
Proceedings of the 28th International Conference on Computational Linguistics, pages 6809–6819
Barcelona, Spain (Online), December 8-13, 2020

6809

Embedding Dynamic Attributed Networks by Modeling the Evolution
Processes

Zenan Xu1,2, Zijing Ou1, Qinliang Su1,2,3∗, Jianxing Yu1,
Xiaojun Quan1 and Zhenkun Lin1,2

1School of Data and Computer Science, Sun Yat-sen University
2Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou, China

3Key Lab. of Machine Intelligence and Advanced Computing, Ministry of Education, China
{xuzn, ouzj, linzhk3}@mail2.sysu.edu.cn
{suqliang, yujx, quanxj3}@mail.sysu.edu.cn

Abstract

Network embedding has recently emerged as a promising technique to embed nodes of a net-
work into low-dimensional vectors. While fairly successful, most existing works focus on the
embedding techniques for static networks. But in practice, there are many networks that are
evolving over time and hence are dynamic, e.g., the social networks. To address this issue, a
high-order spatio-temporal embedding model is developed to track the evolutions of dynamic
networks. Specifically, an activeness-aware neighborhood embedding method is first proposed
to extract the high-order neighborhood information at each given timestamp. Then, an embed-
ding prediction framework is further developed to capture the temporal correlations, in which the
attention mechanism is employed instead of recurrent neural networks (RNNs) for its efficiency
in computing and flexibility in modeling. Extensive experiments are conducted on four real-
world datasets from three different areas. It is shown that the proposed method outperforms all
the baselines by a substantial margin for the tasks of dynamic link prediction and node classifi-
cation, which demonstrates the effectiveness of the proposed methods on tracking the evolutions
of dynamic networks.

1 Introduction

Network embedding (NE) aims to represent each node by a low-dimensional vector, while seeking to
preserve their neighborhood information as much as possible. It has been shown that working on the low-
dimensional representations is much more efficient than on the original large-scale networks directly in
various real-world applications, such as friend recommendation, product advertising, community detec-
tion (Cavallari et al., 2017), nodes classification etc. Because of its capability in facilitating downstream
applications, many methods have been developed to embed network nodes into vectors efficiently and ef-
fectively, like DeepWalk in (Perozzi et al., 2014), LINE in (Tang et al., 2015), Node2Vec in (Grover and
Leskovec, 2016) etc. Later, the attributes/texts available at nodes are further taken into account, e.g. the
CANE in (Tu et al., 2017) and WANE in (Shen et al., 2018), to obtain more comprehensive embeddings.
However, these methods mostly focus on static networks, but in practice, networks are often dynamic.
In social networks, for instance, new friend connections are established all the time, and user profiles
are also updated from time to time. For these dynamic networks, how to learn their embeddings, and
more importantly, how to leverage the embeddings to predict their evolution trends is crucial for many
applications.

Existing methods for dynamic network embedding can be roughly divided into two categories. The
first category concerns about how to obtain new embeddings from the stale ones efficiently when changes
of networks are observed. In (Du et al., 2018), by decomposing the learning objective into differ-
ent parts, it is shown that new embeddings can be updated by only considering the newly added and
most influential nodes. Differently, (Hamilton et al., 2017; Cheng et al., 2020) proposed to use a
graph convolutional network (GCN) or Gaussian process to learn a mapping from the associated at-
tributes to the embeddings, respectively, then the embeddings can be updated directly with the output

∗Corresponding author.
This work is licensed under a Creative Commons Attribution 4.0 International License. Licence details: http://
creativecommons.org/licenses/by/4.0/.

6810

A
B

C

D

··· ···

···
···

A
B

C

D
··· ···

···
···

E
···

···

Temporality

Size=1

𝑡𝑡2

𝑡𝑡𝑛𝑛−3

𝑡𝑡𝑛𝑛−2

𝑡𝑡𝑛𝑛−1

𝑡𝑡𝑛𝑛

Spatiality

𝑡𝑡1

Size=2

Size=3

···

𝑡𝑡1 𝑡𝑡𝑛𝑛

⋅⋅⋅

𝑡𝑡2

𝒕𝒕𝟏𝟏 𝒕𝒕𝒏𝒏

⋅⋅⋅

𝒕𝒕𝟐𝟐

Figure 1: Illustration of the evolution process of a
dynamic network, where red lines indicate the newly
formed relationships.

of the mapping. The aforementioned meth-
ods avoid to re-compute the embeddings from
scratch at every timestamp by tracking the net-
work changes continuously. However, since
these methods focus only on the changes at the
current timestamp rather than their dynamics,
the induced embeddings can only represent the
networks at the current timestamp, but are poor
at predicting their future evolvement.

The second category methods focus more
on the improvement of prediction performance.
Singer et al. (2019) proposed to learn embeddings and an alignment matrix for the network at each
timestamp by solving a sequential optimization problem, and then input the embeddings into recurrent
neural networks (RNN) to predict the future links. However, sequential optimization is very expensive,
hindering it from being applied to large networks. Alternatively, Zhou et al. (2018) proposed to learn
embeddings with the objective to predict the future closure process of nodes that are separated by at
most two hops. Later, Goyal et al. (2020) proposed to employ auto-encoders to predict nodes’ direct
neighbors with the neighbors from the previous timestamps via the long short-term memory (LSTM).
Recently, Zuo et al. (2018) introduced the concept of neighborhood formation and used it to track the
evolution of nodes with their direct neighbors from the previous timestamps. In all of these methods,
only the direct (first-order) neighbors in the spatial dimension are leveraged. However, to capture the
dynamics of networks, it is important to consider the high-order information of nodes in both the spatial
and temporal dimensions simultaneously. As illustrated in Fig.1, the green node is isolated from the red
node at t1 and becomes its fourth-order neighbor at t2, and further evolves into its direct neighbor at tn.
To capture this evolution process, the model should have the ability to be aware of nodes’ high-order
neighborhood information spatially and memorize the changes that occurred many timestamps before
temporally.

In this paper, a dynamic attribute network embedding model (Dane) is developed to track the evo-
lutions of dynamic networks. Specifically, an activeness-aware neighborhood embedding method is
proposed to extract the high-order neighborhood information at each given timestamp. The activeness-
aware mechanism enables the model to emphasize more on nodes that are active in social activities.
Then, an embedding prediction framework is developed to capture the temporal correlations of dynamic
networks, in which the attention mechanism is employed instead of RNNs for its efficiency in computing
and flexibilities in modeling. The methods are evaluated on the tasks of dynamic link prediction and
node classification over four real-world datasets. It is shown that the proposed methods outperform all
comparable embedding methods, including both static and dynamic ones, on the link prediction by a
substantial margin. This demonstrates that the proposed methods are able to capture the correlations
from the dynamic networks. Similar phenomena are observed on the task of dynamic node classification,
which further confirms the effectiveness of the proposed methods on tracking the evolutions of dynamic
networks.

2 Related Work

Representation learning for graphs has attracted considerable attention recently, since they can poten-
tially benefit a wide range of applications. Specifically, (Perozzi et al., 2014) employs random walks
to obtain sequences of nodes, and then uses the word2vec technique to represent the nodes into low-
dimensional vectors. To preserve both the global and local structure information, (Tang et al., 2015)
proposed to jointly optimize the first- and second-order proximity of nodes in network. Later, (Grover
and Leskovec, 2016) introduced a biased random walk procedure under the BFS and DFS search strate-
gies to further exploit the diversity of structure patterns of networks. However, in all of these meth-
ods, only the topology information of network is leveraged. But in many real-world networks, nodes
are often associated with attributes or texts. To take the attributes into account, a mutual attention

6811

···

Timestamp

𝑡𝑡𝑛𝑛−3 𝑡𝑡𝑛𝑛−2 𝑡𝑡𝑛𝑛−1 𝑡𝑡𝑛𝑛𝑡𝑡𝑛𝑛−𝑘𝑘

···

Attention

0

𝑥𝑥𝑡𝑡�𝑥𝑥𝑡𝑡−1

𝒕𝒕𝟏𝟏 𝒕𝒕𝒏𝒏

⋅⋅⋅

𝒕𝒕𝟐𝟐

A

B

C

Timestamp

𝑡𝑡𝑛𝑛𝑡𝑡1

A

B

C ⋅⋅⋅
𝑡𝑡2

A

B

C

Figure 2: Illustration of how the activeness of an
node effects the evolution of network.

mechanism is designed to enhance the relation-
ships between attributes of neighboring nodes
in (Tu et al., 2017). To extract more semantic
features from attributed data, (Shen et al., 2018;
Xu et al., 2019b) modified the mutual attention
mechanism in (Tu et al., 2017) and employed a
fine-grained word alignment mechanism. How-
ever, all these works are overwhelmingly per-
formed in the context of plain or static networks.

Various techniques have been proposed to
learn deep representations in dynamic patterns. (Li et al., 2017) first provides an offline embedding
method and then leverages matrix perturbation theory to maintain the freshness of the end embedding
results in an online manner. In (Seo et al., 2018), the model was developed to combine convolutional
neural networks on graphs to identify spatial structures and RNN to find dynamic patterns. Similarly,
(Trivedi et al., 2017) proposed a deep recurrent architecture to model historical evolution of entity em-
beddings in a specific relationship space. To capture both structural properties and temporal evolutionary
patterns, (Sankar et al., 2018) jointly employed self-attention layers along structural neighborhood and
temporal dynamics. Differently, (Nguyen et al., 2018) employed a temporal version of traditional random
walks to capture temporally evolving neighborhood information. Although significant efforts have been
made to learn effective representations in evolutionary patterns, methods aiming to extract high-order
spatio-temporal evolutionary information have been rarely explored. In our work, an activeness-aware
neighborhood embedding method is developed to capture high-order neighbor evolutionary relationship,
followed by a low-complexity attention-based mechanism, which efficiently apprehends temporal evolu-
tionary patterns.

3 The Proposed Framework

A dynamic attributed network G consists of a sequence of snapshots G , {G1, G2, . . . , Gn}, whereGt ,
(Vt,Et,At) is the attributed network at timestamp t; Vt and Et are the set of vertices and edges in the
network Gt, and At denotes the attribute matrix, with the v-th row representing the attribute associated
with the node v. Additionally, we use V = V1 ∪ ... ∪ Vn to denote the nodes of the whole network. In
this section, we first propose a method to effectively extract the high-order neighborhood information at
a given timestamp, based on which a low-complexity attention-based model is then developed to capture
the network’s future evolvement.

3.1 Activeness-aware Neighborhood Embedding
To extract high-order neighborhood information in dynamic attributed networks, we can simply apply the
GraphSAGE algorithm to the networks at each timestamp, which aggregates messages from neighboring
nodes iteratively (Hamilton et al., 2017). However, all messages in GraphSAGE are treated equally.
There is no problem if the embeddings are only used to represent the network at the current timestamp.
But if they are used to predict future evolvement, it would be problematic. To see this, let us take the
social network as an example. As illustrated in Fig 2, suppose that both node B and C are the direct
neighbors of node A, but node B is much more active than node C in organizing various social activities.
Obviously, node A is more likely to establish connections with the friends of node B than node C in
future. If the goal is to predict the future evolving trends, it is useful to know the activeness of different
nodes, and more emphases should be given to the messages from the nodes that are more active.

To this end, an activeness-aware neighborhood embedding method is proposed. Specifically, given the
attributed network Gt = {Vt,Et,At} at timestamp t, the embedding of node v is learned by updating
the following equations

x̄`t,v=Mean
(
Aggregate(p`t,u � x`t,u, ∀u ∈ Nt(v))

)
, (1)

x`+1
t,v = tanh(W `

x · [x̄`t,v;x`t,v]), (2)

6812

where ` = 0, 1, . . . , L; x`t,u ∈ Rd represents the embedding of node u at the `-th layer , with x0
t,u initial-

ized with the u-th row of the attributed matrix At; the values in p`t,u represent the degree of activeness
of node u, which will be discussed in detail later; Nt(v) denotes the set of neighbors of node v at the
timestamp t; the function Aggregate(·) collects messages p`t,u � x`t,u from all neighbors u ∈ Nt(v) to
constitute a matrix; Mean(·) means taking the average of a matrix along its rows; � is element-wise
multiplication; [· ; ·] means the concatenation of two vectors; and W `

x is the parameters to be learned.
From (1), we can see that the activeness vector p`t,u play the role of gates. If the node u is very active, the
values of the corresponding activeness vector p`t,u will be large. Hence, a larger proportion of the em-
bedding of node u will be flowed into its neighboring nodes, exerting a greater influence onto the other
nodes. On the contrary, if the node u is not active in social activities, its importance will be lowered by
diminishing the values in p`t,u.

For the activeness vectors p`t,v, it is computed from a randomly initialized time-invariant matrix P ∈
R|V |×d as

p̄`t,v = Mean
(
Aggregate(p`t,u, ∀u ∈ Nt(v))

)
, (3)

p`+1
t,v = σ(W `

p · [p̄`t,v;p`t,v]), (4)

where σ(·) denotes the sigmoid function; and p0
t,v is initialized by the v-th row of the matrix P , which,

together with the model parameter W `
p , is learned from the training data. Although p`t,v is computed from

the time-invariant P , because its computation also depends on the time-evolving network topologies, the
vector p`t,v can still track the evolvement of networks.

3.2 Prediction of the Next-Timestamp Embedding

Given the embeddings x`i,v for i = 1, 2, · · · , t, in this section, we focus on how to predict the network
status at the next timestamp t+ 1, e.g ., the link connections and node categories at t+ 1. In this paper,
we predict the future network status by estimating the embeddings at the next-timestamp x̂t+1,v using
the previous ones, that is, finding the mapping

F : {x`1,v,x`2,v, · · · ,x`t,v}L`=1 → x̂t+1,v. (5)

The most direct way is to feed the previous embeddings of each layer ` into an RNN or LSTM and then
combine the predictions of different layers linearly as the final prediction, i.e.,

x̂`t+1,v = RNN(x`1,v,x
`
2,v, · · · ,x`t,v), (6)

x̂t+1,v =
1

L

L∑
`=1

(Wyx̂
`
t+1,v + by), (7)

where Wy and by are model parameters. It can be seen from (1) and (2) that as the number of layer `
increases, broader neighborhood information will be included in the embeddings, but at the same time,
the local information around each node will be weakened. Thus, to retain both the global and local
neighborhood information, the embeddings x`t,v obtained from all intermediate layers ` = 1, 2, · · · , L
are employed for the embedding prediction.

RNNs or LSTMs are good at modeling the time dependencies of sequences, but their computations are
also known to be time-consuming due to the difficulties of parallelizing. Actually, for many interesting
dynamic networks, the changes are not dramatic for each timestamp. To better model the temporal
correlation and speed up the computations, we further propose an attention-based model to predict the
next-timestamp embedding as

x̃`t,v = tanh(

K∑
k=1

α`t−k,vx
`
t−k,v), (8)

x̂`t+1,v = x`t,v + g`t,v � (x`t,v − x̃`t,v), (9)

6813

where x̃`t,v denotes the summarized representation of the most recent K embeddings until timestamp
t− 1; K is the number of used historical embeddings; α`t−k is the attention coefficient and is computed
as

α`t−k,v =
exp(β`t−k,v)

exp(
∑K

k=1 β
`
t−k,v)

, (10)

with the coefficient β`t−k,v = σ((x`t−k,v)
T
W `

βx
`
t−1,v); and the vector

g`t,v = σ(W `
g [x̃`t,v;x

`
t,v] + b`g) (11)

controls how much of the change x`t,v − x̃`t,v at the previous timestamp are used for the prediction of the
next timestamp.

3.3 Training Objective
Suppose there exists a link ev,u such that ev,u ∈ Et+1 but ev,u /∈ {E1 ∪ E2∪, · · · ,∪Et}. If our
proposed method is able to capture the historical dynamics and make good prediction for timestamp
t + 1, the prediction embedding for node u and v, i.e., x̂t+1,v and x̂t+1,u, should be close to each other
in the vector space. Thus, we define the objective function as as

L = −
∑

ev,u∈Et+1

log p(x̂t+1,v|x̂t+1,u), (12)

where p(x̂t,v|x̂t,u) denotes the conditional probability of embedding x̂t,u given the embedding x̂t,v and
is defined as

p(x̂t,v|x̂t,u) ,
exp(x̂Tt,ux̂t,v)∑

{z,v}∈Et+1
exp(x̂Tt,zx̂t,v))

. (13)

To alleviate the computational burden of repeatedly evaluating the softmax function, as done in (Mikolov
et al., 2013), the negative sample technique is employed by optimizing the alternative loss below

L̃ = − log σ(x̂Tt+1,ux̂t+1,v)−
R∑
r=1

Ez∼D(z)[log σ(−x̂Tt+1,zx̂t+1,v)], (14)

where R is the number of negative samples and D(v) ∝ d
3/4
v is the distribution of vertices, where dv

denotes the out-degree of vertex v.

4 Experiments

In this section, we evaluate the performance of the proposed methods on two tasks: dynamic link predic-
tion and node classification. For the link prediction, we predict the new links that appear at timestamp
t + 1 for the first time based on the historical observations until t (Goyal et al., 2018). For the task of
node classification, the categories of nodes at timestamp t + 1 are predicted, with only the nodes that
change their categories at t + 1 considered (Zhou et al., 2018). In the experiments, the dimension of
network embeddings is set to 100 for all considered methods. The negative samples are set to 1 and the
mini-batch size is set to 50 to speed up the training process. Adam(Kingma and Ba, 2014) is employed
to train the proposed model with a learning rate of 1× 10−4.

4.1 Datasets, Baselines and Evaluation Metric
Datasets To evaluate our proposed methods, we collect four real-world dynamic attributed network
datasets, ranging from user action network, brain activity network to academic citation network. The
statistics of four datasets are summarized in Table 1.

• MOOC is a user action dataset collected by (Kumar et al., 2019), in which users and course activities
are represented as nodes, and actions by users on the course are represented as edges. The actions
have attributes and timestamp, hence it can be recognized as a dynamic attributed graph. In our
experiment, we split the dataset into 20 timestamps.

6814

Datasets #(Vertices) ∗(Vertices) #(Edges) ∗(Edges) Timestamp Categories

MOOC 1382 7047 12560 104642 20 -
Brain 5000 5000 74547 878207 12 -
DBLP 20252 189296 27263 1079777 16 7
ACM 10971 146040 11376 636527 19 -

Table 1: Statistics of datasets. #(·) and ∗(·) denote the number at the first and last timestamp.

• Brain is a brain activity dataset collected by (Xu et al., 2019a). The tidy cubes of brain tissue and
the connectivity are represented as nodes and edges respectively. PCA is applied to the functional
magnetic resonance imaging data to generate note attributes. If two tidy cubes show similar degree
of activation, they will be connected by an edge.

• DBLP is a citation network, consisting of bibliography data from computer science. In our exper-
iment, only the authors with at least three publications between 1995 to 2010 are collected. Each
author is viewed as a node, and the corresponding titles and abstracts are processed to be the at-
tribute of nodes. Specifically, all titles and abstracts published by an author are concatenated in
reverse chronological order. We then pass the concatenated words into the pre-trained BERTBASE
(Devlin et al., 2019) and use the vectors of [CLS] in the last layer as the representations. Since the
max length of input token for BERTBASE is 512, words that exceed this length limit are removed.
The ground-truth category that an author belongs to is decided by the avenues where most of his/her
papers are published 1.

• ACM is similar to the DBLP dataset. Here, only the authors who published at least three papers
over the years between 1991 to 2009 are taken into account. Similarly, BERTBASE (Devlin et al.,
2019) is applied to generate attributes for each node.

Baselines For comparisons, several baseline methods are considered, including both static and dynamic
methods.

• Static Methods: DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), Node2Vec (Grover and
Leskovec, 2016), CANE (Tu et al., 2017), SAG (Hamilton et al., 2017), WANE (Shen et al., 2018)

• Dynamic Methods: DynTriad(Zhou et al., 2018), DynGEM (Goyal et al., 2018), STAR (Xu et al.,
2019a), tNodeEmbed (Singer et al., 2019), DynAERNN (Goyal et al., 2020).

Among the static baselines, the DeepWalk, LINE, and Node2Vec only use the network structure, while
the CANE, WANE, and SAGE leverage both the network structure and attributes. When the static meth-
ods are used for link prediction of dynamic networks, we apply the static methods to the network ob-
served until most recently, and the obtained embeddings are then used to predict the links at the next
timestamp.

Evaluation Metrics For the task of dynamic link prediction, the widely used evaluation metrics, the
area under the ROC curve (ROC-AUC) (Hanley and McNeil, 1982), PR curve (PR-AUC) (Davis and
Goadrich, 2006) and F1 scores, are utilized to evaluate the performance of learned embeddings. For
the dynamic node classification task, a logistic regression model is used to classify the embeddings into
different categories. The classifier is trained with the provided labels of nodes. The weighted sum of F1
scores from different categories is used as the performance criteria of this task. All the experiments in
this paper are repeated 10 times, and the average results are reported.

11) Computer Architecture: PPoPP, DAC, MICRO, PODC; 2) Computer Network: SIGCOMM, MobiCom, INFOCOM,
SenSys; 3) Data Mining: SIGMOD, ICDE, SIGIR; 4) Computer Theory: STOC, SODA, CAV, FOCS; 5) Multi-Media: SIGG-
PAPH, IEEEVIS, ICASSP; 6) Artificial Intelligence: IJCAI, ACL, NeurlPS; 7) Computer-Human Interaction: IUI, PERCOM,
HCI

6815

Method DBLP ACM
ROC-AUC F1 PR-AUC ROC-AUC F1 PR-AUC

DeepWalk 78.26 70.14 60.13 73.53 66.12 56.73
LINE 74.66 67.99 58.81 70.40 64.48 55.99
Node2Vec 77.77 69.71 60.21 72.86 65.67 56.48

CANE 79.08 72.00 61.84 77.21 70.25 60.22
WANE 79.55 72.26 62.05 77.40 70.37 60.35
SAGE 82.49 74.60 65.08 80.15 72.81 62.01

DynTriad 77.41 71.36 60.32 75.59 69.60 59.45
DynGEM 81.54 75.65 67.27 80.04 73.85 65.69
STAR 82.52 76.24 68.94 80.74 76.58 68.84
tNodeEmbed 83.42 46.58 69.27 81.65 77.12 68.91
DynAERNN 84.05 78.98 70.02 82.37 77.58 69.03

Dane-RNN 87.14 81.53 71.42 86.69 79.51 69.87
Dane-LSTM 87.55 82.03 71.78 85.64 78.71 69.12
Dane-ATT 87.70 81.24 72.27 86.32 79.89 70.06

Table 2: Performance of dynamic link prediction in percentages on DBLP and ACM datasets.

Method MOOC Brain
ROC-AUC F1 PR-AUC ROC-AUC F1 PR-AUC

DeepWalk 58.43 56.39 53.41 55.00 53.84 52.11
LINE 59.02 56.95 54.76 60.14 57.96 52.89
Node2Vec 57.75 55.93 53.69 57.45 55.71 53.37

CANE 61.78 58.92 55.14 61.52 57.81 54.05
WANE 60.93 58.47 54.95 60.78 57.74 53.61
SAGE 62.59 58.64 56.00 62.07 58.54 55.13

DynTriad 57.14 54.81 52.86 54.05 52.95 49.76
DynGEM 62.65 57.68 55.01 62.84 57.82 54.98
STAR 63.81 59.16 55.98 63.47 58.94 56.02
tNodeEmbed 61.74 58.76 55.47 61.57 57.62 55.16
DynAERNN 63.45 59.04 56.06 63.47 58.27 56.34

Dane-RNN 64.58 58.91 57.12 64.13 58.98 56.87
Dane-LSTM 64.14 58.73 56.98 64.32 59.02 56.92
Dane-ATT 65.02 60.24 57.29 64.59 59.14 57.03

Table 3: Performance of dynamic link prediction in percentages on MOOC and Brain datasets.

4.2 Dynamic Link Prediction

For the performance evaluation of link prediction, as done in (Goyal et al., 2018), 20% of the new links
at timestamp t+ 1 are randomly selected to fine-tune the proposed model, and the rest 80% are held out
for testing. To be fair, the selected 20% links are also included in training dataset for all the baseline
methods. The ROC-AUC, PR-AUC, and F1 scores of different models on DBLP, ACM, MOOC and
Brain datasets are shown in Table 2 and Table 3, respectively, with the best performance highlighted in
bold. Note that the Dane-RNN, Dane-LSTM, and Dane-ATT represent the proposed network embedding
models that employ RNN, LSTM, and attentions in the next-timestamp prediction, respectively.

From Table 2, it can be seen that the proposed Dane models consistently outperform the baseline
methods by a substantial margin on the two considered DBLP and ACM datasets on citation networks.
The results suggest that our proposed methods successfully incorporate the network evolution into the
embeddings and thus significantly improve the performance on the task of dynamic link prediction. We
can also see that the simple attention-based model Dane-ATT achieves a comparable or even better per-
formance than the more complicated Dane-RNN and Dane-LSTM models. This confirms our hypothesis
that for the dynamic networks which do not evolve too fast, it is sufficient to employ the attention mech-
anism to model the temporal dynamics. By examing the static methods, it can be seen that the methods
using attributes (e.g. CANE and SAGE) generally perform better than those that do not (e.g. DeepWalk),
indicating that it is rewarding to incorporate the attributes into the embeddings. We can also observe that

6816

DBLP ACM80

82

84

86

88

90

RO
C-

AU
C

Dane-ATT(w/o DP)
Dane-ATT(w/o D)
Dane-ATT(w/o P)
Dane-ATT

MOOC Brain61

62

63

64

65

66

RO
C-

AU
C

Dane-ATT(w/o DP)
Dane-ATT(w/o D)
Dane-ATT(w/o P)
Dane-ATT

Figure 3: Performance of the variants of Dane-ATT that exclude the activeness vector, dynamic modeling
or both.

1 2 3 4 5
L

86.6
86.8
87.0
87.2
87.4
87.6
87.8
88.0

RO
C-

AU
C

DBLP
1 2 3 4 5

K
86.00
86.25
86.50
86.75
87.00
87.25
87.50
87.75
88.00

RO
C-

AU
C

DBLP

1 2 3 4 5
L

85.0
85.2
85.4
85.6
85.8
86.0
86.2
86.4

RO
C-

AU
C

ACM
1 2 3 4 5

K
84.50
84.75
85.00
85.25
85.50
85.75
86.00
86.25
86.50

RO
C-

AU
C

ACM

Figure 4: ROC-AUC of Dane-ATT under different
values of L and K on the DBLP and ACM datasets.

the existing dynamic embedding methods Dyn-
GEM and DynAERNN achieve better perfor-
mance than static methods, although the at-
tributes are not exploited in these dynamic meth-
ods, demonstrating the importance of modeling
the temporal correlations for future evolvement
prediction. By jointly considering the attributes
and dynamics, we can see that the proposed
Dane models perform best. To further test the
model’s generalization ability on datasets from
other domains, experiments on user action net-
work and brain activity network are conducted.
It can be observed from Table 3 that the pro-
posed Dane models perform best on MOOC and
Brain datasets, which confirms the outstanding
generalization capacity of our proposed model.

Impacts of Different Modules To investigate the importance the activeness-aware mechanism module
and temporal correlation modeling module, we evaluate the performance of models that exclude one or
both of them, respectively. Specifically, in addition to the Dane-ATT, we consider another three variants:
1) Dane-ATT (w/o P), the model without using the activeness vector; 2) Dane-ATT (w/o D), the model
without modeling the dynamics; 3) Dane-ATT (w/o DP), the model that does not use both. The ROC-
AUCs evaluated on the four datasets are reported in Fig.3. It can be seen that without using the activeness
vector and the dynamic modeling, an immediate performance drop is observed. This demonstrates the
importance of considering both the node activeness spatially and the time correlations temporally. We
can see that the drop caused by excluding the dynamic modeling is more significant, suggesting the
importance of taking the historical information into account when embedding the dynamic networks.
Moreover, if both the activeness vector and dynamic modeling are not used, the worst performance is
observed. It is interesting to point out that the Dane-ATT (w/o DP) is actually the static GraphSAGE
method, while the Dane-ATT (w/o D) is the static embedding method that has used the activeness of
nodes. By comparing the performance of the two variants, the benefits of considering the activeness of
nodes are confirmed again.

Impacts of the Parameters L and K The parameter L represents the number of layers used in the
neighborhood embedding, whileK means how many timestamps that we will look back for the next-time
prediction. To investigate the impacts of the two parameters, performances of Dane-ATT with different
number of layers L and lookback timestamps K on DBLP and ACM dataset are evaluated. The values
of ROC-AUC as functions of L and K are illustrated in Fig.4. It can be seen that as L increases, the
performance of proposed model increases rapidly at the beginning and then converges at around L = 3.
The significant improvement at the beginning suggests that incorporating information from high-order

6817

25

27

29

31

33

35

37

39

F1
(X
1
0
0
)

Figure 5: Node classification result on the
DBLP dataset

60 40 20 0 20 40 60

60

40

20

0

20

40

60

Figure 6: t-SNE visualization of our learned
network embeddings on DBLP dataset.

neighborhood into the embedding is highly beneficial to the modeling of dynamic evolvement. But as L
continues to increase, the improvement is lost. This may be because larger L also results in the decrease
of local neighborhood information. Similar trend can be observed in experiments with different k. That
is, the performance increases as k getting large initially, but then soon gets saturated. This reveals that in
the dynamic citation network, it is sufficient to only look back several timestamps when predicting the
future trends. This also explains why the attention-based model generally performs better than the RNNs-
or LSTM-based ones in the prediction of dynamic networks. That is because the dynamic networks often
have a short memory and thereby simple temporal correlations. Thus, for applications of this kind, the
more complicated RNN or LSTM may have a detrimental impact on the prediction performance. We
believe that when more complex dynamic networks are considered, larger K should be used.

4.3 Dynamic Node Classification
In this section, the experiment of dynamic node classification on the DBLP dataset is conducted. The
intuition is that if a model is able to capture the evolution of dynamic attributed networks, the evolution
of nodes’ categories should also be manifested in the predictive embeddings. To this end, nodes are
split into a training and testing set randomly with a proportion of 50%-50%. Then a logistic regression
classifier regularized by L2 is trained on the node embeddings and their corresponding categories. By
noticing that the categories are evolving over time in the DBLP dataset, only users whose categories
are changed at the next timestamp are used for testing. We repeated the experiment 10 times and the
average of weighted sum of F1 scores on different categories are reported. It can be seen from Fig.5 that
Dane-ATT performs the best among all compared methods considered. To evaluate the quality of the
obtained embeddings, we further visualize them on a 2-D plane with the t-SNE. Following (Zuo et al.,
2018), a sample of 500 nodes for each category is randomly selected and the result is shown in Fig.6. As
shown in Fig.6, nodes from different categories are separated pretty well, demonstrating that the obtained
embeddings preserve the category information of the network well.

5 Conclusion

In this paper, a dynamic attribute network embedding framework is proposed to track the network evolu-
tion by modeling the high-order correlations in spatial and temporal dimensions jointly. To this end, an
activeness-aware neighborhood embedding method is proposed to extract the high-order neighborhood
information at each timestamp. Then, an embedding prediction framework is developed to capture the
temporal correlations. Extensive experiments were conducted on four real-world datasets over the tasks
of link prediction and node classification, confirming the ability of the model to track the evolutions of
dynamic networks.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61806223, 61906217,
U1811264), Key R&D Program of Guangdong Province (No. 2018B010107005) and Fundamental Re-
search Funds for the Central Universities (No. 191gjc04).

6818

References
Sandro Cavallari, Vincent W Zheng, Hongyun Cai, Kevin Chen-Chuan Chang, and Erik Cambria. 2017. Learning

community embedding with community detection and node embedding on graphs. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, pages 377–386.

Pengyu Cheng, Yitong Li, Xinyuan Zhang, Liqun Chen, David Carlson, and Lawrence Carin. 2020. Dynamic
embedding on textual networks via a gaussian process. In Thirty-Fourth AAAI Conference on Artificial Intelli-
gence.

Jesse Davis and Mark Goadrich. 2006. The relationship between precision-recall and roc curves. In Proceedings
of the 23rd International Conference on Machine learning, pages 233–240.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers).

Lun Du, Yun Wang, Guojie Song, Zhicong Lu, and Junshan Wang. 2018. Dynamic network embedding: An ex-
tended approach for skip-gram based network embedding. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence Main track, pages 2086–2092.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. Dyngem: Deep embedding method for dynamic
graphs. arXiv preprint arXiv:1805.11273.

Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. Dyngraph2vec: capturing network dynamics
using dynamic graph representation learning. Knowledge-Based Systems, 187:104816.

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 855–864.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pages 1024–1034.

James A Hanley and Barbara J McNeil. 1982. The meaning and use of the area under a receiver operating
characteristic (roc) curve. Radiology, 143(1):29–36.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic embedding trajectory in temporal inter-
action networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1269–1278.

Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017. Attributed network embedding
for learning in a dynamic environment. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pages 387–396.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of
words and phrases and their compositionality. In Advances in Neural Information Processing Systems, pages
3111–3119.

Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul Kim. 2018.
Continuous-time dynamic network embeddings. In Companion Proceedings of the The Web Conference 2018,
pages 969–976.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 701–710.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2018. Dynamic graph representation
learning via self-attention networks. arXiv preprint arXiv:1812.09430.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. 2018. Structured sequence model-
ing with graph convolutional recurrent networks. In International Conference on Neural Information Process-
ing, pages 362–373.

6819

Dinghan Shen, Xinyuan Zhang, Ricardo Henao, and Lawrence Carin. 2018. Improved semantic-aware network
embedding with fine-grained word alignment. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1829–1838.

Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node embedding over temporal graphs. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, pages 4605–4612.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. Line: Large-scale infor-
mation network embedding. In Proceedings of the 24th International Conference on World Wide Web, pages
1067–1077.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-evolve: Deep temporal reasoning for
dynamic knowledge graphs. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 3462–3471.

Cunchao Tu, Han Liu, Zhiyuan Liu, and Maosong Sun. 2017. Cane: Context-aware network embedding for
relation modeling. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1722–1731.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Xiao Liu, and Xiang Zhang. 2019a. Spatio-temporal attentive rnn for
node classification in temporal attributed graphs. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, pages 3947–3953.

Zenan Xu, Qinliang Su, Xiaojun Quan, and Weijia Zhang. 2019b. A deep neural information fusion architecture
for textual network embeddings. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing, pages 4692–
4700.

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic network embedding by
modeling triadic closure process. In Thirty-Second AAAI Conference on Artificial Intelligence.

Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018. Embedding temporal network via
neighborhood formation. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2857–2866.

