
Proceedings of the 28th International Conference on Computational Linguistics, pages 6553–6564
Barcelona, Spain (Online), December 8-13, 2020

6553

Human or Neural Translation?
Shivendra Bhardwaj

David Alfonso-Hermelo
Philippe Langlais

RALI/DIRO
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Abstract

Deep neural models tremendously improved machine translation. In this context, we investigate
whether distinguishing machine from human translations is still feasible. We trained and applied
18 classifiers under two settings: a monolingual task, in which the classifier only looks at the
(French) translation; and a bilingual task, in which the source text (in English) is also taken
into consideration. We report on extensive experiments involving 4 neural MT systems (Google
Translate, DeepL, as well as two systems we trained) and varying the domain of texts. We show
that the bilingual task is the easiest one and that transfer-based deep-learning classifiers perform
best, with mean accuracies around 85% in-domain and 75% out-of-domain.

1 Introduction

This work addresses the task of distinguishing between translations produced by humans and machines.
Practical applications for this include: improving machine translation systems (Li et al., 2015), filtering
parallel data mined from the Web (Arase and Zhou, 2013) and evaluating machine translation quality
without reference translations (Aharoni et al., 2014). In our case, we are more interested in tracing the
origin of translations outsourced by a large institutional translation service.

Our work aims at distinguishing between human and neural machine translations at the sentence level.
We consider two settings: a monolingual task, where only the target sentence is considered; and a bilin-
gual task where both the source text and its translation are available. We compare feature-based ap-
proaches with several deep learning methods, investigating the impact of text domains and MT systems
(in-house neural engines, Google Translate, DeepL), paying attention to cases where the translation en-
gine at test time is different from the one used for training, which we found often not studied in related
work. We show that identifying machine translation is still feasible nowadays. On the bilingual task,
the best transfer learning method we tested recorded an in-domain accuracy of 87.6% and out-of-domain
performances ranging between 65.4% and 84.2% depending on the domain of texts and MT system
considered. We analyze why our classifiers manage to do better than chance even though translations
produced automatically seem to us of very good quality overall. We believe our study offers many new
data points, and hope it will foster research on this timely topic.

After reviewing related work in Section 2, we describe our dataset and experimental setting in Sec-
tion 3, the neural MT systems we used in our experiments in Section 4 and the classifiers we tested in
Section 5. We present our experimental results in Section 6 and propose a deeper analysis in Section 7.

2 Related Work

Most studies on identifying machine translation were conducted at a time where MT systems were
fraught with problems that rendered their identification somewhat easy. Current neural MT systems
deliver translations that are sometimes bafflingly fluent. We are not aware of much work addressing MT
identification with these newer systems. One notable exception is a recent study by Nguyen-Son et al.
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(2019) on distinguishing original sentences from translations produced by Google Translate (GT). The
authors build on the interesting intuition that back translations of automatically translated texts should
contain less variations (word usage, structure) than back translations of human translations. They re-
port an accuracy of 75% with an SVM classifier on a small corpus of 1200 sentences selected from
the Europarl corpus1 that are either original (human) or translated with GT. In their experiments, they
use the same translation engine for producing the automatic translation of test sentences, and the back-
translations used by the classifier. In a real-world scenario, we are not expected to know which system
has been used for producing a translation (we do not even know if a translation has been produced au-
tomatically) and the impact of producing back-translations by a different translation engine remains to
investigate.

In earlier work on MT identification, approaches and evaluations vary greatly from one study to the
other. For instance, Li et al. (2015) uses features extracted from the parse tree of the sentence to charac-
terize, as well as features capturing the density of some function words (with the help of a part-of-speech
tagger), and some features dedicated to out-of-vocabulary words. They also use features aimed at cap-
turing emotion agreement inside a sentence, using a dictionary of emotion words. They gathered a bal-
anced dataset of human and machine translations from the Europarl corpus (including French-English,
German-English, Italian-English and Danish-English language pairs) using a statistical machine trans-
lation (SMT) engine trained in-domain with Moses (Koehn et al., 2007). They report an accuracy of
74.2%. However, they do not analyze which features are the most beneficial to the task.

Arase and Zhou (2013) investigate the use of features to capture the fluency of the text, such as part-
of-speech and word-based n-gram language models, as well as features aimed at detecting so-called
phrase-salad phenomena (Lopez, 2008), i.e. poor inter-phrasal coherence often observed in SMT output.
On a collection of public texts crawled over the Web, they report an impressive accuracy of 95.8% when
distinguishing human versus automatic translations for the English-Japanese language pair. The best
performance was observed when combining all the features, and surpasses that of humans performing the
same task (88.2%). The authors did not show the quality of the automatic translations, but mentioned that
it was pretty low compared to the translations produced by native speakers and professional translators.
It is therefore questionable how their approach would do on good quality automatic translations.

Aharoni et al. (2014) use features capturing the presence or absence of part-of-speech tags and function
words taken from LIWC (Pennebaker et al., 1999) appearing at least 10 times in the training material.
On a corpus extracted from the Canadian Hansards, and using various translation engines, they report
accuracies at detecting machine versus human translations (under a monolingual scenario tested on the
English language) which are inversely correlated with the quality of the MT system used. For the best
translation engines, they report an accuracy slightly over 60%.

3 Data

All our experiments are centered around one very large dataset: the translation memory of a large in-
stitutional translation service. This data collection — called TM hereafter — contains the English and
French versions of over 1.8 million documents, covering over 200 broad domains (military, health, etc.),
for a total close to 140 million sentence pairs. Since the vast majority of translations in the TM are into
French, we focus on this language direction.

Our goal is to build classifiers that determine if a translation is human or machine-made. For this, we
need training data that contains both types of translations. We create such data by machine translating a
subset of 530k sentence pairs, randomly sampled from the TM. These machine translations are performed
using two different neural MT systems, themselves trained using a distinct subset of 5.8M sentence pairs,
also randomly sampled from the TM.2 These two MT systems, one based on XLM (Lample and Conneau,
2019) and one on FairSeq (Ott et al., 2018), are detailed in Section 4. Thus, two distinct classifier training
sets are created, one from each MT system: each contains 530k human translations and 530k machine
translations, totalling 1.06M examples.

1http://www.statmt.org/europarl
2All sampling in the TM was done in such a way as to ensure comparable representations of each domain.
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We proceed similarly to produce test sets to evaluate the performance of our classifiers: we randomly
sample 10k sentence pairs from the TM, machine translate the English versions into French using our
XLM and FairSeq MT systems, thus creating two test sets of 20k examples (10k human translations +
10k machine translations) each. We call these X-TM (for XLM) and F-TM (for FairSeq).

These two test sets can be seen as “in-domain” relative to our classifiers: not only because they share
the same source as the training data (the TM), but also because the machine translations were produced
using the same MT systems. To test the ability of our classifiers to handle different text domains and
translations produced by different MT engines, we also created “out-of-domain” test sets: we used two
online translation platforms — DeepL3 (D) and Google Translate4 (GT) — to translate 10K sentences of
each of four publicly available data sets: Europarl (EURO), Canadian Hansard (HANS),5 the News Com-
mentaries (NEWS) available through the WMT conference,6 and the Common Crawl corpus (CRAWL)
also available through WMT. Again these were mixed in equal parts with human translations. In what
follows, each test set is named based on the system used to produce automatic translations, and the
domain of the material.

We further translated another excerpt of (previously unused) 10k sentences from the TM, using the
DeepL translation API with a private account, to produce a test set we call D-TM. The TM being a
proprietary translation memory, we did not submit it to the GT platform.

4 NMT systems

As noted above, to produce the training data for our classifiers, we first created two transformer-based
NMT systems using English-French texts from the TM. We provide the details of this process here.

4.1 Cross-lingual Language Model (XLM)
In Lample and Conneau (2019), the authors propose three models: two unsupervised ones that do not use
sentence pairs in translation relation, and a supervised one that does. We focus on the third model, called
the Translation Language Modeling (TLM) which tackles cross-lingual pre-training in a way similar
to the BERT model (Devlin et al., 2018a) with notable differences. First, XLM is based on a shared
source-target vocabulary using Byte Pair Encoding (BPE) (Sennrich et al., 2016). We used the 60k BPE
vocabulary which comes with the pre-trained language model.7 Second, XLM is trained to predict both
source and target masked words, leveraging both source and target contexts, encouraging the model to
align the source and target representations. Third, XLM stores the ID for the language and the token
order (i.e., positional encoding) in both languages which builds a relationship between related tokens in
the two languages.

During training and when translating, we use a beam search of width 6 and a length penalty of 1. XLM
is implemented in PyTorch8 and supports distributed training on multiple GPUs.9 The original distribu-
tion does not include beam search for translating (but does for training), so we modified it accordingly.
Also, we modified the pre-processing code such that XLM accepts a parallel corpus for training TLM.

4.2 Scaling Neural Machine Translation (FairSeq)
Scaling NMT (Ott et al., 2018) is a novel transformer model that showcased an improvement in
training efficiency while maintaining state-of-the-art accuracy by lowering the precision of computa-
tions, increasing the batch size and enhancing the learning rate regimen. The architecture uses the
big-transformer model with 6 blocks in encoder and decoder networks. The half-precision train-
ing reduced the training time by 65%. Scaling NMT is implemented in PyTorch and is part of the
fairseq-py toolkit.10 We use the default 40k vocabulary with a shared source and target BPE factor-

3www.deepl.com/translator
4https://translate.google.com/
5https://www.isi.edu/natural-language/download/hansard/
6https://www.statmt.org/wmt14/translation-task.html
7The model without pre-training was unstable. We noticed better results with a long-running back-translation step.
8https://pytorch.org/
9https://github.com/facebookresearch/XLM.git

10https://github.com/pytorch/fairseq.
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ization. During training and for translating, we use a beam search of width 4 and a length penalty of 0.6.
For translation,11 we average the last five checkpoints.

4.3 Post-processing
Translating the classifier training data (Section 3) with the XLM engine took approximatively 10 hours on
a computer equipped with a V100-SXM2 GPU, and 26 hours for the FairSeq system. By inspection, we
noticed small issues with the translations produced by both systems, such as punctuation misplacements,
extra spaces, inconsistencies in the use of single and double-quotes. Since those issues would ease
the identification of machine-translated material, we normalized the translations in a post-processing
step, using 12 very conservative regular expressions12 that we applied to both the human and machine
translations. We observe in Table 1 a clear increase of BLEU when applying normalization: +4 for XLM,
and +5.3 for FairSeq.

raw normalized

XLM 33.43 37.46
FairSeq 34.07 39.40

Table 1: BLEU scores of the XLM and FairSeq translation engines measured on a dataset of 550K
sentence pairs (described in Section 3) before (left) and after (right) normalization,

5 MT Identification

We experimented with two strategies for building classifiers: feature-based models trained from scratch,
as well as deep learning ones making use of pre-trained representations.

5.1 Feature-based Classifiers
We considered three supervised classifiers informed by different feature sets. We tested various classifiers
(random forest, support vector machines and logistic regression), but obtained more stable results with
random forest classifiers trained with scikit-learn (Pedregosa et al., 2011). In all our experiments,
we fixed the number of trees in the forest to 1000 with a maximum depth of 40 and a minimum number
of samples required to split an internal node set to 10.

n-GRAM We reproduce the approach of Cavnar and Trenkle (1994) where we define a vector space on
the 30k most frequent character n-grams in the MT output of our training material, with n ranging from
2 to 7.13 Each sentence is then encoded by the frequency of the terms in this vocabulary, thus leading to
a large sparse representation which is passed to a classifier. In the bilingual task, we also consider the
top 30k n-grams of the source-language version of the training corpus, leading to representations of 60k
dimensions.

KENLM As a point of comparison, in the monolingual task, we experimented with features extracted
from four {3, 4}-gram word language models trained with the kenLM package (Heafield et al., 2013)
on the machine-translated material of our training corpus: two left-to-right models, and two right-to-left
ones. We computed 18 features: ratios of min and max logprob over the (target) sentence per model
(four features), the number of tokens with a logprob less than {mean,max,−6} (three features per
model), as well as the logprob of the full sentence given by the left-to-right models (two features).

T-MOP T-MOP (Jalili Sabet et al., 2016) is a translation memory cleaning tool which computes 27
features for detecting spurious sentence pairs, including broad features (such as length ratio) adapted
from Barbu (2015), some based on IBM models computed by MGIZA++ (Gao and Vogel, 2008), as well

11We used the fairseq-interactive module of the fairseq-py toolkit10.
12Very specific rules such as replace(’ ;’,’;’) or replace(’https :’,’https:’).
13Larger vocabularies do not yield notable performance differences.
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as some features based on multilingual word embeddings, using the method proposed by Søgaard et al.
(2015). While in T-MOP, those features are aggregated in an unsupervised way (that is, with rules), we
instead pass them to a random forest classifier trained specifically to distinguish human from machine
translations. Because of the nature of the feature set, we only deploy this classifier in the bilingual task.

5.2 Deep Learning Classifiers

bi-LSTM We re-implemented the method of Grégoire and Langlais (2018) for recognizing whether
two sentences are translations of each other: two bidirectional LSTMs (Hochreiter and Schmidhuber,
1997) encode the source and target sentences into two continuous vector representations, which are then
fed into a Feed-Forward Neural Network with two layers (one in the original paper): one of dimension
150 to process the continuous representation, and one of dimension 75. The output of each network is
finally passed to the sigmoid function.

In the original paper, the authors used 512-dimensional word embeddings and 512-dimensional recur-
rent states since they learn the word embedding from scratch. We found it easier (faster, and slightly
better) to adapt pre-trained FAST word embeddings (Bojanowski et al., 2016) of dimension 300. Also,
the authors tie the parameters of the two encoders, while we do not. We use two hidden layers before
the sigmoid function because we are mapping from 300 values to 1 and intuitively, it is better to do it
smoothly. We trained our classifier with the Adadelta optimizer (Zeiler, 2012) with gradient clipping
(clip value 5) to avoid exploding gradient and batch size 300, whereas the original architecture uses the
Adam optimizer with a learning rate of 0.0002 and a mini-batch of 128.14

We use a similar setting for the monolingual task, except that we only use one bidirectional LSTM
whose output we directly pass to the hidden layer of dimension 150, then a layer of dimension 75 and
finally the sigmoid function.

LASER The LASER toolkit (Artetxe and Schwenk, 2019) released by Facebook15 provides a pre-
trained sentence encoder that handles 92 different languages. Sentences from all the languages are
mapped together into the same embedding space with a bi-LSTM 512-dimensional encoder, such that
the embeddings from different languages are comparable.

For the bilingual detection task, we extract the representation of the source and target sentences and
tie them into one vector by taking their absolute difference and dot product, and adding them. This
tied representation is then passed through 3 hidden layers of size 512, 150 and 75 respectively16 with
dropout (Srivastava et al., 2014) of 50%, and then fed into a relu (Nair and Hinton, 2010) activation
function, whose output is finally passed to the sigmoid function. For the monolingual task, we just use
the LASER French (target) representation of the sentence and pass it through the very same architecture.
We train the classifiers with the Adadelta optimizer with gradient clipping (clip value 3).

Transformer-based Classifiers The use of pre-trained language models in a transfer learning setting is
ubiquitous and has shown substantial improvements in various NLP tasks. Therefore, we also considered
various representations trained either solely on French data (CamemBERT, FlauBERT) or on multiple
languages (XLM-ROBERTA, XLM, and mBERT). We experiment with different pre-trained transformer
models, using the Python module simpletransformers17 based on the HuggingFace library18,
which has a sequence classification head on top (a linear layer on top of the pooled output). Our classifiers
were fine-tuned using the ClassificationModel class and evaluated with the eval model class.
We have maintained the same parameters for all the transformer models: sequence length of 256, batch
size of 32, Adam optimizer (Kingma and Ba, 2014)19.

14Adadelta does not require to set a default learning rate, since it takes the ratio of the running average of the previous
time-steps to the current gradient.

15https://github.com/facebookresearch/LASER.
16We used three layers here because the input dimension is larger (512 versus 300).
17https://github.com/ThilinaRajapakse/simpletransformers
18https://github.com/huggingface/transformers
19lr: 1× e−5, adam epsilon: 1× e−8
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TM NEWS CRAWL HANS EURO

X- F- D- GT- D- GT- D- GT- D- GT- D-

Feature-based classifiers:
n-GRAM 76.0 76.6 81.4 66.6 72.6 59.2 61.9 47.2 49.6 53.6 56.3
KENLM 80.2 80.4 58.6 49.8 49.6 50 49.6 49.1 49.7 50.3 50.2

Deep-learning classifiers:
bi-LSTM 64.5 62.7 53.3 60.8 59.3 57.7 55.7 57.9 55.5 58.5 57.4
LASER 55.9 56.3 58.4 54.8 54.5 54.5 53.9 54.7 50.5 54.1 53.6

Transformer-based classifiers:
CamemBERT 83.7 83.8 73.8 68.9 77.3 63.0 68.8 52.3 58.5 56.6 60.5
XLM-ROBERTA 83.0 83.5 75.1 67.4 76.6 60.1 66.5 51.2 58.0 55.2 60.0
FlauBERT 84.3 82.2 82.4 71.3 77.0 64.8 66.4 51.7 53.8 59.8 61.5
XLM 79.9 77.5 72.3 69.8 73.2 60.3 61.0 49.9 50.1 54.9 56.0
mBERT 78.4 78.8 72.2 70.9 74.4 60.5 61.5 49.4 50.2 54.8 56.0

Table 2: Accuracy of classifiers on the monolingual classification task, on all test sets. X, F, D, and GT

refer to the XLM, FairSeq, DeepL, and Google translation engines, respectively. Underlined scores are
produced by classifiers trained with XLM material; FairSeq material has been used otherwise.

CamemBERT (Martin et al., 2019) is based on the RoBERTa (Liu et al., 2019) architecture (which is
basically a BERT model with improved hyper-parameters for robust performance) and is trained
on 138GB of plain French text taken from multilingual corpus OSCAR (Ortiz Suárez et al., 2019).
Unlike RoBERTa, CamemBERT uses sentence piece tokenization (Kudo and Richardson, 2018)
and performs whole word masking, which has been shown to be preferable (Joshi et al., 2019).
The architecture of the base model is a multi-layer bidirectional transformer (Devlin et al., 2018b;
Vaswani et al., 2017) with 12 transformer blocks of hidden size 768 and 12 self attention heads.

FlauBERT (Le et al., 2019) The base model we used is trained on 71GB of publicly available French
data and the data was pre-processed and tokenized using a basic French tokenizer (Koehn et al.,
2007). The model was trained with the MLM training objective.

XLM-ROBERTA (Ruder et al., 2019) is a multilingual language model, trained on 100 different lan-
guages. It is an extended version of XLM (see Section 4.1).

mBERT (Devlin et al., 2018b) is very similar to the original BERT model with 12 layers of bidirec-
tional transformers, but released as a single language model trained on 104 separate languages from
Wikipedia pages, with a shared word piece vocabulary. The model does not use any marker for
input language and the pre-trained model is not made to extract translation pairs to have similar
representations. The tokenization splits words into multiple pieces and it takes the prediction of the
first piece as the prediction for the word. The model is fine-tuned to minimize cross-entropy loss.

6 Experiments

We trained all classifiers described above using training data produced with XLM and FairSeq MT sys-
tems. Overall, classifiers trained with FairSeq translations performed very marginally better on out-of-
domain data, with an average accuracy of 64.5%, compared to 64.3% for classifiers trained with XLM
translations. In this section, unless otherwise specified, we report the results of classifiers trained with
FairSeq translations, but both training sets produce very comparable results.

6.1 Monolingual task
Results on the monolingual task are reported in Table 2. Most accuracies are over the 50% that would
be obtained by a random guess, albeit by a small margin on some conditions. Expectedly, the best
performances are observed on in-domain data (TM), in which machine translations were produced by the
same MT systems used to produce the classifiers’ training data. Which of XLM or FairSeq was used to
produce test translations has little to no impact on performance, however. The highest accuracy (84.3%)
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TM NEWS CRAWL HANS EURO

X- F- D- GT- D- GT- D- GT- D- GT- D-

Feature-based classifiers:
n-GRAM 76.2 77.9 81.9 66.8 73.2 59.2 62.1 54.4 51.8 49.6 47.2
T-MOP 62.7 62.9 59.8 63.4 62.9 61.1 57.2 54.8 57.8 51.2 50.1

Deep-learning classifiers:
bi-LSTM 66.5 65.2 57.8 68.9 65.8 71.6 68.7 65.5 63.6 66.6 57.0
LASER 68.0 68.8 68.3 77.2 75.1 80.8 78.5 73.5 50.3 73.2 63.1

Transformer-based classifiers:
CamemBERT 87.5 87.6 84.6 76.3 84.2 77.8 82.2 66.8 73.1 71.3 65.4
XLM-ROBERTA 86.7 85.8 81.2 76.2 82.5 77.5 79.7 67.2 68.5 69.8 63.3
FlauBERT 84.9 84.1 81.8 76.3 81.7 75.4 75.4 61.7 62.9 68.9 62.7
XLM 84.3 82.4 83.5 75.5 79.5 76.5 77.1 58.0 58.7 64.0 55.8
mBERT 86.6 83.9 82.9 81.1 85.7 83.2 83.1 70.6 58.3 76.8 68.3

Table 3: Accuracy of classifiers on the bilingual classification task, on all test sets. Underlined scores are
produced by classifiers trained with XLM material; FairSeq material has been used otherwise.

is obtained on TM data by fine-tuning the FlauBERT pre-trained representations on the training material
produced with XLM. Using this configuration, but classifying translations produced by DeepL only
slightly reduces performance (82.4%), but for most other approaches — including other BERT-inspired
solutions — it does lead to a notable decrease of accuracy.

HANS and EURO are the hardest test sets, where performances are often close to the random guess
baseline. This suggests that translations produced by GT and DeepL on those datasets are very good
and hard to distinguish from human translations. Part of this poor performance may be imputed to some
extent to the mismatch between the system used to translate the classifiers’s training material, and the
one used for testing. The lowest performances overall are recorded when classifying sentences produced
by GT on the HANS dataset, where the best classifier only succeeds at a rate of 57.9%. Around 15% of
automatic translations in this test set are identical to the reference one (see column 1 of Table 4), and the
same percentage are very close to the reference (see column 2 and 3). It is notorious that GT has been
trained on Hansards, further complicating the task. We were however surprised by the low percentage of
automatic translations close to the reference one we measured on the EURO test set. Inspection did not
reveal anything particular. If we set apart those two test sets, we observe that BERT-like models provide
better results than bi-LSTM and LASER ones. BERT models are systematically better at classifying
DeepL translations than those produced by GT. We do not have a clear explanation for this yet.

The n-GRAM feature-based classifier is competitive with the LASER and bi-LSTM classifiers, but is
slightly behind BERT-inspired classifiers. KENLM is clearly overfitting, delivering impressive results
for such a simple device on in-domain data and systems, but failing to generalize to other settings.

The good performances we obtained on TM, when distinguishing translations produced by DeepL may
be of interest to the language service provider that provided us with the data. It could for instance be
used to diagnose translation providers that heavily rely on this system to produce their translations. The
performance obtained on the NEWS and CRAWL test sets indicate that the automatic translations do have
a signature that we can recognize to some extent, without even looking at the source sentence.

6.2 Bilingual Task
Table 3 shows accuracies obtained in the bilingual task, that is, when both the source sentence and the
translation are considered. With a very few exceptions, all configurations benefit the extra input. For
settings where the monolingual accuracies are high, the gains can be modest (for instance less than 2
points for FlauBERT on in-domain test sets), but otherwise, clear improvements are observable. For
instance, on the HANS test sets, gains close to 20 points can be observed for some Transformer-based
classifiers.

The more challenging datasets are now handled with an accuracy around 70% or above, while for the
other test sets, the best performances are over 80%. Similarly to the monolingual task, Transformer-
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=ref % 1-edit % 2-edit % BLEU Monolingual Task Bilingual Task

F-TM 6.1 2.4 1.3 39.3 83.8 (CAM) 87.6 (CAM)

X-TM 5.3 1.9 1.1 37.8 84.3 (FLAU) 87.5 (CAM)

GT-EURO 3.5 0.4 0.4 37.4 59.8 (FLAU) 76.8 (MBERT)

D-TM 4.8 5.9 2.3 36.2 82.4 (FLAU) 84.6 (CAM)

GT-HANS 15.5 9.8 1.5 34.9 57.9 ( LSTM) 73.5 (LASER)

D-HANS 14.1 11.9 2.6 34.6 58.5 ( CAM) 73.1 (CAM)

D-NEWS 1.8 0.6 0.2 33.4 77.3 (CAM) 85.7 (MBERT)

GT-NEWS 1.8 0.5 0.3 32.0 71.3 (FLAU) 81.1 (MBERT)

D-EURO 2.0 0.6 0.3 31.8 61.5 (FLAU) 68.3 (MBERT)

GT-CRAWL 1.5 0.7 0.3 25.2 63.0 (CAM) 83.2 (MBERT)

D-CRAWL 1.5 0.6 0.2 25.0 68.8 ( CAM) 83.1 (MBERT)

Table 4: Accuracy of best classifier (in percentage) for each test set, in the monolingual and bilingual
tasks, as a function of the (normalized) BLEU score. Except for underlined scores, classifier training data
were produced with XLM. The best classifier is specified in parentheses next to its accuracy. Column
“=ref %” indicates the percentage of sentences for which MT output is identical to the reference; while
“x-edit%” columns indicate the percentage of translations which differe to the reference translation by
exactly one or two edit distance operations.

based classifiers are the best performers. The T-MOP classifier overall underperforms the bi-LSTM and
LASER ones. The n-GRAM classifier shows signs of overfitting, and delivers disappointing results on
out-of-domain data.

7 Analysis

7.1 Quantitative Analysis
Table 4 shows the accuracy of the best performing classifiers for each test set, alongside the BLEU score
of the respective translation engine (F-, X-, GT-, D-) for that set. We anticipated that poor quality MT
would be easier to detect, but BLEU score does not seem to correlate strongly with the classification
performance, which contradicts the observation in Aharoni et al. (2014). What is noticeable however,
is that in-domain performances (data from TM, and classifiers trained with the same translation engine
used for producing test-sentence translations) are systematically higher than out-domain ones. Also, the
bilingual task is unquestionably easier to tackle and for many test sets, including out-of-domain ones, the
best classifier achieves an accuracy over 80%, a rather decent level of performance we did not anticipate
at first, considering the relatively high quality of current NMT output.

Figure 1 shows the cumulative accuracy (y-axis) in the bilingual task calculated over the number of
target sentences, sorted by the length of sentences (number of tokens). For all test sets and all classifiers,
we observe that the longer the translation, the better the accuracy. This corroborates the findings of
Arase and Zhou (2013), that longer sentences are easier to classify. This is likely explained by the fact
that translations of short sentences are more likely to be similar to the human translation, and longer
sentences likely contain more problems, further easing detection.

7.2 Qualitative Analysis
We inspected the decisions made by our classifiers on some examples. We did notice machine translations
involving problems with proper names and acronyms, as example i) of Figure 2. We also occasionally
found syntax problems in machine translations, such as example ii), which involves a failure in long-
distance number agreement as well as a bad choice of pronoun. Also, we observed a strong tendency of
machine translations to mimic the structure of the source sentence, as can be seen in most examples of
Figure 2. This suggests that alignment features in the bilingual task could be useful. T-MOP explicitly
captures alignment information, but does not seem to make good use of it. We were otherwise impressed
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Figure 1: Cumulative accuracy in the bilingual task calculated over the number of target sentences pro-
duced by the XLM engine, sorted by their number of tokens.

by the overall quality of the MT, and rapidly realized how difficult it would be for human annotators
to achieve a decent level of performance on this task. This is in line with the observations of Arase
and Zhou (2013), who report lower performances for humans than for machines at detecting translations
produced by statistical phrase-based MT.

To better understand the type of information our classifiers base their decisions on, we inspected
cases where our classifiers predominantly classified the human translations as such20, and the machine
translation counterpart is predominantly recognized as a machine translation. For 32 such cases randomly
selected, we manually produced minimal pairs (3 on average), that is, as small as possible variants of the
automatic translation, to see at which point the classifiers were changing their decisions from machine
to human, thus allowing us to see which signals they react to. For instance, we produced 7 variants of
example i) in Figure 2, including the 3 reported.

We found that in half of the cases, modifying only a few words (often only one) of the automatic trans-
lation is enough for the classifier to reverse its decision. Some cases involved normalizations that our
post-processing script (see Section 4.3) fails to take into account. Among those, we noted the presence
of a hyphen symbol produced by DeepL on the NEWS data set, different from the one used in human
translations. We also noted a few cases involving typographical preferences. For instance, on the EURO

test set, removing a space in section numbering produced by XLM (e.g. “5 c)” versus “5c)”) some-
times suffices to make our classifiers believe the translation is human. Also, removing a capital letter (or
sometimes adding one) may reverse the classifier’s decision.

Of course, such normalization issues are in a way deceptive since although they do help decision
making, they do not have much to do with translation quality. In any case, the most frequent situation
involves lexical choices. For instance in example v) of Figure 2, changing the future tense enverra by the
infinitive form doit envoyer significantly reduces (from 18 to 4) the number of classifiers believing the
translation is an automatic one. Further replacing the preposition pour by en vue de reduces this number
to 2. Sometimes, it is easy to blame the translation engine for a different lexical choice, as the underlined
wording in example iii), but sometimes it is less, as in example iv) where se retire might be a correct
translation of step down. Clearly, more analysis is required to better appreciate the type of information
captured by our classifiers.

8 Conclusion

In this study, we implemented 18 classifiers to detect machine-translated texts, and evaluated their perfor-
mance on several test sets, containing translations produced by different state-of-the-art NMT systems.

20By “predominant”, we mean that at least 15 out of our 18 classifiers agreed.
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i) SRC 6c) Were you informed about the ADR process at the CHRC?
HUM 6c) Vous a-t-on informé du processus relatif au RAD de la CCDP ?
NMT 6c) Avez-vous été informé du processus de MARC à la CCDP ? (XLM,TM)

VAR 6c) Avez-vous été informé du processus de RAD à la CCDP ? (14)
VAR 6c) Vous a-t-on informé du processus de MARC de la CCDP ? (9)
VAR 6c) Vous a-t-on informé du processus au RAD de la CCDP ? (8)

ii) SRC Are there any specific services being requested by SMEs that you are not able to provide for them or that you
feel lie outside of your mandate?

HUM Les PME vous demandent-elles de leur fournir des services que vous ne pouvez leur donner ou qui, selon vous,
échappent à votre mandat

NMT Y a-t-il des services particuliers demandés par les PME que vous ne pouvez pas leur fournir ou que, selon
vous, ne cadre pas avec votre mandat ? (XLM, TM)

iii) SRC Until 2004, my parents met Nhan Thi Duong my ex-girlfriend and asked for my daughter Lan Thu Thi Le.
HUM Ils n’ont rencontré Nhan Thi Duong, mon ex-petite amie, qu’en 2004, et lui ont demandé des nouvelles de ma

fille, Lan Thu Thi Le.
NMT Jusqu’en 2004, mes parents ont rencontré Nhan Thi Duong, mon ex-petite amie, et m’ont demandé

de me donner ma fille Lan Thu Thi Le. (XLM, TM)

iv) SRC A bigger bloodbath seems inescapable if he does not step down.
HUM Il semble difficile d’échapper à un bain de sang plus important encore s’il n’accepte pas de démissionner.
NMT Un plus grand bain de sang semble inévitable s’il ne se retire pas. (DeepL, NEWS)

v) SRC Action Baki to send reminder for October inspection.
HUM Mesure Baki doit envoyer un rappel en vue de l’inspection d’octobre.
NMT Mesure Baki enverra un rappel pour l’inspection d’octobre. (XLM, TM)

VAR Mesure Baki doit envoyer un rappel pour l’inspection d’octobre. (4)
VAR Mesure Baki doit envoyer un rappel en vue de l’inspection d’octobre. (2)

Figure 2: Examples of human and automatic translations. Underlined passages identify problems and
bold ones their corresponding parts. Examples i) and v) come along manually edited variants of the
automatic translation (modifications are in italic), followed in parentheses by the number of classifiers
(among 18) that identify an automatic translation.

Overall, we found that classifiers with access to both the source sentence and the translation perform
better than those with access to the translation alone. Our classifiers achieve accuracies above 80% on
several test sets and always surpass a random baseline. Our analysis reveals that, despite of our efforts to
normalize translations, artifacts still exist in the data that could explain in part our relatively high classi-
fier accuracies. But in general, it appears that NMT systems do elicit signatures that can be recognized
by automatic methods. Often, a single lexical choice gives away the automatic nature of the translation,
even when the translation looks fluent from a language model point of view.

While we had the opportunity to work on a large, high quality professional translation memory, we re-
alize that our results can not be replicated exactly: by nature, large professional TMs are proprietary and
not easily shared. We argue however that one can easily reproduce (Drummond, 2009) our experiments
in another setting.

In future work, we hope to produce better MT detectors by creating training data using a wider variety
of MT systems. Another question we would like to examine is to what extent it is possible to detect
post-edited translations, i.e. machine translations manually edited by human translators.
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