we maximize the log-
likelihood function:

L = P (YB|X) + P (YS |X) (5)

where the label sequence likelihood P (YB(S)|X) can be computed by the softmax equation. In the test
stage, the Viterbi algorithm (Forney, 1973) is used to output the optimized label sequence.

4 Experiments

4.1 Setup
Datasets We conduct experiments on the three benchmark ABSA datasets. Table 2 gives the statistics
of three datasets. Laptop contains product reviews from the laptop domain and the train-test split is the
same as the original dataset (Pontiki et al., 2014). Rest is the union set of the restaurant domain from
SemEval 2014 (Pontiki et al., 2014), 2015 (Pontiki et al., 2015), and 2016 (Pontiki et al., 2016). The
new training dataset4 is obtained by merging three years’ training set and the new testing set is built in
the same way. Twitter is built by Mitchell et al. (2013), which consists of twitter posts. For Laptop and
Rest, we regard 10% randomly held-out training data as the development set. For Twitter, we follow
previous work (Zhang et al., 2015; Li et al., 2019a) and report the ten-fold cross-validation results as
there is no standard train-test split.

Model Settings We use the publicly available BERT’s code5 to implement our encoder. The hyper-
parameters (e.g., word pieces vocabulary size, hidden size of encoder, and learning rate) and optimizer of
our model are the same as that of BERT, and we employ the uncased pre-trained model to initialize our
WordPiece embeddings and encoder’s parameters. We set the dimensions of boundary label embeddings
and sentiment label embeddings to 768, and these two label embeddings are randomly initialized from
N (0, 1) and learned from scratch. The batch size is 16 and a dropout (Srivastava et al., 2014) probability
of 0.1 is used to avoid overfitting. For the maximum length of the input sentence after WordPiece
tokenization, we set it to 256. For the gold labels of [CLS] and [SEP] token in the input sequence, we
set them to O.

3G
B(S)
i ∈ Rd is the i-th vector of GB(S).

4Since the training set of SemEval 2016 contains the test examples of SemEval 2015, we exclude these test examples in the
training set.

5https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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Metrices We adopt the precision (P), recall (R), and F1 score as the evaluation metrics. We can obtain
the extracted aspects and the corresponding sentiments from the aspect boundary label sequence and the
sentiment label sequence, respectively. An extracted aspect is considered to be correct only if it exactly
matches the gold aspect and its corresponding sentiment is the same as the gold sentiment label.

4.2 Baselines
Models solving ABSA can generally be divided into three categories: pipeline, joint, and collapsed.
The pipeline model first detects aspects from the input text and then predicts sentiments over aspects.
The joint model jointly extracts aspects and predicts their sentiments using a set of aspect boundary
labels as well as a set of sentiment labels. The collapsed model uses a set of collapsed labels (e.g.,
B-POS) to directly indicate the boundary of targeted sentiment.

We compare our model with the following methods:

• CRF-{pipeline, joint, collapsed}6 (Mitchell et al., 2013) are three kinds of approaches under the
Conditional Random Fields framework.

• NN-CRF-{pipeline, joint, collapsed}7 (Zhang et al., 2015) enhance the CRF framework by intro-
ducing a fully connected layer to consolidate the linguistic features and word embeddings.

• LSTM-CRF8 (Lample et al., 2016) consists of LSTM and CRF without feature engineering. We
consider it as a collapsed model and run the officially released code to produce results.

• HAST-TNet9 is the pipeline approach of HAST(Li et al., 2018b) and TNet (Li et al., 2018a), which
are the current state-of-the-art models on the tasks of aspect boundary detection and aspect senti-
ment classification respectively. We use the officially released codes to produce the results.

• UNIFIED (Li et al., 2019a) is the current state-of-the-art model on ABSA. This collapsed model
enhanced with multi-task learning contains two stacked LSTMs.

• BERT-CLS treats ABSA as a multi-class classification task, classifying each token in the input text
into one of the collapsed labels.

• BERT-CRF-{joint, collapsed} is similar to NN-CRF. The difference is that we employ BERT to
extract representation features instead of word embeddings and linear layers.

4.3 Results
For simplicity, we denote our label correction model as LCM. Here, LCM-Add adds the label embed-
dings to the hidden states, and LCM-Gate uses the gate mechanism to optionally let the label embeddings
information through.

Main Results Table 3 shows our comparisons with baselines on ABSA. The experimental results sug-
gest that our model consistently exhibits the best F1 scores on the three datasets and significantly outper-
forms the baselines.

Five main observations can be obtained from Table 3. First, although NN-CRF using the word embed-
dings defeats CRF, it is not strong. Consequently, we add BERT-CRF as another baseline. As shown in
Table 3, BERT-CRF achieves much better results than {NN, LSTN}-CRF on all datasets. This indicates
that the contextual representations produced by BERT for each token are quite powerful, which is why
we chose BERT as the encoder. Second, compared with HAST-TNet, the pipeline of two state-of-the-art
models, our model achieves 6.57%, 3.85%, and 4.63% absolute gains on Laptop, Rest, and Twitter
respectively, suggesting that a carefully-designed joint model can be more effective than the pipeline

6http://www.m-mitchell.com/code/index.html
7https://github.com/SUTDNLP/NNTargetedSentiment
8https://github.com/glample/tagger
9Available at: https://github.com/lixin4ever/HAST and https://github.com/lixin4ever/TNet

respectively

http://www.m-mitchell.com/code/index.html
https://github.com/SUTDNLP/NNTargetedSentiment
https://github.com/glample/tagger
https://github.com/lixin4ever/HAST
https://github.com/lixin4ever/TNet
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Models Laptop Rest Twitter
P R F1 P R F1 P R F1

CRF-pipeline† 59.73 47.56 52.96 52.46 51.22 51.83 42.90 26.26 32.57
CRF-joint† 57.76 36.89 45.02 60.43 49.25 54.27 43.92 24.97 31.84

CRF-collapsed† 60.91 41.45 49.33 64.14 58.02 60.92 48.98 20.21 28.61
NN-CRF-pipeline\ 57.72 49.32 53.19 60.09 61.93 61.00 43.71 37.12 40.06

NN-CRF-joint\ 55.64 34.48 45.49 61.56 50.00 55.18 44.62 35.84 39.67
NN-CRF-collapsed\ 58.72 45.96 51.56 62.61 60.53 61.56 46.32 32.84 38.36

LSTM-CRF† 58.66 50.92 54.52 67.11 66.45 66.78 52.10 44.62 48.07
HAST-TNet† 57.13 54.62 55.85 63.02 73.94 68.04 46.61 50.02 48.26
UNIFIED\ 61.27 54.89 57.90 68.64 71.01 69.80 53.08 43.56 48.01
BERT-CLS 54.83 61.96 57.59 68.05 71.21 69.59 44.41 52.48 48.11

BERT-CRF-joint 56.43 62.16 59.15 68.29 72.45 70.31 43.95 55.12 48.92
BERT-CRF-collapsed 56.67 62.79 59.57 68.64 72.67 70.59 44.48 55.78 49.48

LCM-Add 59.45 65.25 62.20 68.94 73.50 71.14 47.51 57.54 52.04
LCM-Gate 59.48 65.66 62.42 69.06 74.96 71.89 48.11 58.74 52.89

Table 3: Experimental results. The results of the models marked with ’†’ are reproduced by us with the
officially released code by the authors. The results of the models marked with ’\’ are copied from Li
et al. (2019a). Average results over three runs with random initialization are reported. State-of-the-art
results are marked in bold.

model for ABSA task. Third, despite that BERT-{CLS, CRF} baselines show competitiveness compared
with the previous best approach UNIFIED, they are all beaten by our model. For example, LCM-Gate
achieves 4.83%, 2.3%, and 4.78% absolute gains on the three datasets compared with BERT-CLS, in-
dicating the effectiveness of our model. Fourth, among the joints methods, LCM-{Add, Gate} shows
the best performance. This illustrates not only the richness of the features extracted by the encoder but
also the efficacy of utilizing the phenomenon that aspect boundary label and sentiment label of the same
word can correct each other. Last but not least, we notice that the improvement of our model on the
Rest dataset is marginal in contrast with the state-of-the-art baseline UNIFIED. The small gap is reason-
able since the Rest dataset contains many informal reviews resulting in the inferior modeling power of
models. A similar observation is seen in the comparison of UNIFIED and HAST-TNet.

Ablation Study To prove the usefulness of applying one label to correct the other in the joint model,
we perform an ablation study. If our model directly employs the hidden states (HL in Equation 1) to
predict the sentiment label sequence and aspect boundary label sequence, our model is equivalent to the
BERT-CRF-joint. Consequently, we can choose BERT-CRF-joint as the ablation baseline. As shown
in Table 3, compared with LCM-{Add, Gate}, BERT-CRF-joint performs poorly on all three datasets.
For example, compared with LCM-Gate, BERT-CRF-joint loses 3.27% F1 scores on the Laptop dataset.
This confirms that considering another label embeddings when predicting labels helps improve the per-
formance. Furthermore, we can observe that LCM-Gate is better than LCM-Add on the three datasets.
For instance, in terms of F1 scores, LCM-Gate wins about 0.22% absolute gains over LCM-Add on
the Laptop dataset. This indicates that the gate mechanism optionally allowing the label embeddings
information through is more effective than direct addition.

4.4 Discussions

Investigation on the Impact of Number of Repeated Inferences As mentioned above, the inference
operation (i.e., rectangular surrounded by the red dotted line in Figure 1) of our model can be repeated
multiple times. Here, we investigate the effect of the number of repeated inferences (N ) on the perfor-
mance. We vary the value of N in the set {1, 2, 3, 4} and plot the corresponding F1 score of LCM on
the three datasets. The results are illustrated in Figure 2. As shown in Figure 2, both models (LCM-Add
and LCM-Gate) achieve good performance on Laptop and Rest when N is 2, and on Twitter when N
is 3. This shows that after certain times of inferences, an increase in the times of inferences does not
necessarily improve the performance and the model’s ability to correct wrong labels may reach a limit.
Besides, we discover that increasing N too big may induce the model to overcorrect the label. It is worth
noting that although the performance of both models presents a slight rising trend on the Twitter dataset
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Figure 2: Effect of the number of repeated inferences. F1 score on the three datasets is the average value
over three runs with random initialization.
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Figure 3: Performance against training data size. Here, BERT-CRF refers to BERT-CRF-joint. F1 score
on the Laptop and Rest datasets is the average value over three runs with random initialization.

as N increases, we do not take into account it to do trade-off the effectiveness and efficiency.

Performance against Training Data Size. Our motivation is to use the sentiment (aspect boundary)
label to correct the aspect boundary (sentiment) label in the joint model. Under certain conditions, the
improvement of our model is more significant when the joint model predicts several wrong labels. To
this end, we conduct different experiments on different amounts of training data. Figure 3 shows the
performance of baselines and our model against different settings for training with different amounts of
training data. Here, we consider three training settings (30%, 60%, and 90%) of the original training
data. As shown in Figure 3, LCM-{Add, Gate} consistently outperform BERT-{CLS, CRF} under the
same amount of training data on the Laptop and Rest datasets, illustrating the superiority of our model.
We can observe that the performance gap becomes more obvious when the size of the training data
decreases. Concretely, using 30% of the original training data in the Laptop dataset, LCM-Add can
achieve an F1 score of 51.72%, higher than BERT-CRF trained on the same size training data. This
demonstrates that when the size of the training data is small, the joint model has a larger error space,
resulting in more mistaken labels. In contrast, our model using the label embeddings can reduce the
error space and correct the mistaken labels.

Gate Mechanism Visualization To confirm that our model can select the valuable sentiment (aspect
boundary) label information for predicting the aspect boundary (sentiment) label, we visualize the 2-
Norm Gate value (see Gate Mechanism subsection) in Figure 4. Our observations are as follows. First,
we can see that when a token is an aspect word, its 2-Norm Gate value is relatively small. The underlying
reason may be that using only contextual information is not sufficient, thus allowing the label information
to pass through the filter. Second, we can find that the different aspect words have different 2-Norm Gate
values (e.g., compare the 2-Norm Gate values between log and battery in Figure 4(a)). The reason is that
if an aspect word appears more frequently in the dataset, its contextual information can predict correctly
its label with the help of little label information. Finally, we observe that the same aspect word has two
different 2-Norm Gate values (e.g., compare Left and Right 2-Norm Gate values of log in Figure 4(a)).
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Figure 4: Gate mechanism visualization of an input sentence from the Laptop and Rest dataset. Here,
the y-axis is the 2-Norm Gate value. Left (Right) denotes the 2-Norm Gate value of the gate mechanism
when predicting the sentiment (aspect boundary) label (see Figure 1). In the Laptop sentence, log on,
wifi connection, and battery life are aspects, with positive as their corresponding sentiments. In the Rest
sentence, array of sushi is an aspect, with positive as its corresponding sentiments.

We assume that it can be inferred correctly using the contextual information when the sentiment or aspect
boundary label of an aspect word is easy to predict. For example, log is very close to its sentiment cue
pleased, which results in using the contextual information easy to infer its sentiment label.

Case Study Table 4 presents some qualitative cases sampled from the ablation baseline (i.e., BERT-
CRF-joint) and LCM-{Add, Gate}. As observed in the first and second sentences, BERT-CRF-joint
correctly predicts the aspect boundary (sentiment) but fails to forecast the right sentiment (aspect bound-
ary). By contrast, LCM, where we incorporate the boundary (sentiment) label embeddings into the
hidden states to correct the prediction of the sentiment (boundary) label, can correctly handle these two
cases, suggesting that our idea using one label to correct the other is capable of improving the perfor-
mance of ABSA. Besides, we find that LCM-Add may abandon the correction halfway. For example, in
the fourth sentence, it successfully corrects the boundary label of harumi with the sentiment label O but

Sentence BERT-CRF-joint LCM-Add LCM-Gate
Aspect Sentiment Aspect Sentiment Aspect Sentiment

I do not like too much
[Windows 8]POS. Windows 8 POS(7) Windows 8 NEG Windows 8 NEG

Their [duck]POS here is
also absolutely delicious.

duck POS duck POS duck POShere(7) O
The Apple engineers have
not yet discovered the
[delete key]NEG.

Apple engineers(7) NEG(7) Apple engineers(7) O
delete key NEGdelete key NEG delete key NEG

harumi sushi has the fresh-
est and most delicious [ar-
ray of sushi]POS in NYC.

harumi(7) O array POS
array of sushi POSarray(7) POS of O(7)

sushi(7) POS sushi POS

Table 4: Case Study. The “Aspect” column contains the results from the aspect boundary label sequence.
The “Sentiment” column presents the sentiment of the aspect, coming from the sentiment label sequence.
The marker 7denotes the incorrect prediction.
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fails to correct the sentiment label of of with the boundary label I. We attribute it to LCM-Add’s inability
to selectively utilize the label information. In contrast, LCM-Gate performs better and corrects the label
more thoroughly, indicating that the gate mechanism, where optionally let the label information through,
is more reasonable and effective compared with the pure addition.

5 Conclusions

In this paper, we investigate aspect-based sentiment analysis tasks, which can be formulated as two
sequence labeling problems with a set of aspect boundary labels and a set of sentiment labels. We observe
that the aspect boundary label and sentiment label of the same word can correct each other. Thus, we
propose the label correction model that exploits this observation to improve performance. Moreover,
we introduce two ways (add and gate mechanism) to make use of label information. We evaluate our
proposed model on the three benchmark datasets. Extensive experiments show that our proposed model
achieves superior performance.
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