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Abstract

Corporate mergers and acquisitions (M&A) account for billions of dollars of investment globally
every year, and offer an interesting and challenging domain for artificial intelligence. However,
in these highly sensitive domains, it is crucial to not only have a highly robust and accurate
model, but be able to generate useful explanations to garner a user’s trust in the automated sys-
tem. Regrettably, the recent research regarding eXplainable AI (XAI) in financial text classifi-
cation has received little to no attention, and many current methods for generating textual-based
explanations result in highly implausible explanations, which damage a user’s trust in the sys-
tem. To address these issues, this paper proposes a novel methodology for producing plausible
counterfactual explanations, whilst exploring the regularization benefits of adversarial training
on language models in the domain of FinTech. Exhaustive quantitative experiments demonstrate
that not only does this approach improve the model accuracy when compared to the current state-
of-the-art and human performance, but it also generates counterfactual explanations which are
significantly more plausible based on human trials.

1 Introduction and Related Work

In recent years, large-scale, pre-trained transformer models have led to massive improvements on a wide
range of natural language processing (NLP) tasks (Devlin et al., 2018; Liu et al., 2019), including finan-
cial technology applications (Duan et al., 2018; Yang et al., 2018; Xing et al., 2019; Yang et al., 2020).
However, this impressive ability also coincides with an inherent lack of robustness and transparency,
which undermines human trust in the prediction outcome. In the highly sensitive (and financially lu-
crative) area of FinTech, explainable financial text classification remains an open, and highly alluring
question. To tackle this problem, this paper advances a novel approach which first applies robust trans-
former models (by leveraging adversarial training) on a real-world, up-to-date, self-collected mergers
and acquisitions (M&A) dataset, and then generating plausible, post-hoc, counterfactual explanations.
In the remainder of this section, we describe relevant work to both of these areas before detailing our
contributions.

1.1 Artificial Intelligence in Mergers and Acquisitions
M&As have reshaped the global business landscape for generations, and are having an accelerating
impact on the world’s economy as new technologies such as the internet, big data, and artificial intel-
ligence disrupt many business sectors (Yan et al., 2016). To appreciate this, a recent economic study
provided strong evidence that M&A deal rumours could influence the share price volatility of rumor
target firms (Ma and Zhang, 2016). In particular, they showed that, on average, M&A rumors have a
positive short term impact and a negative long term impact on the cumulative abnormal returns of the
potential acquirers and targets. In the existing AI literature, focus here is typically on predicting likely
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M&A targets (Yan et al., 2016), and forecasting the likely success of M&A (Danbolt et al., 2016) for
developing high-risk/high-reward investment strategies based on M&A speculation (Ji and Jetley, 2009).
While the existing literature typically focuses on predicting likely M&A acquirers and targets, in this
work we address a distinct but related task: namely, whether a merger and acquisition rumor is likely
going to prove to be correct.

1.2 Visualization-based Explanations
To interpret a model’s prediction, prior efforts have focused on either incorporating pre-hoc analysis into
the experimental design (Brunner et al., 2020), or developing post-hoc analysis algorithms to select or
modify particular instances of the dataset to explain the behavior of models (Keane and Smyth, 2020;
Kenny and Keane, 2019). Recent research (Grimsley et al., 2020) shows that transformer models can
not be perfectly explained from their intrinsic architecture, and a further work (Brunner et al., 2020)
provides strong evidence that self-attention distributions are not directly interpretable. For this reason,
model-agnostic, post-hoc explanation methods have come to the fore among these works for explaining
text classification models, as they are easy to understand and do not require access to the data or the
model (Keane and Smyth, 2020).

Towards post-hoc explanation in NLP tasks, (Murdoch et al., 2018) proposes a popular way named
contextual decomposition (CD) to quantify the importance of each individual word/phrase by computing
the change to the model prediction when solely removing a word/phrase. Its hierarchical extensions
(Singh et al., 2019; Jin et al., 2020) continue to refine the explanation algorithms that calculate and
further visualize the individual phrase’s importance. However, despite these visualization-based methods
(Murdoch et al., 2018; Singh et al., 2019; Jin et al., 2020) having achieved good results on a popular
dataset of sentiment analysis (namely the Stanford Sentiment Treebank-2 [SST-2] dataset where human
create the ground truth with their subjective judgement), how to generate explanations in more complex
scenarios where human performance is worse than a model have not been well studied. As a result, the
prior lines of visualization-based works cannot provide a clear boundary between positive and negative
instances to human, whereas counterfactuals could provide “human-like” logic to show a modification to
the input that makes a difference to the output classification (Byrne, 2019). Hence, post-hoc, example-
based explanation methods have received more and more attention in recent years (Keane and Smyth,
2020).

1.3 Counterfactual Text Explanations
Counterfactual explanations are renown for their explanatory ability in AI systems (Wachter et al., 2017);
specifically, they offer the ability to explain models (such as transformers) without having to “open the
black-box” (Grath et al., 2018), by conveying causal information about what contributed to a given
classification. To understand counterfactuals in the context of text classification, consider a sentiment
classification task were a black-box model may classify “John loved the film” with a positive sentiment,
and explain the prediction counterfactually by presenting “John hated the film”. Glossed, this latter
text is the AI explaining the prediction by saying “f the word love was replaced with the word hate,
I would have thought it was a negative sentiment”. This allows us to understand the main reasoning
process behind the classifier in question, thus explaining the prediction causally. To understand the issue
of counterfactual plausibility, consider that the previous explanation may also generate a counterfactual
which reads “John not the film”. This text may “flip” the classification to the counterfactual class, but it
is grammatically implausible, and (arguably) very difficult to contextualize. The reason this is important
is because humans avoid creating counterfactuals which are far from a “possible world” (Wachter et
al., 2017), and by extension wildly implausible (Byrne, 2019; Kenny and Keane, 2020). In response to
this, our work attempts to guarantee more grammatically plausible explanations, and does not rely on
attention weights, nor is it constrained to a specific text domain.

Contributions and Paper Outline

• We present a novel dataset to the interesting and challenging problem of artificial intelligence in
M&A prediction.



6152

• To the best of our knowledge, the present work is the first general approach to generate grammati-
cally plausible counterfactual explanations for unstructured text classification.

• The primary technical contribution in this work is to generate grammatically plausible counterfac-
tuals by replacing the most important words with the antonyms (REP-SCD) based on pre-trained
language models. Furthermore, two additional variants (removing/inserting works at the most im-
portant place, namely RM-SCD and INS-SCD) are proposed to guarantee counterfactual genera-
tions, albeit ones which are less plausible.

The remainder of this paper is organized as follows. Section 2 details our novel dataset and the pre-
processing steps involved. Section 3 describes our adversarial training approach, with the sensitivity-
based method for counterfactual explanation generation. Exhaustive experiments (both quantitative and
human-based) show clear improvements in our method over current state-of-the-art, both in regards to
classification accuracy, and explanation quality (see Sections 4 and 5). Finally, the implications of this
work on XAI and future research is discussed.

2 The Novel Mergers and Acquisitions Dataset

Description Number
#Processed deal news total (2007-2019) 4,098
#Train (2007-2014) 3,120
#Validation (2015 - 2016) 478
#Test (2017 - Aug 2019) 500
#Unique companies and institutions 1,406

Table 1: The description of our dataset

For this study we adopted a large-scale, up-to-date M&A dataset collected from Zephyr, a comprehen-
sive database of deal data from the “real world”. The dataset 1 contains 14,539 news articles or tweets on
M&A events between January 1st 2007, and August 12th 2019. Each instance corresponds to a specific
editorial M&A article which describes a possible deal between an acquirer and a target company (also
including a few IPO rumours). Additionally, each datapoint also includes the deal outcome (see below),
and the deal announcement data, if relevant. In this work, the deal outcome corresponds to the target
class, and the raw dataset contains the following outcome types: complete – a deal between the acquirer
and target companies concluded successfully; rumour – no deal materialized between the acquirer and
target company; pending – a desired deal between the acquirer and target company has been confirmed,
and at the time of data collection was deemed to be in-progress, but not yet complete; cancelled – a past
potential deal between the acquirer and target companies has been confirmed, but it did not complete,
and is no longer being pursued.

In order to prepare the raw dataset for use in this study, a number of pre-processing steps were carried
out:

1. In this work we chose to focus on a binary classification task and, as such, removed instances with
outcome types of cancelled and pending, leaving only those instances that correspond to completed
deals (the positive class) and rumours (the negative class).

2. We eliminated instances where both acquiring and target companies were non-US, due to a tendency
towards low-quality data; in other words, all of the instances in our dataset include a US Listed
Company as either the acquirer or the target or both.

3. Articles published within one day or after the deal announcement date were also removed, this
is because our interest is in developing a prediction model that is capable of generating accurate
predictions at least one day in advance of any deal outcome.

1https://www.bvdinfo.com/en-gb/our-products/data/specialist/zephyr

https://www.bvdinfo.com/en-gb/our-products/data/specialist/zephyr
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4. Finally, the remaining instances are randomly over-sampled to ensure an even split between positive
(completed) and negative (rumours) instances for each year.

The result is a dataset of 4,098 instances (news articles and meta-data) which we split into training,
validation, and testing sets on a year-by-year basis (see Table 1).

3 Methodology

The pipeline of our method is shown in Fig. 1. First, as a prerequisite, a transformer variant is fine-
tuned on the M&A prediction task, alongside adversarial training (which as we shall see is shown to be
promising in this domain). Second, important words in the test instances are identified using a sampled
contextual decomposition technique after the prediction. Third, a counterfactual explanation is generated
by replacing these words with grammatically plausible substitutes. As we shall see, although this method
does not always guarantee a plausible counterfactual will be found, we propose two alternative methods
which will, albeit with the possible trade-off of plausibility. These steps are detailed next.

3.1 Step 1: Robust Transformer Classification Models
As eluded to earlier, M&A prediction is a highly sensitive domain, and despite adversarial training
showing promise previously (Goodfellow et al., 2014; Tsipras et al., 2018), it has never been tested
in this domain. Hence, to try ensure a robust model which can simultaneously generate intelligible
explanations, we explore its usage here compared to other popular approaches. Given a news article, we
adopt the classical transformer architecture proposed by (Vaswani et al., 2017). The original multi-head
self-attention is subsequently applied to the k-th document D(k), which is calculated as follows:

MultiHead = Concat (head1, . . . ,headh)WO (1)

headj = Attention (Q,K, V ) (2)

Q = D(k)WQ
j ,K = D(k)WK

j , V = D(k)W V
j (3)

where WQ
j ,W

K
j ,W

V
j ∈ Rd×d are weight metrics, and the attention is computed as:

Attention (Q,K, V ) = softmax

(
QK>√

d

)
V (4)

for input query, key and value matrices Q,K, V ∈ Rn×d. The h outputs from the attention calculations
are concatenated and transformed using an output weight matrix W o ∈ Rdh×d.

Additionally, the adversarial noise, treated as a form of regularization, is generated by the Fast Gra-
dient Method (FGM) (Miyato et al., 2017) and Projected Gradient Descent (PGD) (Madry et al., 2018).
The idea of using adversarial perturbation is derived from the usage of adversarial attacks (Carlini and
Wagner, 2017) to evaluate the robustness of neural networks, while the recent advances of using the
adversarial training in NLP models (Liu et al., 2020) inspires us to use it as a way of regularization. For
each embedded word e in k-th news article D(k), the FGM computes its perturbation as follows:

rfgm = ε · g/‖g‖2 where g = ∇eL(θ, (D(k), y)) (5)

where rfgm is the perturbation of e, θ denotes the current values of the parameters of the classifier,
and L denotes the loss function (cross entropy) associated with the classifier. The perturbation can be
easily computed using back-propagation. The projected gradient descent, which can be considered as a
multi-step variant of the FGM, computes the perturbation of e iteratively:

et+1 = Πe+S

(
et + αg

(
D(k)
t

)
/
∥∥∥g (D(k)

t

)∥∥∥
2

)
g
(
D(k)
t

)
= ∇eL

(
θ, (D(k)

t , y)
) (6)
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… Stryker is buying US-based spinal 
implant technology company K2M …

Original

Sampled

… First Mid-Illinois Bancshares is 
buying SCB Bancorp in a USD 
70.40 million …
… Archrock is buying out its master 
limited partnership (MLP) …
… The Texan company is buying
CDM Resource Management …

…

Transformers

Calculate the 
Importance 
Weights

REP-SCDPositive Words
Dictionary

Negative Words
Dictionary

Stryker is potentially buying 
US-based spinal implant 
technology company K2M

Generating counterfactual explanation(s)

Stryker is considering US-
based spinal implant 
technology company K2M

Stryker is [UNK] US-based 
spinal implant technology 
company K2M

Calculating the importance of the words (phrases)

Fine-tuned 
Transformer

Transformers

RM-SCD

INS-SCD

Figure 1: The pipeline of our methods, namely REP-SCD, RM-SCD, and INS-SCD. We show real examples of generating
diverse counterfactual instances that flip the prediction result from completed to rumour. The original input has been changed
by iteratively modifying words in order of their importance until the prediction matches the counterfactual class. The outputs
(logits) of the predictions are represented in green, and orange points, respectively.

where S =
{
r ∈ Rd : ‖r‖2 ≤ ε

}
is the constraint space of the perturbation, Πe+S denotes the projec-

tion of a vector onto the feasible set e+ S, and α is the step size. We use Adam optimizer with learning
rate decay to train our model until convergence.

3.2 Step 2: Context-Independent Word Importance
To calculate the context independent importance up to one word, we adopt the sensitivity of contextual
decomposition technique from (Madry et al., 2018) which removed part of inputs from the sequence text
to evaluate a model’s sensitivity to them, thereby allowing for the identification of important features.
In its hierarchical extensions – Sampling and Contextual Decomposition (SCD), (Jin et al., 2020) mask
out the phrase p from the input while the max sequence length N is set to 40. However, the average
input length in our data is much larger than 40. We, therefore, propose a phrase-level removing method
only if the phrase starts with the negative pronouns or limitations. Otherwise, only a single word will be
removed. For example, in the sentence “the deal is not closing currently”, the attribution of “closing”
should be positive while the attribution of “not closing” should be negative. In this situation, we remove
the whole phrase “not closing” together to calculate the influence in terms of the logits change in the
output layer of the transformer and then assign the negative score to the word “closing”.

Given a phrase p starting with the negative limitations in the k-th document D(k), we sample the
documents which contain the same phrase p to alleviate the influence by chance when there are multiple
shreds of evidence saturating the prediction. For example, in the source “JPMorgan is closing in on
a deal, sources close to the situation are optimistic for deal completion”, if we only remove the word
“closing”, the prediction would not be changed so much. In this sampling way, the proposed context-
independent importance of word and phrase is more robust to saturation. The formula for calculating the
importance can be written as:

φ(p, D̂(k)) = E
D̂(β)

[
l
(
D̂(β); D̂

)
− l
(
D̂(β)\p; D̂

)]
(7)

where D(β) denotes the resulting document after masking out a single token or a phrase starting with
the negative pronoun in the length ofN surrounding the phrase p. we use l

(
D̂(β)\p; D̂

)
to represent the

model prediction logits after replacing the masked-out context. \p indicates the operation of masking
out the phrase p in a input file sampling from the testing set D.

As an aside, the resulting top 15 most influenced words are shown in Table 2. In total, there are
123 positive words and 155 negative words in the dictionaries. We can see the average influence score
of positive words (0.637) is higher than the negative words (0.385). It may reveal that positive words
usually contain more powerful clues in predicting the M&A deal. That would be interesting to see which
kind of words in the sources illustrate the deal is more likely to be completed in the future and which
kind of words would be likely to kill the deal.
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Algorithm 1 Plausible Counterfactual Instances Generation

Input: Testing document example D(k)= {w1, w2, ..., wn}, the corresponding ground truth label Y, pre-
trained Mask Language Model MLM, negative pronouns list NP, fine-tuned transformer classifier C.
Output: Positive Word Dictionaries POS, Negative Word Dictionaries NEG, Plausible counterfactual
example(s) D(k)

cf = {D(k)
REP−SCD, D

(k)
RM−SCD, ..., D

(k)
INS−SCD}

1: Initialization: D(k)
cf ← D(k)

2: for each word wi in in D(k) do
3: if the prev word wi−1 is in NP then
4: Creat the whole phrase npi by contextual decomposition
5: Computer the importance score Pwi = −Pnp(i) via Eq.(7)
6: else
7: Computer the importance score Pwi via Eq.(7)
8: end if
9: end for

10: Create dictionaries with words: WPOS ;WNeg, alongside the word positions poswi sorted by the
descending order of their importance scores Pwi .

11: for each word position posi in poswi do
12: WPlausible ←MLM(D

(k)
mask wposi

), W
′
Plausible ←MLM(D

(k)
mask wposi±1

)

13: if Y (k) == POS then
14: WCandidate, W

′
Candidate← Intersection (WNEG and WPlausible), (WNEG and W

′
Plausible)

15: else
16: WCandidate, W

′
Candidate← Intersection (WPOS and WPlausible), (WPOS and W

′
Plausible)

17: end if
18: D

(k)
rm ← D(k) wposi

19: end for
20: for each word wi,w

′
i in zip (WCandidate,W

′
Candidate) do

21: D
(k)
ins← Insert w

′
i to D(k)

mask wposi±1

22: D
(k)
rep← Replace wi with D(k)

mask wposi

23: if C(D
(k)
rm, D

(k)
ins, D

(k)
rep) 6= Y then

24: Add D(k)
rm, D

(k)
ins, D

(k)
rep to the set D(k)

cf

25: end if
26: end for
27: return D(k)

cf

3.3 Step 3: Counterfactual Instance Generation
As shown in Algorithm 1, we summarize three different counterfactual generation methods, namely,
the primary technique which generates grammatically plausible counterfactuals (REP-SCD), and two
further variants to guarantee counterfactual generation (RM-SCD and INS-SCD). We combine these
three methods to alleviate a major issue in counterfactual explanation, that is, there is no guarantee that
for a given example a counterfactual instance is found. Our main technique identifies the most important
word(s) in a test instance using SCD and replaces them with the intersection of grammatically plausible
substitutes [using masked language model (MLM)] and words in the reverse emotional dictionary. The
raw document contentD(k) itself is taken as input, and MLM outputs p(·|D(k)) for each masked position.
After all masked positions are infilled, we get the reconstructed document:

D̂(k) = MLM(D(k)). (8)

We iterative repeat this operation at the most important word positions ranked by SCD until the recon-
structed document ultimately moves the model’s classification towards the opposing class. Notably, there
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Positive Words Sensitivity Negative Words Sensitivity
announced 5.841 talks 4.674
line 5.715 could 2.484
announcement 4.469 flag 2.236
agreement 3.378 diligence 1.363
acquiring 3.342 considering 1.196
completion 2.727 time 1.186
agreed 2.429 may 1.085
closing 2.125 looking 0.983
consideration 1.994 this 0.972
prevailed 1.639 when 0.914
acquire 1.520 potentially 0.870
paid 1.461 if 0.847
disclosed 1.403 intention 0.836
selling 1.385 year 0.812
could 1.360 takeover 0.790

Table 2: Top 15 most influenced words towards the M&A prediction. The influence score for each word is calculated and added
up by Sampling and Contextual Decomposition (SCD) on the testing set.

may be more than one counterfactual explanation corresponding with the original text instance.

4 Experiment 1: Financial Text Classification with Robust Transformers

In this section we describe the results of a comprehensive evaluation of classification accuracy, compar-
ing a variety of different classification baselines (including a human baseline) to our adversarial trans-
former approach.

4.1 Methods Used
The baselines used can be grouped into several distinct categories: human evaluations – traditional ma-
chine learning approaches (SVM) – classical deep learning approaches (CNN (Kim, 2014), BiGRU (Bah-
danau et al., 2014) , and HAN (Yang et al., 2016)) – and various transformer approaches with/without
pruning strategies. These transformer-based models are generally considered to provide the current state-
of-the-art in text classification. We reproduce these baselines based on the Transformers.2

Acquiring a human baseline As a baseline, we asked 26 participants which were experts in economics
and finance to predict M&A events by completing 50 M&A evaluation questionnaires. The participants
consisted of Ph.D. students, and academics from the fields of economics/finance. All participants were
either native English speakers or had a high degree of English competence. Each questionnaire provided
information on ten M&A cases/instances, sampled randomly without replacement from the test set. In
addition, the news articles available in the dataset that were published before the deal announcement
were also provided. The questionnaire asked the participant to predict the outcome of the deal (complete
or rumour), and to state their confidence in this prediction.

4.2 Classification Results
In line with best practice, model hyper-parameters are tuned using the validation set. In particular, the
maximum sequence length is set as 256, and the size of transformers are all set as large. All experiments
are using the conventional Matthews Correlation Coefficient (MCC), accuracy and F1 metrics. The
classification results are summarized in Table 3 with Random Guess used to provide a lower-baseline
based on chance. While the human evaluators performed better than chance their ability to predict deal
outcomes is limited when compared to the more sophisticated machine models that follow. These results
are particularly compelling as the human evaluators had considerable domain expertize.

2https://github.com/huggingface/pytorch-transformers

https://github.com/huggingface/pytorch-transformers
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Evaluation MCC Accuracy F1 Evaluation MCC Accuracy F1
Baselines Transformers
Random Guess 0.013 0.510 0.462 ALBERT 0.768 0.882 0.879
Human Evaluation 0.307 0.640 0.672 +Ad. 0.780 0.890 0.888
Traditional ML DistilBERT 0.750 0.874 0.877
SVM(TF-IDF) 0.701 0.816 0.816 +Ad. 0.784 0.890 0.891
Classical DL BERT-WWM 0.751 0.874 0.879
CNN-Text 0.729 0.848 0.847 +Ad. 0.788 0.894 0.894
BiGRU 0.734 0.836 0.849 RoBERTa 0.780 0.892 0.888
HAN 0.742 0.848 0.853 +Ad. 0.788 0.894 0.895

Table 3: Evaluations performed by human, machine learning, deep learning, and transformer-based models, alongside the
ablation study for adversarial training (indicate as +Ad.). The scores in bold and italics indicate the best performance across all
approaches.

Each of the machine learning approaches offer substantial improvements over the human evaluators
and a clear separation can be seen between traditional machine learning (with MCC scores in low 0.7
range/F1 scores in the low 0.8 range), classical deep learners (with MCC scores in the range 0.73-0.74/F1
scores in the range 0.84-0.85), and recent transformer-based models (MCC>0.75/F1>0.87).

We further evaluate the relative influence of the adversarial perturbation to test the robustness of the
models. We find that all variants of the transformer (Lan et al., 2019; Sanh et al., 2019) benefit from the
adversarial perturbation during the training process in terms of the prediction results in the practice. For
exploring the reason why the optimal transformer classifier can outperform the human test a lot – 39%,
we take the best performed model – RoBERTa (Liu et al., 2019) with adversarial training as our optimal
classifier in the following experiments for generating the plausible counterfactual explanations.

5 Experiment 2: Generating Plausible Counterfactual Explanations

Interpretability is an increasingly important property for many deep learning techniques, including com-
puter vision and natural language processing (Kenny and Keane, 2019), especially in critical tasks such as
financial text classification; high-value investment decisions demand a reasonable level of interpretabil-
ity if investors are to trust the predictions that come for a system such as the one described in this work.
In this section, we describe the qualitative analysis for each of our methods. Subsequently, we show the
evaluation of user studies compared to the existing example-based explanation methods.

5.1 Qualitative Analysis for the Resulting Counterfactual Instances

In qualitative analysis, we identified five typical patterns among the generated counterfactual instances
as shown in Table 4 where we highlight the changing parts. Based on the 500 testing examples, we
guarantee that there is at least one counterfactual instance corresponding with the original input. We
gain insight into which aspects are causally relevant by comparing the original context to the revised
context which can flip the classifier’s prediction.

5.2 Human Evaluation for the Explanation

We implement interpretation experiments on the optimal fine-tuned transformer classifier. While an ex-
plainable model trained with supervised learning is a common method to interpret the results of text
classification (Wallace et al., 2019), the self-supervised learning explainable frameworks have been
scarcely found. Meanwhile, the work in (Kaushik et al., 2020) consider similar types of edits to
generate counterfactually-revised data, however, all of the instances are generated by human which
greatly limits the expansibility of the method. To comprehensively evaluate the performance of our
method, we consider a state-of-the-art example-based explanation framework for comparison, namely
HotFlip (Ebrahimi et al., 2017), which uses gradients to identify important words and then flip it with
the adversarial word which can cause the maximum change in gradients.
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Types of Algorithms Examples
Ori: Professional vacation services provider ILG is consider-
ing a merger with Diamond Resorts International...REP-SCD:

Replacing with the certainty word Rev: Professional vacation services provider ILG is announc-
ing a merger with Diamond Resorts International...
Ori: Vivendi is in early discussions to sell a 10.0 per cent stake
in Universal Music Group (UMG) to Tencent for roughly EUR
3.00 billion...REP-SCD:

Changing the deal value Rev: Vivendi is in early discussions to sell a 10.0 per cent stake
in Universal Music Group (UMG) to Tencent for roughly EUR
3.00 million
Ori: Stryker is buying US-based spinal implant technology
company K2M Group Holdings for USD 1.40 billion in cashINS-SCD:

Recasting fact as hoped for Rev: Stryker is potentially buying US-based spinal implant
technology company K2M Group Holdings for USD 1.40 bil-
lion in cash
Ori: WPP has confirmed the recent speculation that it has en-
tered into exclusive negotiations with private equity firm Bain
Capital...INS-SCD:

Inserting the negative word Rev: WPP has not confirmed the recent speculation that it
has entered into exclusive negotiations with private equity firm
Bain Capital...
Ori: This suitor is the Namdar and Washington Prime consor-
tium, the insiders noted, adding that there can be no certainty
a deal will complete...RM-SCD:

Removing the negative limitation(s) Rev: This suitor is the Namdar and Washington Prime consor-
tium, the insiders noted, adding that there can be certainty a
deal will complete...

Table 4: Most prominent categories of counterfactual explanations generated by our algorithms, namely RM-SCD, REP-SCD,
and INS-SCD for M&A Predictions. Ori and Rev are short for original and revised instances, respectively.

For user evaluation, here we ask domain experts in finance to rate our explanations on two aspects,
(1) how plausible (mainly in terms of grammar and comprehension) it is, and (2) how reasonable it is
(i.e., does the explanation make sense). We compare our method to Hotflip - the current state-of-the-art
framework for counterfactual explanation - at the time of writing. Each score is measured on a scale of
1-5, where 5 is the best, and 1 is the worst. We randomly sample 100 examples from the testing set for
5 participants to answer (20 examples per person). By combining the REP-SCD, RM-SCD, INS-SCD
together, our method achieves significantly higher ranking score compared to HotFlip, more specifically,
2.35 score improvements (4.35/2.00) were made regarding plausibility while 0.85 score improvements
(4.00/3.15) were made on reasonableness, showing a p-value less than 0.001 and 0.05, respectively.
Hence, there is compelling evidence that our method can generate counterfactual explanations which are
more plausible and reasonable.

6 Conclusion and Future Work

In this work, we pursued a new research problem of M&A prediction. Our transformer-based clas-
sifier leveraged the regularization benefits of adversarial training to enhance model robustness. More
importantly, we built upon previous techniques to quantify the importance of words and help guaran-
tee the generation of plausible counterfactual explanations with a masked language model in financial
text classification. The results demonstrate superior accuracy and explanatory performance compared to
state-of-the-art techniques. An obvious extension would be to include canceled deals into the classifier,
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or to predict novel M&A events based on market descriptions of companies (e.g., scale, finances, and
target markets). Moreover, additional financial events (e.g., misstatement detection and earnings call
analysis) is yet another related task to be considered for further research.
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