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Abstract

We propose in this paper a contextualised graph convolution network over multiple dependency
sub-graphs for relation extraction. A novel method to construct multiple sub-graphs using words
in shortest dependency path and words linked to entities in the dependency graph is proposed.
Graph convolution operation is performed over the resulting multiple sub-graphs to obtain more
informative features useful for relation extraction. Our experimental results show that the pro-
posed method achieves superior performance over existing GCN-based models achieving state-
of-the-art performance on cross-sentence n-ary relation extraction and SemEval 2010 Task 8
sentence-level relation extraction task. Our model also achieves a comparable performance to
the SoTA on the TACRED dataset.

1 Introduction

In recent times, Graph Convolutional Network (GCN) (Kipf and Welling, 2016) based models such as
Contextualised GCN (C-GCN) (Zhang et al., 2018) and Attention Guided GCN (AGGCN) (Guo et al.,
2019) are shown to be useful for relation extraction. The C-GCN model employs pruned dependency
trees obtained using a path-centric pruning distance to filter irrelevant nodes from sentence graph to
aid in relation extraction. Experiments with C-GCN model shows that the performance of the C-GCN
model significantly decreases with the inclusion of all nodes in the sentence graph obtained from the
dependency graph (Zhang et al., 2018), thus making it important to use a right pruning distance to
achieve optimum performance. The AGGCN model (Guo et al., 2019) on the other hand, instead of
using pruned dependency trees, considers the full dependency tree with a self-attention mechanism to
learn node representation useful for relation extraction. In contrast to these GCN-based models using
a single graph, we propose in this paper to use multiple sub-graphs constructed from dependency tree
to represent a sentence for relation extraction. Given the decrease in performance of C-GCN with an
increase in the size of graph (Zhang et al., 2018), we hypothesise that using multiple sub-graphs in place
of a single graph can boost performance of GCN-based models for relation extraction. In comparison to
the AGGCN model (Guo et al., 2019), our proposed model simply considers smaller graphs associated
with entities to learn representation for important nodes in the sentence.

Further, while the pruning strategy used by the C-GCN model (Zhang et al., 2018) is applicable for
sentence-level relation extraction, it is not suitable for cross-sentence n-ary relation extraction as there
could be more than two entities across multiple sentences. The challenges arise in obtaining a single
dependency path in the LCA sub-tree connecting n-ary entities across sentences for cross-sentence rela-
tion extraction. Previous work on cross-sentence relation extraction task (Peng et al., 2017; Song et al.,
2018; Guo et al., 2019) have largely made use of full dependency graph with additional features such as
adjacent words and co-reference links (Peng et al., 2017). The usage of full dependency tree significantly
increases network parameters, requiring high computational power. In contrast to these works on n-ary
relation extraction, we propose in this paper a novel method to construct sub-graphs using connections
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between entities and root terms in dependency tree across sentences. Our approach described in this
paper significantly reduces the number of nodes in a graph and also at the same time helps in achieving
higher performance for cross-sentence n-ary relation extraction.

More specifically, the key contributions of this paper are: (a) propose a C-GCN model over multiple
sub-graphs (C-GCN-MG) for cross-sentence n-ary relation extraction and sentence-level relation extrac-
tion tasks; (b) propose novel methods to construct sub-graphs around entities using the dependency tree
for relation extraction; (c) provide evidence to substantiate the use of multiple sub-graphs instead of a
single graph for relation extraction; and (d) evaluate C-GCN-MG model on standard datasets for rela-
tion extraction and show that C-GCN-MG achieves SoTA performance on cross-sentence n-ary relation
extraction dataset (Peng et al., 2017) and SemEval 2010 Task 8 dataset (Hendrickx et al., 2019) to outper-
form C-GCN and AGGCN models. We also show that C-GCN-MG achieves comparable performance
against C-GCN and AGGCN models on TACRED dataset (Zhang et al., 2017).

2 Related Work

GCNs have been successfully applied for various information retrieval tasks in different areas such as
bioinformatics (Borgwardt et al., 2005), chemoinformatics (Duvenaud et al., 2015), social network anal-
ysis (Backstrom and Leskovec, 2011), urban computing (Bao et al., 2017) and natural language pro-
cessing (Borgwardt et al., 2005). With specific application to relation extraction, several studies have
examined the use of graph-based mechanisms to improve relation extraction. For example, a combi-
nation of dependency graphs, PropBank and FrameNet based features and surface-level lexical features
were successfully used with support vector machines to improve relation extraction (Rink and Harabagiu,
2010). Sequence-based Neural network models such as Recurrent Neural Networks (RNNs), LSTMs,
BiLSTMs have been used with graph-based features for relation extraction (Socher et al., 2012). Shortest
dependency path (SDP) between entities combined with RNNs are also shown to be useful for relation
extraction (Xu et al., 2015). Further, word sequence and dependency tree substructures are combined to
jointly model entity and relation extraction (Miwa and Bansal, 2016). More recently, graph-based LSTM
networks have been shown particularly useful in the context of n-ary cross-sentence relation extraction
(Peng et al., 2017; Song et al., 2018). GCN-based models such C-GCN (Zhang et al., 2018) and AGGCN
(Guo et al., 2019) are shown to achieve SoTA performance on sentence-level and cross-sentence relation
extraction. A combined neural network model that brings together the usefulness of LSTM networks
in learning from longer sequences and CNNs to capture salient features is also proposed cross-sentence
n-ary relation extraction (Mandya et al., 2018). The main focus of this paper is to examine the use of
multiple sub-graphs along with graph convolution models for relation extraction. In contrast to previous
GCN-based models for relation extraction such as C-GCN (Zhang et al., 2018) and AGGCN (Guo et al.,
2019) which use a single graph to learn node representations, we propose in this paper a C-GCN model
that uses multiple sub-graphs to learn a richer node representation that helps in relation extraction. For
this purpose, we propose a novel method to obtain multiple sub-graphs from dependency parse trees of
a given sentence. To the best knowledge of the authors, this is the first study which effectively com-
bines GCNs with multiple sub-graphs for relation extraction and shows that such a strategy is useful for
achieving SoTA performance for relation extraction.

3 Constructing multiple sub-graphs for relation extraction

We propose a method to encode multiple sub-graphs with GCNs for two different tasks: (a) sentence-
level relation extraction; and (b) cross-sentence n-ary relation extraction as follows:

3.1 Sentence-level relation extraction
In sentence-level relation extraction, the task is to identify binary relation across entities e1 and e2 in a
given sentence. For instance, for EXAMPLE SENTENCE 1, given below, the task is to identify the relation
Entity-Origin across entities knowledge (e1) and recruits (e2).

EXAMPLE SENTENCE 1: “Their knowledge of the power and rank symbols of the Continental empires was gained from
the numerous Germanic recruits in the Roman army, and from the Roman practice of various Germanic warrior groups
with land in the imperial provinces.”
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Accordingly, multiple sub-graphs (as shown in Figure 1) are constructed to represent a sentence, which
includes (a) graph using nodes in SDP between two entities “knowledge” and “recruits” (Figure 1(ii));
and (b) graph using nodes linked to entity mentions “knowledge” (e1) (Figure 1(iii)) and entity mention
“recruits” (e2) (Figure 1(iv)). The SDP is defined as the dependency path in the LCA sub-tree, connecting
the two entities. Figure 1(i) shows partial the dependency tree for EXAMPLE SENTENCE 1.

3.2 Cross-sentence n-ary relation extraction
While the above described method to construct multiple graphs is applicable for sentence-level relation
extraction, it cannot be used in the context of cross-sentence n-ary relation extraction, where the task is
to identify the n-ary relation across n-ary entities present across multiple sentences. For instance, the
EXAMPLE TEXT 1 provided below is an instance of cross-sentence n-ary relation extraction, where the
task is to identify ternary relation sensitivity across three entities L858R, EFGR, gefitnib present in the
first, second and third sentence, respectively.

EXAMPLE TEXT 1: “Furthermore, although common mutations , such as exon 19 deletions and L858R mutations in
exon 21 have been associated with response to EGFR TKIs, many other mutations are detected only occasionally , and
correlations with response are not defined . A recent study screened 681 cases and found 18 rare mutations; responses to
EGFR TKIs were reported on a case by case basis and varied by mutation. For example, exon 20 and 21 mutations were
more likely to confer resistance to erlotinib or gefitnib, while exon 18 and 19 mutations were more often associated with
improved efficacy outcome.”

To build graph connecting multiple entities, we propose a two-fold strategy. We first use nodes in
SDP between each entity term and the root term in the dependency tree to derive graphs around each
entity terms, followed by adding an edge between each entity terms to obtain a full-connected graph. For
example, in Figure 2, the nodes in SDP between entity terms “L858R”, “EGFR” and “gefitnib” and their
respective root terms “detected”, “likely” and “screened” in the dependency tree of sentence 1, 2 and 3,
respectively are used to create the initial graphs for three entities (entity mentions and root terms present
in different sentences are shown in different colours in Figure 2), followed by adding an edge between
entities. This strategy helps to build a fully-connected graph irrespective of the number of entities and
sentences in the text. In addition, we also construct two sub-graphs using nodes associated with the
first and the last entity in the cross-sentence instance, as described previously for sentence-level relation
extraction. This method of deriving multiple sub-graphs for both cross-sentence n-ary relation instances,
results in constructing three sub-graphs to represent each instance, irrespective of the number of entities
and sentences present in the instance.

4 C-GCN over Multiple Sub-graphs

In this section, we formally describe the problem and explain the architecture of C-GCN-MG model.

4.1 Problem Formulation
Let E = [e1, .., en] be the set of entities in a text span si ∈ S containing t consecutive sentences. S is the
set of all relation extraction instances. Given E and si, the relation extraction task is to predict a relation
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r from a predefined setR that holds across entities [e1, .., en] or “no relation” otherwise. In this work, we
apply C-GCN-MG in two different settings: (a) when n=2 and t=1, we predict binary relation in a single
sentence which forms sentence level relation extraction problem; and (b) when n ≥ 2 and t > 1, we
predict n-ary relation across t sentences also known as cross-sentence n-ary relation extraction problem.
In both the settings, we model the task of relation extraction as graph classification problem. Each
instance si is transformed into set of sub-graphs, upon which GCN operation is performed to learn rich
node representations in each sub-graph. Using an attention mechanism, each sub-graph is transformed
into a fixed dimensional vector. The attentions vectors resulting from multiple sub-graphs combined to
obtain entity-centric feature vector, which is used to predict relation r for the instance si.

4.2 Architecture of C-GCN-MG
The architecture of the proposed C-GCN-MG model shown in Figure 3 is described below.

4.2.1 Graph Building Layer
The input to the network is the sequence of tokens [x1, . . . , xm] ∈ si, which also consists entities
[e1, . . . , en] across which holds a relation r ∈ R. For explanation purposes, in Figure 3, the input si
provided to the network is a single sentence (t = 1) comprising entities e1 and e2. Initially, si is trans-
formed into a set of 3 sub-graphs, following the method described in Section 3, as shown in Figure 3.
A set of 3 graphs are constructed for each instance irrespective of whether the input is a sentence-level
binary or cross-sentence n-ary relation instance to obtain graph G(si) = gki ,where k = 1, 2, 3. An adja-
cency matrix (A) is obtained for each graph that provides information of connected nodes in the graph.
An edge weight matrix (E) providing weight of the grammatical relation for edges between nodes is also
obtained. The method for obtaining edge weights is further explained in section 4.2.4.

4.2.2 Input Encoding Layer
Each graph gki comprise a set of tokens [xk1, . . . , x

k
m′ ], which also forms the nodes in the graph is encoded

into a fixed-length vector by the input coding layer comprising the following embeddings: (a) contextual;
(b) part-of-speech; (c) dependency; (d) named entity type; and (e) word type embeddings. For contextual
embeddings, the BERT model (Devlin et al., 2018) is used. Byte-pair-encoding (BPE) tokeniser used
by BERT tokenises each a word w into s BPE tokens w = {b1, b2, ..., bs} and generates L hidden states
for each BPE token, hl

t, 1 ≤ l ≤ L, 1 ≤ t ≤ s. The contextual embedding BERTw for word w is
obtained by summing the last four layers of the BERT model:

BERTw =
1

s

L∑
l=L−4

s∑
t=1

hl
t (1)

The best performance was observed when the last four layers of the BERT model were used in the
experiments. In addition to contextual embeddings, for each word w, a p-dimensional feature vector
is included for Part-of-Speech (POS) tags (fposw ); dependency grammatical relations (fdepw ); and named
entity types (fnetw ) embeddings. Further, a q-dimensional feature vector is included to indicate whether
a given word w is the entity mention or not (fwt

w ). The syntactic embeddings are randomly initialised.
Word-type embeddings comprise of a q-dimensional vector of ones, if the given word is an entity mention
or vector of zeros if the word is a non-entity term. Thus, the input vector for each token x̃ki ∈ Rd and is:

x̃ki = [BERTxk
i
; fpos

xk
i

; fdep
xk
i

; fnet
xk
i
; fwt

xk
i
] (2)

4.2.3 BiLSTM Layer
Previously, using a BiLSTM layer is found to be useful for fine-tuning pre-trained input word embed-
dings before providing them as input to GCN layer (Zhang et al., 2018; Guo et al., 2019). Although
BERT provides contextual embeddings, we propose to use a BiLSTM contextual layer to further fine-
tune input embeddings by learning sequential information available in the word order in the sentence.
Accordingly, the encoded set of tokens [x̃k1, . . . , x̃

k
m′ ] in the graph are initially fed as input to a contextual
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BiLSTM layer. As seen in Figure 3, the word sequence for terms in graph is obtained from the sentence
and is provided as input to the BiLSTM layer, as experiments using full sequence showed a decrease
in performance. Thus, the BiLSTM layer takes as input a series of input vectors and produces a dl-
dimensional hidden state vector for each input in both forward and backward directions. The BiLSTM
layer is jointly trained along with the rest of the model. The output of the BiLSTM layer is given by:

hk
1, . . . ,h

k
m′ = BiLSTM(x̃k1, . . . , x̃

k
m′) (3)

Here, hi ∈ R2dl , where dl is the dimension of the hidden state of the LSTM. hi is the hidden state
vector of the BiLSTM at time-step i considering both forward and backward directions.

4.2.4 Graph Convolution (GCN) Layer
The hidden state vectors obtained from the BiLSTM layer and the graphical structure obtained in the
first step (Graph Building Layer) is provided as input to the GCN layer. Specifically, for graph gki , the
GCN takes the following inputs: (a) an input feature matrix X ∈ Rn×2dl , where n is the number of nodes
and 2dl is the dimensions of input features (output obtained from BiLSTM layer for each node); (b) the
graph structure is provided by an adjacency matrix A ∈ Rn×n, where Aij = 1, if there exists an edge
from node i to node j; and (c) an edge weight vector e ∈ R2ne , where ne is the number of edges in the
graph. The dimension is 2ne as the edge vector for a given pair of nodes is considered in both directions.
The edge weights are obtained as follows:

Let ergpi,qj be the edge weight of the grammatical relation rg ∈ Rg going from node i to node j. Rg

is the set of all grammatical relations; p and q are the POS tags of nodes i and j, respectively. Both
p and q are in set P , where P is the set of POS tags seen in the dataset and p == q for nodes i and
j with the same POS tag. For a given p, q ∈ P and rg ∈ Rg, if pqn′ is the number of times the
triples (pi, qj , rg) is seen in the corpus and pqt′ is the total number of triples across all POS tags and
grammatical relations, the edge weight from node i to node j with a given dependency relation rg
is given by: ergpi,qj =

pqn′
pqt′

Thus, the graph convolution operation to produce node features hli ∈ Rdg at layer l is given by:

hli = σ(

n∑
j=1

Aije
rg
pi,qjW(l)h

(l−1)
j + b(l)) (4)

where W(l) and b(l) is the weight matrix and bias term, respectively for the lth layer, hl−1 are the node
features in the l − 1th layer, the initial layer H(0) = X, and σ is the non-linear function such as ReLU,
dg is the dimensions of the hidden state in GCN layer. Although, the graph convolution operation helps
to obtain node features hi, the resulting features do not provide a complete representation as the features
of its own node are not considered by the convolution operation. To address this problem, a self-loop is
added for each node in the graph (Kipf and Welling, 2016). Further, since certain nodes in the dependency
graph can be high-degree nodes with higher connections, the node representation obtained from is likely
to favour high-degree nodes, resulting in bias in overall sentence representation. To solve this issue,
the node features are normalised by transforming the adjacency matrix A, where A is multiplied with
the inverse degree matrix D (Kipf and Welling, 2016). Applying these two transformations, the graph
convolution operation to produce node features hi at layer l is given by:

hli = σ(
n∑

j=1

Ãije
rg
pi,qjW

(l)h
(l−1)
j /di + b(l)) (5)

Here, Ã = A+ I with I being the n× n identity matrix, and di =
∑n

j=i Ãij is the degree of token i in
the dependency graph. The output of graph convolution operation is the node level output Z ∈ Rm′×f ,
where m′ is the number of nodes in the graph and f is the number of output features of the GCN
layer. Intuitively, the feature representation of node hLi ∈ Rf is an aggregation of information from the
connecting neighbouring nodes and edges in the graph.
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4.2.5 Attention Layer
Not all nodes in the GCN output would equally contribute to relation extraction. An attention layer is
used to obtain a fixed length vector that best represents the graph. Thus, instead of using multiple GCN
layers, a single GCN layer followed by an attention is layer is employed for this purpose. This also
significantly reduce the number of parameters in the model. The attention mechanism assigns a weight
αi to each node annotation hi. A fixed representation vgi ∈ Rdg is computed for the entire graph, as the
weighted sum of all node annotations:

ui = tanh(Whi + b) (6)

αi =
exp(ui)∑T
t=1 exp(ut)

,
T∑
i=1

αi = 1 (7)

vgi =

T∑
i=1

αihi, vgi ∈ Rdg (8)

The final representation v for the input sequence is obtained by summing all three attention vectors
(from three sub-graphs) along with hidden state vectors of entity mentions e1 and e2 obtained at GCN
layer:

v =

2∑
i=1

hlei +

3∑
k=1

vgki
, hlei ∈ Rdg , vgki

∈ Rdg (9)

where hle1 and hle2 are hidden state vectors of entity mentions e1 and e2 at layer l of GCN, respectively.

4.2.6 Output Layer
The final feature vector v ∈ Rdg is used for classification and is fed to a fully connected softmax layer to
obtain a probability distribution over relation labels. The cross-entropy loss for label prediction is given
by:

J(θ) =
r∑

i=1

log p(rq|v, θ), (10)

where r is the total number of relations and θ are the parameters of the model. During inference, the test
sentences are represented as graphs and fed to the classifier model to predict the relation label.

5 Experiments

5.1 Datasets and Metrics
The performance of our model is evaluated on two tasks: cross-sentence n-ary relation extraction and
sentence-level relation extraction. For cross-sentence n-ary relation extraction task, we use the dataset
introduced by (Peng et al., 2017) (n-ary dataset), which contains 6,987 ternary relation instances and
6,087 binary relation instances extracted from PubMed1. For sentence level relation extraction task,
the performance of our model is evaluated on two datasets: (a) SemEval-2010 Task 8 (SemEval) dataset
(Hendrickx et al., 2019); and (b) TACRED dataset (Zhang et al., 2017). SemEval is a standard dataset for
relation extraction containing 10,717 examples annotated with 9 different relation types, and an artificial
relation ‘Other’. The dataset is split into 8,000 training examples and 2,717 test examples, with each
sentence marked with two nominals, e1 and e2. The TACRED dataset is a larger dataset comprising 106K
instances annotated using 41 relation types and a special “no relation” types. Models are evaluated using
previously used metrics. For the cross-sentence n-ary relation extraction task, test accuracies averaged

1The dataset is available at https://github.com/freesunshine0316/nary-grn
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over five cross-validation folds are reported following previous evaluation methods (Peng et al., 2017;
Song et al., 2018; Guo et al., 2019). For sentence-level relation extraction, we report the official macro
F1-Score excluding the ‘Other’ relation for SemEval dataset (Hendrickx et al., 2019) and for TACRED
dataset we report official micro F1-scores (Zhang et al., 2017).

5.2 Implementation Details

PyTorch (Paszke et al., 2017) and PyTorch Geometric (PyG) (Fey and Lenssen, 2019) was used to build
the GCN-based model. Spacy (Honnibal and Montani, 2017) was used to obtain POS tags, named entity
types, and dependency relations. Since SemEval dataset has dedicated train and test sets, 10% of the
training dataset was held-out for validation purposes. The hyperparameters of the model were tuned
using the validation set. The model was developed using the validation set and was tested on the test
set. The model was trained for 200 iterations following mini-batch gradient descent (SGD) with a batch
size of 50. Word embeddings were initialised using 768-dimensional contextual BERT embeddings. The
dimensions for embeddings for part-of-speech (POS), named entity tags, dependency tags was set to 40
and were initialised randomly. The dimensions for word-type embeddings was set to 10. A vector of size
10 with all entries as ones and zeros was added for entity mentions and non-entity words, respectively.
The dimensions of hidden state vector in the LSTM, GCN and Attention layer was set to 256.

6 Results and Discussion

6.1 Cross-Sentence n-ary Relation Extraction

For cross-sentence n-ary relation extraction, following prior work (Zhang et al., 2018; Guo et al., 2019),
the proposed model is evaluated against the following baselines: (1) feature-based classifier using lexical
features in the SDP between each pair of entities (Quirk and Poon, 2016); (2) graph-based LSTMs
including (a) Graph-LSTM (G-LSTM) (Peng et al., 2017); (b) Bidirectional Directed Acyclic Graph
LSTM (Bidir DAG LSTM) (Song et al., 2018); and (c) Graph State LSTM (GS-LSTM) (Song et al.,
2018); (3) GCN-based models including (a) Contextualised GCN (C-GCN) (Zhang et al., 2018); and (b)
Attention Guided GCN (AGGCN) (Guo et al., 2019); and (4) in addition, following (Song et al., 2018),
the tree-structured LSTM model (SPTree) (Miwa and Bansal, 2016) is also included as a baseline for
drug-mutation binary relation extraction.

The five-fold cross validation results of the proposed model are provided in Table 1. For ternary
relation extraction (first two columns in Table 1), the proposed C-GCN-MG model achieves an accuracy
of 88.3 and 88.1, on instances within single sentences and on all instances, respectively, outperforming
all baselines. For binary relation extraction (third and fourth columns in Table 1), the C-GCN-MG
model consistently outperforms both GS G-LSTM and AGGCN model, indicating the usefulness of the
proposed model. Following prior work (Song et al., 2018; Guo et al., 2019), the proposed model is
evaluated on all instances for both ternary and binary relations (last two columns in Table 1) for multi-
class classification. As seen, the performance of different model significantly drops when evaluated
on fine-grained classes against binary class. However the C-GCN-MG model performs better on fine-
grained classes models by scoring higher than SoTA models for ternary and binary multi-class relation
extraction. The binary and multi-class n-ary results clearly establish the ability of C-GCN-MG to exploit
the underlying graph structure by using multiple sub-graphs. While, the performance of GCN is observed
to decrease with the increase in nodes (Zhang et al., 2018), the result obtained by C-GCN-MG model,
particularly on multi-class classification (Table 1) show that the use of smaller sub-graphs considerably
helps fine-grained classification.

6.2 Sentence-level Relation Extraction

Results on Semeval 2010 Task 8 and TACRED datasets are reported for sentence-level relation extraction
task. Following prior work (Zhang et al., 2018; Guo et al., 2019), we use the following baselines: (a)
dependency-based models: which include logistic regression (LR) (Zhang et al., 2018); Shortest Path
LSTM (SDP-LSTM) (Xu et al., 2015), tree-structured neural model (Tree-LSTM) (Tai et al., 2015), GCN
and Contextualized GCN (C-GCN) (Zhang et al., 2018), Attention guided GCN (AGGCN) (Guo et al.,
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Binary-class Multi-class
T B T B

Model S C S C C C
Feature-Based (Quirk and Poon, 2016) 74.7 77.7 73.9 75.2 - -
SPTree (Miwa and Bansal, 2016) - - 75.9 75.9 - -
G-LSTM-EMBED (Peng et al., 2017) 76.5 80.6 74.3 76.5 - -
G-LSTM-FULL (Peng et al., 2017) 77.9 80.7 75.6 76.7 - -
+multi-task (Peng et al., 2017) - 82.0 - 78.5 - -
GS G-LSTM (Song et al., 2018) 80.3 83.2 83.5 83.6 71.7 71.7
Bidir DAG LSTM (Song et al., 2018) 75.6 77.3 76.9 76.4 51.7 50.7
GCN (Full Tree) (Zhang et al., 2018)* 84.3 84.8 84.2 83.6 77.5 74.3
GCN (K=0) (Zhang et al., 2018)* 85.8 85.8 82.8 82.7 75.6 72.3
GCN (K=1) (Zhang et al., 2018)* 85.4 85.7 83.5 83.4 78.1 73.6
GCN (K=2) (Zhang et al., 2018)* 84.7 85.0 83.8 83.7 77.9 73.1
AGGCN (Guo et al., 2019) 87.1 87.0 85.2 85.6 79.7 77.4
C-GCN-MG (our model) 88.3 88.1 87.9 87.2 86.2 87.3

Table 1: Average test accuracies in five-fold validation for binary-class and multi-class n-ary relation
extraction. “T” and “B” denotes ternary drug-gene-mutation interactions and binary drug-mutation in-
teractions, respectively. “S” and “C” indicates accuracy reported on instances within single sentences
and considering all instances, respectively. K in GCN indicates that pre-processed pruned trees include
tokens up to distance K away from the dependency path in the LCA subtree. * indicates results from
previous work (Guo et al., 2019)

Model F1-score Model F1-score
SVM (Rink and Harabagiu, 2010) 82.2 PA-LSTM (Zhang et al., 2017) 82.7
SDP-LSTM (Xu et al., 2015) 83.7 C-GCN (Zhang et al., 2018) 84.8
SPTree (Miwa and Bansal, 2016) 84.4 AGGCN (Guo et al., 2019) 85.7
C-GCN-MG (our model) 85.9

Table 2: Results on SemEval dataset

2019); and (b) sequence-based models: which consider SoTA Position Aware LSTM (PA-LSTM) (Zhang
et al., 2018) model. As shown in Table 2, C-GCN-MG achieves higher performance (F1-score of 85.9)
against all baselines on the SemEval dataset. However, on TACRED dataset (Table 3), the performance of
C-GCN-MG is comparable to the baselines. In particular, C-GCN-MG outperforms sequence-based PA-
LSTM, GCN and AGGCN models. However, C-GCN-MG achieves a lower performance in comparison
to AGGCN on TACRED dataset.

6.3 Single graph vs. Multiple sub-graphs

To further evaluate the contribution of multiple graphs for relation extraction, we examine the perfor-
mance of the following two models: (a) C-GCN-SG: A C-GCN using a single graph (SG) constructed
using the nodes in the SDP between the entities; and (b) C-GCN-MG: A C-GCN using multiple graphs
(MG) constructed using (a) nodes in SDP; and (b) nodes associated with the entity mentions in the de-
pendency graph. Table 4 shows that C-GCN-MG significantly outperforms C-GCN-SG, both in terms
of precision and recall, by scoring an F1-score of 85.91 against 83.73 (p ≤ 0.05 under the Wilcoxon
Signed-Rank Test). Using multiple graphs facilitates inclusion of additional nodes that help in identi-
fying relations more accurately, while providing better coverage by retrieving more relevant instances.
These results further confirms our hypothesis that using multiple sub-graphs with GCNs are more useful
than using a single graph.

6.4 Contribution of multiple sub-graphs

To further study the contribution of multiple sub-graphs (C-GCN-MG) against single graph (C-GCN-
SG), sentences in SemEval test set are categorised into three groups using distance between entities. The
average number of tokens (µ) and the standard deviation (σ) over different lengths of tokens between
e1 and e2 are used to obtain three different groups of sentences: (a) short-distance spans (j ≤ µ − σ),
(b) medium-distance spans (µ − σ < j < µ + σ), and (c) long-distance spans (j ≥ µ + σ), where j
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Model P R F Model P R F
LR (Zhang et al., 2017) 73.5 49.9 59.4 GCN (Zhang et al., 2018) 69.8 59.0 64.0
SDP-LSTM (Xu et al., 2015) 66.3 52.7 58.7 C-GCN (Zhang et al., 2018) 69.9 63.3 66.4
Tree-LSTM (Tai et al., 2015) 66.0 59.2 62.4 AGGCN (Guo et al., 2019) 69.9 60.9 65.1
PA-LSTM (Zhang et al., 2018) 65.7 64.5 65.1 C-AGGCN (Guo et al., 2019) 71.8 66.4 69.0
C-GCN-MG (our model) 68.0 64.4 66.1

Table 3: Results on TACRED dataset. P: Precision, R: Recall, F: F1-score

Model Precision Recall F1-Score Model Precision Recall F1-Score
% % % % % %

C-GCN-SG 83.01 84.64 83.73 C-GCN-MG 84.43 87.56 85.91*

Table 4: Performance of models using single graph and multiple sub-graphs on SemEval test set.

is the number of tokens between e1 and e2. The average number of tokens µ was found to be 3 and the
standard deviation σ obtained was 9. The numbers of sentences in different categories shown in Table 5,
shows that a large proportion of sentences (ca. 72%) are categorised as MEDIUM SPANS with sentences
having 6−12 tokens between entities. The performance of C-GCN-MG and C-GCN-SG across different
spans of sentences in SemEval test set is provided in Table 6, shows that C-GCN-MG achieves higher
performance consistently across all three spans of sentences over C-GCN-SG. These results shows that
multiple sub-graphs are extremely useful, particularly for LONG SPAN sentences with large distances
between the entities. The contribution of C-GCN-MG is also significant for sentences in the MEDIUM

SPANS category. However, for SHORT SPANS sentences the difference in the performance of C-GCN-MG
and C-GCN-SG is less significant, indicating that a single graph is sufficient for shorter sentences.

6.5 Number of nodes used in the graph
The C-GCN-MG and C-GCN-SG models are evaluated using path-centric pruning distance (Zhang et
al., 2018) in the following three settings to examine the effect of expanding nodes in SDP: (a) K = 0:
using entities in SDP; (b) K = 1: include nodes directly connected to nodes in SDP; and (c) K = ∞:
use full dependency graph. The evaluation results provided in Table 7 shows that as an overall trend,
the F-scores of both the models drops significantly when the nodes in the graph are added incrementally
by expanding the SDP. Both C-GCN-MG and C-GCN-SG models achieve the best F-scores by using
only the nodes in the SDP, corresponding to C-GCN-MG (K = 0) and C-GCN-SG (K = 0) in Table
7. The superior performance by scoring a higher recall without compromising on precision, indicates
the usefulness of limiting to a minimum set of nodes in the graph. Although the use of higher number
of nodes facilitates achieving higher precision, the models largely suffer from poor recall resulting in
lower F-scores. Interestingly, considering multiple sub-graphs as done by C-GCN-MG models leads to
better F-scores in comparison to the corresponding C-GCN-SG models, confirming our hypothesis to
use multiple sub-graphs for relation extraction. The visualisation of the attention weights of nodes at
the final attention layer by C-GCN-MG for a an example sentence is shown Figure 4, indicates that the
model restricting to nodes in the SDP (4b.1) with lesser number of nodes facilitates finer representations
for each word in the graph, with nodes besides entity mentions also contributing to the task. In the
associated sub-graphs, higher weights are assigned to e1 (school), whereas e2 receives a lower weight,
indicating that the model uses information from the corresponding sub-graphs. In contrast, when a model
uses a larger set of nodes (Figure 4c.1), the contribution of words in the graph is less evident.

6.6 Ablation study
The ablation study examining different feature sets is provided in Table 8. As seen, BERT helps to
achieve a significant improvement in the overall performance. The syntactic embeddings (POS, NER,
DEP, word-type (WT), edge weights) helps to increase performance. In addition to syntactic embeddings,
the use of edge weights are observed to boost the F1-score to 85.9. The contribution of the contextual
BiLSTM layer is also significant in the overall performance, without which the model achieves a low
F1-score of 78.2, showing the importance of using contextual layer to derive node features for GCN.
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SHORT SPANS MEDIUM SPANS LONG SPANS TOTAL
(j ≤ µ− σ) (µ− σ < j < µ+ σ) (j ≥ µ+ σ)

365 1966 386 2717
13.50 (%) 72.30 (%) 14.20 (%)

Table 5: Details of different categories of short, long and medium spans in the SemEval test set.

Model Precision Recall F1-Score Model Precision Recall F1-Score Model Precision Recall F1-Score
% % % % % % % % %

SHORT SPANS MEDIUM SPANS LONG SPANS
C-GCN-SG 79.66 78.18 78.65 C-GCN-SG 83.81 85.88 84.73 C-GCN-SG 76.48 80.59 77.94
C-GCN-MG 80.63 81.01 79.95 C-GCN-MG 85.16 88.46 86.72 C-GCN-MG 81.78 85.95 83.50*

Table 6: Performance of models across short, medium and long spans in SemEval test set.

Figure 4: Visualisation of attention weights learnt by C-GCN-MG model using different sets of nodes.
Words are shaded based on contribution of weights obtained at the final attention layer.

Model Precision Recall F1-Score Model Precision Recall F1-Score
% % % % % %

C-GCN-SG C-GCN-MG
C-GCN-SG (K = 0) 83.01 84.64 83.73 C-GCN-MG (K = 0) 84.43 87.56 85.91*
C-GCN-SG (K = 1) 80.38 82.13 81.22 C-GCN-MG (K = 1) 86.74 84.05 85.21
C-GCN-SG (K =∞) 82.91 77.99 80.16 C-GCN-MG (K =∞) 86.83 82.41 84.43

Table 7: Performance of models using different set of nodes in the graph.

Model F1
BEST C-GCN-MG 85.9
− Attention (use 3−GCN+Pooling layer) 85.7
− POS, NER, DEP, WT 82.7
− BERT (use 300d-GloVe (Pennington et al., 2014) embeddings) 82.4
− Edge Weights 85.2
− BiLSTM 78.2

Table 8: Ablation study of the best C-GCN-MG on the SemEval test set.

7 Conclusion

To conclude, we proposed a contextualised GCN model using multiple sub-graphs representing a sen-
tence as against a single graph to improve relation extraction. The proposed model scores both in terms
of precision and recall to achieve a higher accuracy and better coverage. The improvement in perfor-
mance is observed to largely come from accurately predicting relations for instances with large distance
between entities. The superior performance of the model against SoTA graph-based models on standard
relation extraction datasets clearly establish the strength of the proposed model.
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