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Abstract

Aspect-level sentiment classification (ASC) aims to detect the sentiment polarity of a given opin-
ion target in a sentence. In neural network-based methods for ASC, most works employ the
attention mechanism to capture the corresponding sentiment words of the opinion target, then
aggregate them as evidence to infer the sentiment of the target. However, aspect-level datasets
are all relatively small-scale due to the complexity of annotation. Data scarcity causes the atten-
tion mechanism sometimes to fail to focus on the corresponding sentiment words of the target,
which finally weakens the performance of neural models. To address the issue, we propose a
novel Attention Transfer Network (ATN) in this paper, which can successfully exploit attention
knowledge from resource-rich document-level sentiment classification datasets to improve the
attention capability of the aspect-level sentiment classification task. In the ATN model, we de-
sign two different methods to transfer attention knowledge and conduct experiments on two ASC
benchmark datasets. Extensive experimental results show that our methods consistently outper-
form state-of-the-art works. Further analysis also validates the effectiveness of ATN. Our code
and dataset are available at https://github.com/1429904852/ATN.

1 Introduction

Aspect-level sentiment classification (ASC) is a fundamental task in sentiment analysis (Pang et al.,
2008; Liu, 2012; Pontiki et al., 2014), which aims to infer the sentiment polarity (e.g. positive, neutral,
negative) of a given opinion target in a review sentence. An opinion target, also known as aspect term,
refers to a word or a phrase in review describing an aspect of an entity. For example, the sentence
“The tastes are great, but the service is dreadful” consists of two opinion targets, namely “tastes” and
“service”. User’s sentiment towards the opinion target “tastes” is positive while negative in terms of
target “service”. Traditional methods usually focus on designing a set of features such as bag-of-words
or sentiment lexicon to train a classifier (e.g., SVM) for ASC (Jiang et al., 2011; Kiritchenko et al.,
2014). Motivated by the great success of deep learning in computer vision (Krizhevsky et al., 2012),
speech recognition (Dahl et al., 2012) and natural language processing (Bengio et al., 2003), recent
works use neural networks to learn low-dimensional and continuous text representations without any
feature engineering, and achieve competitive results on the ASC task (Tang et al., 2016a).

From the above example, we can see that a sentence sometimes refers to several opinion targets and
they may express different sentiment polarities, thus one main challenge of ASC is to separate different
opinion contexts for different targets. To this end, abundant state-of-the-art works employ attention
mechanism (Bahdanau et al., 2014) to capture sentiment words related to the given target, and then
aggregate them to make sentiment prediction (Wang et al., 2016; Tang et al., 2016b; Ma et al., 2017; Chen
et al., 2017; Majumder et al., 2018; Fan et al., 2018). Despite the effectiveness of attention mechanism,
we argue that it fails to reach the full potential due to the limited ASC labeled data. It is well-known that
the promising results of deep learning heavily rely on sufficient training data. However, the annotation
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of ASC data is very labour-intensive and expensive in real-world scenarios, because annotators need
to not only identify all opinion targets in a sentence but also determine their corresponding sentiment
polarity. The difficulty of annotation leads to that existing public aspect-level datasets are all relatively
small-scale, which finally limits the potential of attention mechanism.

Despite the lack of ASC data, enormous labeled data of document-level sentiment classification (DSC)
are available at online review sites such as Amazon and Yelp. These reviews contain substantial sentiment
knowledge and semantic patterns. Therefore, one meaningful but challenging research question is how
to leverage resource-rich DSC data to improve the low-resource task ASC. For this purpose, He et al.
(2018) design the PRET+MULT framework to transfer sentiment knowledge from DSC data to ASC
task through sharing shallow embedding and LSTM layer. Inspired by the capsule network (Sabour et
al., 2017), Chen and Qian (2019) propose TransCap to share bottom three capsule layers, then separate
two tasks only in the last ClassCap layer. Fundamentally, PRET+MULT and Transcap improve ASC
by sharing parameters and multi-task learning, but they cannot accurately control and interpret what
knowledge to be transferred. In this work, we directly focus on the aforementioned attention issue in
the ASC task and propose a novel framework, Attention Transfer Network (ATN), to explicitly transfer
attention knowledge from the DSC task for improving the attention capability of the ASC task. Compared
with PRET+MULT and Transcap, our model achieves better results and retains good interpretability.

In the ATN framework, we adopt two attention-based BiLSTM networks, respectively, as the DSC
module and base ASC module, and propose two different methods to transfer attention from DSC to
ASC. The first transfer approach is called Attention Guidance. Specifically, we first pre-train an attention-
based BiLSTM on large-scale DSC data, then exploit the attention weights from the DSC module as a
learning signal to guide the ASC module to capture sentiment clues more accurately, thereby acheiving
improvements. The second approach adopts the way of Attention Fusion, and directly incorporates the
attention weights of the DSC module into the ASC module. The two approaches work in different ways
and have their different advantages. Attention Guidance aims to learn the attention ability of the DSC
module and has faster inference speed, since it does not use external attention from DSC during the
testing stage. In contrast, Attention Fusion can leverage the attention knowledge of the DSC module
during the testing stage and make more comprehensive predictions.

We conduct experiments on two benchmark datasets to evaluate different methods. The results indicate
that the ATN model can be substantially improved by incorporating the two attention transfer approaches,
and outperforms all compared methods on the ASC task.

2 Model

Figure 1 shows the overall architecture of the Attention Transfer Network (ATN). It mainly consists of
four parts: the pre-trained DSC module, the base ASC module, and two attention transfer approaches. In
this section, we will first give the task formalization of ASC and DSC, then introduce the attention-based
pre-trained DSC module and base ASC module. Finally, we present the details of our proposed two
attention transfer approaches, namely Attention Guidance and Attention Fusion.

2.1 Task Formalization

ASC Formalization Formally, given a sample < s, t > from the ASC dataset A, s = {w1, w2, ..., wn}
is a review sentence consisting of nwords and t = {wl, wl+1, ..., wr} is a given opinion target containing
|r − l| words. The opinion target t is a continuous subsequence of s. The goal of ASC is to predict the
sentiment polarity (i.e., positive, neutral and negative) of the opinion target t in the sentence s.
DSC Formalization For a review document d from the DSC dataset D, we regard it as a special long
sentence {wd1 , wd2 , ..., wdn} consisting of n words. DSC aims to determine the overall sentiment polarity
of the review document d.

2.2 Pre-trainig DSC Module

Before transferring attention knowledge, we first pre-train a DSC module on the large-scale DSC dataset
D. In this work, we employ a conventional attention-based BiLSTM as our DSC module.
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Figure 1: An illustration of our attention transfer network. The left one is the aspect-level sentiment
classification, the right one is the pre-trained DSC module, and the middle part presents two proposed
attention transfer approaches.

For a review document d = {wd1 , wd2 , ..., wdn}, we map it into the corresponding word representations
{wd

1,w
d
2, ...,w

d
n} by looking up an embedding table Eemb ∈ R|V |×de , where |V | is the vocabulary

size and de denotes the word embedding dimension. Then a BiLSTM network is applied to capture
the contextual information for each word and generate a sequence of hidden states {hd1,hd2, ...,hdn}. To
obtain the document representation rd, we employ the attention mechanism to aggregate the sentiment
words that are significant for sentiment classification as follows:

rd =
n∑
i=1

αih
d
i , (1)

where αi is the attention weight of hdi and defined as:

αi =
exp(f(hdi ,h

d
avg))∑n

j=1 exp(f(hdj ,hdavg))
, (2)

f(hdi ,h
d
avg) = hdi ·Wd · hdavg + bd, (3)

where hdavg is the average of all the hidden states, i.e., hdavg =
∑n

i=1 h
d
i /n, Wd and bd are respectively

the weight matrix and bias.
Finally, the representation rd is fed to a linear layer and a softmax layer to predict the sentiment label

of the review document d. We pre-train the DSC module by minimizing the cross-entropy loss between
the predicted sentiment distribution and the ground truth. After pre-training is finished, all parameters in
the DSC module are fixed.

2.3 Base ASC Module
As shown in the left part of Figure 1, the base ASC module has a similar architecture to the DSC module.
The difference is that the ASC task needs to model opinion target information. To obtain target-aware
context representations, we additionally employ position embedding besides word embedding, which is
an effective method of modeling position information (Lin et al., 2016; Gehring et al., 2016). Therefore,
the base ASC module is an attention-based BiLSTM network enhanced with position embedding.

Specifically, given a sentence s = {w1, w2, ..., wn} and an opinion target t = {wl, wl+1, ..., wr} in s,
we first map each wordwi into its word embedding representation wi by using the word embedding table.
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To incorporate opinion target information with position embedding, we calculate the relative distance li
of each word wi to the opinion target t:

li =


l − i if i < l,

0 if l ≤ i ≤ r,
i− r otherwise .

(4)

The distance index li is mapped into the positional representation pi by looking up a position embedding
table Epos ∈ RL×dp , where L denotes the maximal position index and dp is the embedding dimension.
Then we concatenate the word embedding representation wi and position embedding representation pi
as the repsentation ei of the word wi, i.e., ei = [wi;pi], where [·; ·] denotes the vector concatenation
operation. Similarly, we employ a BiLSTM to receive the word represenations {e1, e2, · · · , en} as input
and generate target-aware context representations {h1,h2, · · · ,hn}. Different from the attention part of
the DSC module, we use the opinion target represenation t =

∑r
i=l hi/(r − l) as query in the ASC task

to extract target-dependent sentiment clues:

f(hi, t) = hi ·Ws · t+ bs, (5)

βi =
exp(f(hi, t))∑n
j=1 exp(f(hj , t))

, (6)

rs =

n∑
i=1

βihi, (7)

where Ws and bs are respectively the weight matrix and bias.
Finally, the target-dependent sentence representation rs is used for detecting the sentiment polarity of

the target t, and the base ASC module can optimized by minimizing the following cross-entropy loss:

ŷi = softmax(Wors + bo), (8)

Lo = −
∑
i∈A

yilog(ŷi), (9)

where ŷi and yi respectively are the predictive class distribution and golden class distribution.

2.4 Attention Guidance
To leverage the attention knowledge of the DSC module, we simultaneously input the sentence s into
the base ASC module and the pre-trained DSC module when performing the ASC task, generating the
attention weights βi in Equation 6 and αi in Equation 2.

As mentioned before, the attention mechanism of the ASC module cannot reach full potential due
to limited training data, which means that the attention weights βi may fail to capture target-relevant
sentiment words. In contrast, sufficient DSC data enables the DSC module to extract sentiment words
more accurately. Thus we propose the Attention Guidance approach to guide the learning of the attention
weights βi with the help of αi. Nevertheless, there is a tiny gap between the attention weights αi and βi.
Since the DSC task only detects the overall sentiment of a review, the sentiment words captured by αi are
global and target-irrelevant. To make up the gap, we use a heuristic method to transform target-irrelevant
attention weight αi into target-relevant weight δi:

α′i =
1

2(li−1)
αi, (10)

δi =
eα
′
i∑n

i=1 e
α′i ,

(11)

where li denotes the relative distance between the word and the target as in Equation 4. We can see that a
word nearer to the target receives a higher attention weight according to δi, because the closer word has
a bigger probability of modifier relation to the target.
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Finally, we apply KL (Kullback–Leibler divergence) to describe the differences between attention
distributions β and δ:

KL(δ||β) =
n∑
i=1

δilog
δi
βi
, (12)

=
n∑
i=1

(δilogδi − δilogβi). (13)

In the pre-trained DSC module, the above term
∑n

i=1 δilogδi in Equation 13 is invariant for the given
sentence s and the opinion target t. Therefore, we can minimize the loss La =

∑n
i=1−δilogβi to guide

the ASC module to focus on target-relevant sentiment words. In the Attention Guidance approach, the
final loss is defined as follows:

L = Lo + λLa. (14)

where λ is the hyperparameter that controls the importance of La .

2.5 Attention Fusion
Attention Guidance learns the attention ability of the DSC module through an auxiliary supervision
signal. However, it cannot leverage the attention weights from the DSC module during the testing stage
and wastes the pre-trained knowledge. To make full use of the additional attention capacity, we further
propose the Attention Fusion approach to incorporate them directly.

Specifically, we design a fusion gate g to integrate the global attention weight αi from the DSC module
and the target-dependent attention weight βi from the ASC module, thereby generating more compre-
hensive and accurate attention weight γ′i:

g = σ(Wg[αi;βi]), (15)

γi = gαi + (1− g)βi, (16)

γ′i =
eγi∑n
i=1 e

γi
, (17)

where σ denotes sigmoid function and Wg is the weight matrix.
Finally, we replace βi in Equation 7 with the new attention weight γ′i to obtain the target-dependent

sentence representation rs for sentiment prediction.

3 Experiments

3.1 Datasets and Metrics
We evaluate our model on two ASC benchmark datasets from SemEval 2014 Task 4 (Pontiki et al.,
2014). They respectively contain reviews from Restaurant and Laptop domains. Following previous
studies (Tang et al., 2016b; Chen et al., 2017; He et al., 2018), we remove samples with conflicting
polarities in all datasets. The statistics of the ASC datasets are shown in Table 1.

To pre-train the DSC module, we employ two larget-scale DSC datasets, respectively Yelp Review
and Amazon Review (Li et al., 2018a). The DSC dataset Yelp Review is applied to transfer attention
knowledge for the ASC dataset Restaurant. The Amazon Review is used for the dataset Laptop. Table 2
shows their statistics. In this work, we adopt Accuracy and Macro-F1 score as the metrics to evaluate the
performance of different methods on the ASC task.

3.2 Experimental Settings
In our experiments, word embeddings are initialized by 300-dimension GloVe (Pennington et al., 2014).
After initialization, the word vectors are fixed and not fine-tuned during the training stage. All the weight
matrices and biases are given the initial value by sampling from the uniform distribution U(−0.1, 0.1).
The dimension of LSTM cell hidden states is set to 300. We employ stochastic gradient descent (SGD)
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Dataset #Pos #Neg #Neu #Total
Restaurant-Train 2164 807 637 3608
Restaurant-Test 728 196 196 1120
Laptop-Train 994 870 464 2328
Laptop-Test 341 128 169 638

Table 1: Statistics of the ASC datasets.

Datasets #Pos #Neg #Total
Yelp Review 266k 177k 443k

Amazon Review 277k 277k 554k

Table 2: Statistics of the DSC datasets.

with momentum (Qian, 1999) to train models. The initial learning rate and momentum parameter are
respectively set to 0.1 and 0.9. In addition, we apply dropout (Hinton et al., 2012) with probability 0.5
on embedding layer as a regularizer. The parameter λ in Attention Guidance approach is set to 0.4. All
hyper-parameters were tuned on 20% randomly held-out training data. Finally, we run each model five
times and report the average result of them.

3.3 Compared Methods

We divide compared methods into two groups according to whether using transferred knowledge.
(I). The first group contains some classic methods for the ASC task:

Majority assigns each instance in the test set with the most frequent sentiment label in the training
set.

Feature-based SVM (Kiritchenko et al., 2014) is the top system of SemEval 2014 Task 4. It uses
n-gram features, parse features and lexicon features to train an SVM classifier.

TD-LSTM (Tang et al., 2016a) applies two LSTM networks to model the left context and right context
of opinion target respectively, then concatenates their last hidden states for sentiment prediction.

ATAE-LSTM (Wang et al., 2016) concatenates the word embedding and target embedding as the input
of LSTM, then employs the attention mechanism to capture target-dependent sentiment information.

IAN (Ma et al., 2017) proposes the interactive attention to interactively learn representations of the
context and target. The two representations are then concatenated for prediction.

MemNet (Tang et al., 2016b) uses multi-hops attention on the word embeddings to generate the target-
dependent sentence representation.

RAM (Chen et al., 2017) works similar to the method MemNet. It employs BiLSTM to build memory
and applies GRU-based multi-hops attention.

IARM (Majumder et al., 2018) incoporates the neighboring targets-related information for ASC by
using memory networks.

MGAN (Fan et al., 2018) proposes a fine-grained attention mechanism to capture the word-level
interaction between target and context, then combines it with coarse-grained attention for ASC.

GCAE (Xue and Li, 2018) uses a convolutional neural network (CNN) with gating mechanisms to
perform the ASC task.

TNet (Li et al., 2018b) proposes target specific transformation component to integrate target informa-
tion into the word representation.
(II). Besides, we also compare two existing methods using transferred knowledge from large-scale DSC
data to facilitate the ASC task:

PRET+MULT (He et al., 2018) shares shadow embedding and LSTM layers between the ASC model
and the DSC model through multi-task learning.

TransCap (Chen and Qian, 2019) employs capsule network to share the bottom features between the
ASC task and the DSC task.

3.4 Main Results and Analysis

The main results are shown in Table 3. We classify the results into three groups: the first lists the classic
methods for the ASC task, the second presents two existing transfer-based methods, and the last is our
base ASC model and enhanced versions with transferring attention knowledge. We use ATN-AG and
ATN-AF respectively to represent ATN using Attention Guidance and Attention Fusion.
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Method Restaurant Laptop
Acc. Macro-F1 Acc. Macro-F1

Majority 65.00 33.33 53.50 33.33
Feature-SVM (Kiritchenko et al., 2014) 80.16 N/A 70.49 N/A
ATAE-LSTM (Wang et al., 2016) 77.20 N/A 68.70 N/A
TD-LSTM (Tang et al., 2016a) 78.00 66.73 71.83 68.43
IAN (Ma et al., 2017) 78.60 N/A 72.10 N/A
MemNet (Tang et al., 2016b) 80.32 N/A 72.37 N/A
RAM (Chen et al., 2017) 80.23 70.80 74.49 71.35
IARM (Majumder et al., 2018) 80.00 N/A 73.80 N/A
MGAN (Fan et al., 2018) 81.25 71.94 75.39 72.47
GCAE (Xue and Li, 2018) 77.43 66.24 71.03 64.43
TNet (Li et al., 2018b) 80.79 70.84 76.01 71.47
PRET+MULT (He et al., 2018) 79.98 69.39 74.14 69.14
TransCap (Chen and Qian, 2019) 80.72 71.98 74.92 70.21
Base ASC model 80.38 70.69 73.52 70.78
ATN-AG 81.39† 72.44† 76.41† 72.59†

ATN-AF 82.36† 74.00† 76.48† 72.60†

Table 3: Main experiment results (%). The base ASC model is attention-based BiLSTM enhanced with
position embedding. AT-AG and ATN-AF respectively refer to ATN model using Attention Guidance
and Attention Fusion. The best performances are marked in bold. The marker † represents that ATN-AG
and ATN-AF outperform the compared methods significantly (p < 0.05).

The method Feature-SVM obtains competitive results on the restaurant dataset but performs poorly
on the laptop dataset. This may be attributed to that the performance of simple feature-based methods
heavily relies on the quality of hand-crafted features. IAN achieves better performance than TD-LSTM
and ATAE-LSTM by using the interactive attention mechanism to learn the representations of context
and opinion target. With combining of fine-grained and coarse-grained attention mechanisms, MGAN
achieves the best performance among all pure attention-based models. Among the memory-based meth-
ods, it can be observed that RAM outperforms MemNet and IARM on the laptop dataset, which validates
the effectiveness of multi-hops attention based on recurrent network. GCAE performs poorly compared
with other neural methods, as CNN is not good at capturing the long-term dependencies between context
words. TNet achieves state-of-the-art performance by designing target-specific transformation mecha-
nism between LSTM and CNN.

PRET+MULT and Transcap transfer knowledge implicitly from large-scale DSC data to the ASC task
through sharing parameters and multi-task learning. They show superiority compared to some methods
without transferring knowledge. For example, the base model of PRET+MULT is an attention-based
LSTM similar to ATAE-LSTM. We can observe that PRET+MULT outperforms ATAE-LSTM signifi-
cantly, and achieves 2.78% and 5.44% accuracy improvements respectively on the restaurant and laptop
datasets. Transcap obtains better results compared to PRET+MULT, which verifies the effectiveness of
capsule network for capturing shared features.

Our base ASC model attention-based BiLSTM enhanced with position embedding performs better
than some attention-based models, such as ATAE-LSTM and IAN. This result indicates that position
embedding is beneficial for modeling target information in the ASC task. On this basis, our attention
transfer models ATN-AG and ATN-AF respectively achieve about 1% and 2% improvements in accuracy
on the restaurant dataset, and over 2.8% improvements on the laptop dataset. In addition, they surpass
two existing methods that use transferred knowledge obviously, i.e., PRET+MULT and Transcap. These
comparisons demonstrate the effectiveness of our proposal of explicitly transferring attention knowledge
from resource-rich DSC data to the ASC task. Compared with ATN-AG, ATN-AF achieves better perfor-
mance on the restaurant dataset. It is reasonable because ATN-AG cannot leverage the attention weights
of the DSC module during the testing stage. Nevertheless, ATN-AG still obtains comparable results on
the laptop dataset and has a faster inference speed than ATN-AF.
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Figure 2: Performance of ATN-AG and ATN-AF
with different percentages of DSC data.
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Figure 3: Effect of hyper-parameter λ on ATN-AG.

Base model I use it mostly for [content creation] ( Audio , video , photo editing ) and its reliable . Neagtive8

ATN-AG I use it mostly for [content creation] ( Audio , video , photo editing ) and its reliable . Positive4

ATN-AF I use it mostly for [content creation] ( Audio , video , photo editing ) and its reliable . Positive4

Base model Did not enjoy the new Windows 8 and [touchscreen functions] Positive8

ATN-AG Did not enjoy the new Windows 8 and [touchscreen functions] Negative4

ATN-AF Did not enjoy the new Windows 8 and [touchscreen functions] Negative4

Table 4: Attention visualization of ATN-AG and ATN-AF. The spans in bold are opinion targets. A
darker color indicates a higher attention weight.

3.5 Effect of DSC Data Size

To investigate the effect of DSC data size on our approaches, we vary the percentage of DSC data from
0% to 100% to report the results of ATN-AG and ATN-AF. The critical values 0% and 100% respectively
mean no DSC data and using the complete DSC dataset. The results are shown in Figure 2.

We can observe that our approaches ATN-AG and ATN-AF both achieve very stable improvements
on the two datasets with the increase of DSC data size. This indicates that the ASC task indeed bene-
fits from the transferred attention knowledge from the pre-trained DSC module. Consistent and stable
improvements show the robustness of our approaches.

3.6 Effect of Hyper-parameter λ

To analyze the effect of hyper-parameter λ in Equation 14 on ATN-AG, we adjust it in [0, 1] to conduct
experiments and the step is 0.1. Figure 3 shows the performance of ATN-AG with different λ on the
restaurant and laptop datasets.

We can see that the curves on two datasets have an overall upward trend when λ < 0.4, but become
flat or downward once λ > 0.4. In the upward part, the attention knowledge from the DSC module is
a useful guidance signal to help the ASC module to focus on sentiment words more accurately, thus
improve the performance of ASC. Once the weight λ exceeds 0.4, the transferred attention knowledge
begins to dominate the attention process while the ASC module loses the mastership and perform worse.
Therefore, we finally set λ to be 0.4 on two datasets.

3.7 Case Study

In the ATN model, we propose the approaches Attention Guidance and Attention Fusion to help the ASC
module to capture sentiment clues more accurately. To verify this, we analyze some dozens of instances
from the test set. Compared with the base ASC model, we find that our attention transfer methods can
deal with low-frequency sentiment words and complex sentiment patterns such as negation. Table 4
shows the attention visualizations of two examples and the corresponding sentiment predictions under
the base model, ATN-AG and ATN-AF. Note that the darker color means higher attention weight.

In the first example, the base ASC model mainly focuses on the adverb “mostly”, while fails to capture
the critical sentiment clue “reliable”. According to the statistics, the word “reliable” only appears five
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times in the training set. This indicates that the base model is not good at catching low-frequency
sentiment words, thus makes wrong sentiment predictions. In contrast, the enhanced models ATN-
AG and ATN-AF with transferred attention knowledge both successfully capture the informative word
“reliable”, and give the right predictions.

From the second example, we can see that the base ASC model mainly focuses on the word “enjoy”
rather than the sentiment negator “not”. It is hard for the base model to learn the negation with the
insufficient labeled dataset. With the help of the external attention knowledge, our approaches ATN-AG
and ATN-AF pay more attention to the negator “not”, and make correct sentiment predictions.

The above observations show that our approaches indeed improve the low-resource task ASC with the
transferred attention knowledge and retain good interpretability.

4 Related Work

4.1 Aspect-level Sentiment Classification

Early works adopt supervised learning and devote to designing effective features for the ASC task, such
as n-gram features (Kiritchenko et al., 2014) and sentiment lexicons (Vo and Zhang, 2015). The perfor-
mance of these methods heavily depends on labor-intensive feature engineering. With the development of
deep learning, Tang et al. (2016a) use two Long Short-Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) networks to respectively model the left context and right context of the given opinion target.
However, it cannot capture the association between the context and opinion target. To address the issue,
recent works employ the attention mechanism to catch target-dependent sentiment context and achieve
very promising resutls (Wang et al., 2016; Ma et al., 2017; Fan et al., 2018). Instead of single attention,
some works propose multi-hops attention based on memory networks (Sukhbaatar et al., 2015) to detect
more powerful sentiment clues (Tang et al., 2016b; Chen et al., 2017; Majumder et al., 2018).

Despite attention-based models showing the potential for ASC, they highly rely on data-driven atten-
tion mechanism. Unfortunately, public ASC datasets are all small-scale because of the complexity of
annotation. Insufficient labeled data finally limits the effectiveness of attention mechanism for the ASC
task. Different from the above methods, we improve the attention capacity of the ASC model in this
work, by transferring substantial attention knowledge from the DSC model pre-trained with resource-
rich document-level sentiment classification data.

4.2 Transfer Learning

Transfer learning aims to extract knowledge from one or more source tasks and then apply them to a
target task. Neural transfer learning has proven effective for image recognition (Donahue et al., 2014)
and natural language processing tasks (Mou et al., 2016; Dong and De Melo, 2018; Wu et al., 2020). He
et al. (2018) are the first to transfer knowledge from document-level review data to improve the ASC
task through sharing embedding and LSTM layers. Chen and Qian (2019) employ capsule network to
share bottom features between the ASC task and DSC task. In this work, we aim to transfer attention
knowledge from the DSC model explicitly to improve the effectiveness of attention mechanism for the
ASC task. In contrast to the two existing works, our proposed approaches show better performance and
good interpretability.

5 Conclusion

Insufficient labeled data limits the effectiveness of attention-based models for the ASC task. In this pa-
per, we propose a novel attention transfer framework, in which two different attention transfer methods
are designed to exploit attention knowledge from resource-rich document-level sentiment classification
corpus to enhance the attention process of resource-poor aspect-level sentiment classification, finally
achieving the goal of improving the performance of ASC. Experimental results indicate that our ap-
proaches outperform the state-of-the-art works. Further analysis validates the effectiveness and benefits
of transferring the attention knowledge from DSC data for the ASC task.
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