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Abstract

Pre-trained language models have been widely applied to cross-domain NLP tasks like sentiment
analysis, achieving state-of-the-art performance. However, due to the variety of users’ emotional
expressions across domains, fine-tuning the pre-trained models on the source domain tends to
overfit, leading to inferior results on the target domain. In this paper, we pre-train a sentiment-
aware language model (SENTIX) via domain-invariant sentiment knowledge from large-scale
review datasets, and utilize it for cross-domain sentiment analysis task without fine-tuning. We
propose several pre-training tasks based on existing lexicons and annotations at both token and
sentence levels, such as emoticons, sentiment words, and ratings, without human interference. A
series of experiments are conducted and the results indicate the great advantages of our model.
We obtain new state-of-the-art results in all the cross-domain sentiment analysis tasks, and our
proposed SENTIX can be trained with only 1% samples (18 samples) and it achieves better perfor-
mance than BERT with 90% samples. Code is available at https://github.com/12190143/SentiX.

1 Introduction

Sentiment analysis has gained widespread attention from both industry and academia, which aims to
judge the sentimental polarity of the given text (Liu, 2012). Most existing works heavily rely on la-
beled data to train separate sentiment classifiers for each domain, which are both expensive and time-
consuming to obtain (Socher et al., 2013). Therefore, cross-domain sentiment analysis has become a
promising direction, which transfers (invariant) sentiment knowledge from the source domain to the
target domain1.

The major challenge here is that language expressions for sentimental text usually vary across different
domains. For instance, “fast” has a positive sentiment towards “service” in the restaurant domain (Fig-
ure 1), while in the laptop domain, “fast” expresses a negative sentiment for “power consumption”.
Furthermore, models trained on the source domain tend to overfit, since they learn domain-specific
knowledge excessively. Therefore, many studies (Du et al., 2020; Ziser and Reichart, 2018; Li et al.,
2018) propose to address this issue by extracting domain-invariant features.

Recently, pre-trained language models like BERT (Devlin et al., 2019) have achieved the state-of-the-
art performance on multiple sentiment analysis tasks (Hoang et al., 2019; Munikar et al., 2019; Raffel
et al., 2019). However, when they are directly applied to cross-domain sentiment analysis (Du et al.,
2020), two problems arise: 1) Existing pre-trained models focus on learning the semantic content via
self-supervision strategies, while ignoring sentiment-specific knowledge at the pre-training phrase; 2)

˚ Yuanbin Wu and Liang He are the corresponding authors of this paper. This work was conducted when Jie Zhou was
interning at Alibaba DAMO Academy.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1Usually, we assume that there are abundant labeled data in the source domain, while little or no in the target domain. Thus,
the model is trained on source domain and tested on the target domain for this task.
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Laptop Domain
This computer consumes power 
so fast :(. It was a bad experience. 
I will never buy it again.

Restaurant Domain
This is a beautiful place (^_^). 
The service is fast and food is 
delicious.

Token-level: sentiment 
lexicons, emoticons

Sentence-level: rating

Figure 1: An example of sentiment knowledge (e.g., “bad”, “beautiful”, “:(”, “p^ ^q”).

during the fine-tuning phase, pre-trained models may overfit the source domain by learning too much
domain-specific sentiment knowledge, leading to degraded performance on the target domain.

To address the above-mentioned problems, we propose a sentiment-aware pre-trained model, named
SENTIX, to learn the domain-invariant sentiment knowledge at the pre-training phase, and it does not
need to be fine-tuned for the cross-domain tasks. In particular, we observe that many widely available re-
view datasets contain rich sentiment information, which can be utilized to enhance the domain-invariant
knowledge acquisition. Large-scale review datasets, such as Yelp and Amazon, consist of 240 million
reviews across 30 domains, full of sentiment words, emoticons and ratings. Taking Figure 1 as an ex-
ample, these reviews contain opinion words (like “bad”, “beautiful”) and emoticons (like “:(”, “p^ ^q”),
and their ratings are 1 and 5, respectively.

In order to obtain the above domain-invariant sentiment knowledge, we propose several sentiment-
aware pre-training objectives, including token and sentiment prediction. At the token level, the sentiment
words and emoticons are masked with a higher rate than the general words to emphasize the sentiment
knowledge, and we pre-train SENTIX to predict sentiment-aware words, emoticons, and token senti-
ments. At the sentence level, we introduce a rating prediction strategy to learn the sentiment knowledge
based on the whole sentence.

We conduct extensive experiments on cross-domain sentiment analysis tasks to evaluate the effective-
ness of SENTIX, and obtain state-of-the-art results on all settings. SENTIX achieves more than 90%
accuracy over all cross-domain sentiment analysis datasets with only 1% samples, outperforming BERT
trained with 90% samples. Through visualization of the feature representation, we observe that SENTIX
significantly reduces the overfitting issue, while the in-domain tests prove that our SENTIX also obtains
significant improvement over BERT for both the sentence-level and aspect-based sentiment classification
tasks.

The main contributions of this paper can be summarized as follows:

• We propose SENTIX for cross-domain sentiment classification to learn rich domain-invariant senti-
ment knowledge in large-scale unlabeled multi-domain data.

• We design several pre-training objectives at both token level and sentence level to learn such domain-
invariant sentiment knowledge by masking and prediction.

• The experiments clearly show that SENTIX obtains the state-of-the-art performance for cross-domain
sentiment analysis and requires less annotated data than BERT to reach equivalent performances.

2 Preliminaries

Reviews contain a lot of semi-supervised sentiment signals, such as sentiment words, emoticons and rat-
ings, and large-scale review data can be obtained from online review websites like Yelp. This sentiment
knowledge can help learning domain-common sentiment feature for the cross-domain task.

• Sentiment Words. Sentiment lexicon contains a lot of sentiment information and is widely used in
sentiment analysis. The words in lexicon are regarded as sentiment words. The words in positive and
negative sentiment lexicons are labeled as “P” and “N” respectively. Words out of the lexicons are
labeled as “0”. HowNet2 and opinion lexicon (Hu and Liu, 2004) are used as sentiment lexicons.
2http://www.keenage.com/html/c index.html
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Figure 2: The framework of SENTIX. First, we design three sentiment masking strategies, including SWM
(e.g., “cheerful”, “good”), EM (e.g., “:)”), and GWM (e.g., “food”). Then, we propose four sentiment-aware
prediction objectives from token level and sentence level.

• Emoticons. Emoticons are usually used by users in texts to express their emotion (Zhao et al., 2012).
Each emoticon is made up of typographical symbols (e.g., “)”, “(”, “:”, “D”, “-”) and denotes facial
expressions. It can be read either sideways (e.g., a sad face “:-(”) or normally (e.g.,a happy face
“(ˆ ˆ)”)(Hogenboom et al., 2013). We extract the emoticons via regular expression and keep the top-
100 emoticons in corpus (Table 1). If the words are matched by regular expression, they are labeled as
“E”, otherwise “0”. 3

• Rating. In addition to the above token-level sentiment knowledge, reviews contain sentence-level
rating scores, which represent the overall sentiment polarities. Rating scores contain 5 level: very
negative, negative, neutral, positive, and very positive. The scores’ distribution is unbalanced, and we
perform average sampling on the original data. Notably, labels of ratings are relatively difficult to be
obtained than sentiment words and emoticons since only reviews data contain ratings. Therefore we
study the ablation test in Section 5.3, which demonstrate that our model still performs better than the
state-of-the-art approach without ratings.

To make full use of this rich sentiment knowledge for cross-domain sentiment analysis, we design
several pre-training objectives to enhance the model with domain-invariant sentiment knowledge.

3 SENTIX

SENTIX is a sentiment-aware pre-training model for cross-domain sentiment analysis. It learns domain-
invariant features from the above domain-invariant sentiment knowledge, including sentiment lexicons,
emoticons, and ratings. The framework contains sentiment masking and pre-training objectives, as shown
in Figure 2. Sentiment masking (Section 3.1) recognizes the sentiment information of an input sequence
from sentiment knowledge. Pre-training objectives require encoder not only reconstruct the masked
sentiment tokens, but also distinguish the word sentiment polarity, emoticon and rating (Section 3.2).

Formally, given a sentence x “ tx1, x2, ..., x|x|u, we first obtain a corrupted sentence x̂ “
tx̂1, x̂2, ..., x̂|x̂|u (x̂ P X̂ , where X̂ is the corrupted corpus.) via sentiment masking. The sentiment-
aware pre-training tasks are proposed to predict word xi, sentiment si, emoticon ei of in token level
and rating r in sentence level. Here si P tP,N, 0u represents the sentiment polarity (positive, negative,
others) of word xi, ei P tE, 0u indicates whether word xi is an emoticon, and r P t1, 2, 3, 4, 5u is the
rating of x.

3Emoticons do not occur in the vocabulary of BERT, thus we use unused tokens (e.g., [unused1], [unused2]) to represent
them.
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3.1 Sentiment Masking

Sentiment masking aims to enhance the sentiment information at the token level. Previous pre-trained
models adopt masked language modeling (MLM) to learn semantic information. Some input tokens
are randomly masked, and the goal is to predict these masked tokens. In addition to this general word
masking, we propose sentiment word masking and emoticon masking for learning sentiment knowledge
through recovering.

• Sentiment Word Masking (SWM). To enrich the sentiment information, we mask the sentiment words
with 30% rate as these words are important for sentiment analysis4.

• Emoticon Masking (EM). Since the number of emoticons in one sentence is relatively small and delet-
ing emoticons will not influence the semantic information of the sentence, we mask 50% emoticons
for each sentence.

• General Word Masking (GWM). If we only focus on the sentiment words and emoticons, SENTIX
may lose the general semantic information of the other words. Thus, following the original BERT, we
use [MASK] to replace the general word in sentence with 15% rate to learn the semantic information.

3.2 Pre-training Objectives

Sentiment masking produces corrupted sentences x̂ where part of the sentiment words, emoticons and
general words are substituted with masked tokens. Three token-level and one sentence-level prediction
objectives are designed to learn the domain-invariant sentiment knowledge from the pre-training phase.

Sentiment-aware Word Prediction (SWP) Based on our sentiment masking strategies, the corrupted
tokens that contain extra sentiment words and emoticons are obtained to capture the sentiment informa-
tion. The corrupted sentence x̂ is input to transformer encoder to obtain each word representations hi
and sentence representation hrCLSs. Then a Softmax layer is used to compute each word’s probability
P pxi|x̂iq “ SoftmaxpWw ¨ hi ` bwq. The loss function Lw is the cross-entropy between the predicted
probability and the true word label.

Lw “ ´
1

|X̂ |

ÿ

x̂PX̂

1

|x̂|

|x̂|
ÿ

i“1

logpP pxi|x̂iqq

Word Sentiment Prediction (WSP) According to the sentiment knowledge, we label the word’s sen-
timent into positive, negative and others. Thus, we design WSP for learning the sentiment knowledge
of the tokens. We aim to infer the sentiment polarity si of word xi according to hi, P psi|x̂iq “

SoftmaxpWs ¨ hi ` bsq. The cross-entropy loss Ls “ ´ 1
|X̂ |

ř

x̂PX̂
1
|x̂|

ř|x̂|
i“1 logpP psi|x̂iqq is used here.

Emoticon Prediction (EP) To further capture the token-level sentiment knowledge, we propose to
predict the emoticon label ei of word xi, P pei|x̂iq “ SoftmaxpWe ¨ hi ` beq. The loss Le “

´ 1
|X̂ |

ř

x̂PX̂
1
|x̂|

ř|x̂|
i“1 logpP pei|x̂iqq is also computed using cross-entropy function.

Rating Prediction (RP) Above tasks focus on learning the token-level sentiment knowledge. Ratings
represent the overall sentiment score of the reviews in sentence level. Inferring the rating will bring in
the sentence-level sentiment knowledge. Similar to BERT, we use the final state hrCLSs as the sentence
representation. The rating is predicted by P pr|x̂q “ SoftmaxpWr ¨hrCLSs`brq and the loss is calculated
based on the predicted rating distribution,

Lr “ ´
1

|X̂ |

ÿ

x̂PX̂

logpP pr|x̂qq. (1)

4We obtain the best hyperparameters of sentiment masking by pre-training SENTIX on 20% of our pre-training dataset.
More detailed analysis of these hyperparameters will be explored in future work.
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# Emoticon Count # Emoticon Count # Emoticon Count # Emoticon Count
1 :) 1,915,687 6 ): 160,970 11 :/ 67,615 16 (: 40,062
2 :( 438,339 7 :D 113,440 12 =) 66,156 17 :P 31,573
3 :-) 308,345 8 (8 86,546 13 :-( 64,391 18 ;D 15,718
4 ;) 259,724 9 <3 78,492 14 8: 53,073 19 :o) 12,952
5 ); 178,795 10 ;-) 74,247 15 8) 46,124 20 =( 11,917

Table 1: Statistics information of top-20 emoticons.

3.3 Joint Training
Finally, we jointly optimize the token-level objectiveLT and the sentence-level objectiveLS . The overall
loss is L “ LT ` LS , where LT “ Lw ` Ls ` Le and LS “ Lr.

4 Experimental Setup

4.1 Datasets
Pre-training The pre-training phase is conducted on two large-scale datasets: Amazon review dataset
(Ni et al., 2019) and Yelp 2020 challenge dataset5. Amazon dataset contains 233 million reviews within
29 domains (Ni et al., 2019). The total number of yelp reviews is about 8 million. We preprocess the text
via NLTK6 and transfer all the letters into lower. We filter the text that contains less than 50 tokens or
more than 512 tokens and sample the rating data in dealing with class-imbalance problem. The statistics
information of top-20 emoticons is shown in Table 1.

Sentiment Analysis To verify the effectiveness of SENTIX, We evaluate on the widely used cross-
domain sentiment dataset (Blitzer et al., 2007), containing four domains: Books (B), DVD (D), Elec-
tronic (E), and Kitchen & Housewares (K). Following the setting of previous works (Ziser and Reichart,
2018; Qu et al., 2019), we test on 12 cross-domain tasks. The model is trained on the source domain
and tested on the target domains. As before, we split 200 samples from 2000 samples in source domain
as a development set to find the best hyperparameters. Besides, we examine the model on four popu-
lar sentient classification datasets: SST-2-Root (Socher et al., 2013), SST-5-Root (Socher et al., 2013),
IMDB (Maas et al., 2011) and Yelp (Zhang et al., 2015), and three aspect-based sentiment classification
datasets: Restaurant14 (Pontiki et al., 2016) and Laptop14 (Pontiki et al., 2016), and Twitter dataset
(Dong et al., 2014).

4.2 Baselines
We compare our model with the following strong baselines for cross-domain sentiment analysis, includ-
ing DANN (Ganin et al., 2016), PBLM (Ziser and Reichart, 2018), HATN (Li et al., 2018), ACAN (Qu
et al., 2019), IATN (Zhang et al., 2019a) and BERT-DAAT (Du et al., 2020). BERT-DAAT is regarded
as the state-of-the-art model, which uses BERT for cross-domain sentiment analysis with adversarial
training. We adopt the results of these baselines reported in (Du et al., 2020). For in-domain sentiment
analysis, we compare our model with SentiLR-B (Ke et al., 2019), which is one of the state-of-the-art
models based on BERT.

BERT is extensively compared in our experiments. To exclude the impact of the pre-training dataset,
we also compare SENTIX with BERT˚, which pre-trains on the same dataset with standard MLM task.
Moreover, to verify that SENTIX learns the sentiment knowledge in pre-training phase, we conduct our
experiments with the fixed parameters of pre-trained models (marked with “Fix”). In other words, we
adopt pre-trained models as feature extractors and their parameters are not updated in fine-tuning phase.

4.3 Settings
Pre-training For pre-training phase, we use BERT as the base model and train SENTIX for 3 epochs
over all the reviews data. The batch size is 256. Adam is adopted and the learning rate is set to 2e-5.

5https://www.yelp.com/dataset
6https://www.nltk.org/
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Sentiment Classification Aspect-based Sentiment Classification
SST-2-Root SST-5-Root IMDB Yelp Restaurant14 Laptop14 Twitter

BERT 90.94 50.92 90.36 95.68 83.18 78.06 73.12
BERTFix 54.15 26.15 53.34 68.88 65.54 55.80 51.30
BERT˚ 90.01 51.30 90.55 95.82 84.27 78.25 73.39
BERT˚

Fix 82.98 40.36 85.03 91.68 76.25 70.10 55.85
BERTlarge 91.47 54.80 93.53 96.72 84.20 78.53 73.12
SentiLR-B (Ke et al., 2019) N/A 55.46 94.50 98.03 87.29 79.00 N/A
SENTIX 92.26 54.34 92.92 97.11 86.07 79.15 74.13
SENTIXFix 88.30 47.73 91.90 96.11 78.21 71.32 59.83
SENTIXlarge 93.30 55.57 94.78 97.83 87.32 80.56 73.99

Table 2: Results of in-domain sentiment analysis tasks.

Sentiment Analysis Similar to BERT (Devlin et al., 2019), we adopt the same settings for the down-
stream tasks. Specifically, we input sequence trCLSs, w1, ..., wn, rSEPsu into pre-trained model. The
last state of rCLSs is used as the sequence representation for classification. For aspect-based sentiment
analysis, the text and aspect are concatenated as input. We search for the best random seed and learning
rate (among 5e-5, 4e-5, 3e-5, and 2e-5) for BERT since it is not stable. While, SENTIX is much more
stable and we run it with fixed seed and learning rate (2e-5). We tune SENTIX on downstream tasks with
15 epochs and keep the best model on development. Accuracy is adopted as metric for all these tasks.

5 Results and Analysis

In this section, we conduct a series of experiments to validate the performance of SENTIX. First, we test
our model on in-domain sentiment analysis tasks (Section 5.1) to prove that SENTIX performs well for
sentiment analysis. Second, to verify the effectiveness of SENTIX, we conduct extensive experiments on
cross-domain sentiment analysis (Section 5.2). Third, we also perform an ablation test to investigate the
effectiveness of each component (Section 5.3). Forth, we explore the influence of the number of training
samples (Section 5.4) and visualize the feature representations of SENTIX (Section 5.5). Finally, we
investigate the time complexity, space complexity, and convergence analysis of SENTIX (Section 5.6).

5.1 In-Domain Sentiment Analysis

We test SENTIX on two in-domain sentiment analysis tasks (sentiment classification and aspect-based
sentiment classification) to verify the effectiveness of SENTIX (Table 2). We observe that: 1) SENTIX
performs better than the state-of-the-art model SentiLR-B in most cases, which is also based on pre-
trained BERT. For Yelp, our model is not as good as (Ke et al., 2019) since it is pre-trained on the yelp
review data directly. Different from (Ke et al., 2019), we pre-train our model on 30 domain datasets
and the part-of-speech information is not used in our model; 2) Compared with BERT-based baselines,
SENTIX obtains a significant improvement. In particular, SENTIX (SENTIXlarge) performs much better
than BERT (BERTlarge) and BERT˚ over all seven datasets. Our pre-training objectives are effective to
learn the sentiment knowledge from pre-training data; 3) To answer how much sentiment knowledge is
learned from the pre-training, we fix the parameters of SENTIX, and the results show that SENTIXFix

learns the sentiment information from large-scale dataset well, while BERTFix performs only a little
better than the random baseline does.

5.2 Cross-Domain Sentiment Analysis

Apart from the in-domain tasks, we conduct cross-domain sentiment analysis experiments as well. SEN-
TIX is tuned on source domain and tested on the target domain. From Table 3, we obtain the following
observations:

• Compared with other works, SENTIX and SENTIXFix achieve the best performance. SENTIXFix

shows superior performance across all the 12 cross-domain tasks, and improves 2.56 absolute points
on average over the previous the-state-of-art method (BERT-DAAT). It demonstrates that SENTIX has
learned the domain-invariant knowledge and transferred the sentiment knowledge from the source to
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Source Ñ Target BÑD BÑE BÑK DÑB DÑE DÑK EÑB EÑD EÑK KÑB KÑD KÑE Avg
DANN (Ganin et al., 2016) 82.30 77.60 76.10 81.70 79.70 77.35 78.55 79.70 83.95 79.25 80.45 86.65 80.29
PBLM (Ziser and Reichart, 2018) 84.20 77.60 82.50 82.50 79.60 83.20 71.40 75.00 87.80 74.20 79.80 87.10 80.40
HATN (Li et al., 2018) 86.10 85.70 85.20 86.30 85.60 86.20 81.00 84.00 87.90 83.30 84.50 87.00 85.10
ACAN (Qu et al., 2019) 83.45 81.20 83.05 82.35 82.80 78.60 79.75 81.75 83.35 80.80 82.10 86.60 82.15
IATN (Zhang et al., 2019a) 86.80 86.50 85.90 87.00 86.90 85.80 81.80 84.10 88.70 84.70 84.10 87.60 85.90
BERT 86.75 82.80 86.20 81.55 80.60 83.00 81.85 83.85 90.80 82.10 82.05 88.35 84.13
BERTFix 55.40 56.55 54.05 55.10 57.25 53.75 55.50 56.00 55.55 52.30 52.75 54.15 54.86
BERT˚ 86.70 90.35 91.10 88.45 89.90 91.90 86.25 86.55 92.60 84.50 86.00 90.15 88.70
BERT˚

Fix 83.75 80.95 87.25 82.85 87.00 89.05 82.35 79.30 90.45 84.60 85.00 89.00 85.96
BERT-DAAT (Du et al., 2020) 89.70 89.57 90.75 90.86 89.30 87.53 88.91 90.13 93.18 87.98 88.81 91.72 90.12
SENTIX 91.15 92.50 95.70 90.85 92.15 94.95 88.10 89.86 95.45 87.00 88.05 91.85 91.47
SENTIXFix 91.30 93.25 96.20 91.15 93.55 96.00 90.40 91.20 96.20 89.55 89.85 93.55 92.68

Table 3: Experimental results of cross-domain sentiment classification. There are four domains, B:
Books, D: DVD, E: Electronic, K: Kitchen & housewares. Note that we remove these four domains from
pre-training data to verify the SENTIX’s effectiveness of domain adaptation.

the target domain. In particular, sentiment words, emoticons and ratings from reviews are transferable
signals across all domains.

• The performance of the BERT-based models is listed in the second group. BERTFix only achieves
54.86% accuracy on average, which is consistent with in-domain experiments. Compared with
BERT˚, which is also pre-trained on the review dataset, SENTIX improves 2.8 absolute points, and we
attribute it to the proposed sentiment masking and sentiment-aware pre-training objectives.

• SENTIXFix performs better than SENTIX (1.21 absolute improvement on average). SENTIXFix

adopts the pre-trained model as feature extractor and does not update its parameters during fine-tuning,
while SENTIX fine-tunes the parameters. We speculate that during fine-tuning, SENTIX learns too
much domain-specific sentiment knowledge in the source domain, leading to degraded performance
on the target domain. Overall, SENTIX effectively learns domain-invariant sentiment knowledge from
large-scale unlabeled data and it serves as a decent sentiment feature extractor.

5.3 Ablation Study

We conduct ablation study to investigate the influence of different components from two perspectives:
we remove -Sentiment, -Emoticon, and -Rating respectively to evaluate the impact of each sentiment-
related pre-training task; and we remove -Token and -Sentence respectively to compare the different
granularity. -Token indicates that we remove sentiment words and emoticons in the pre-training phase;
and -Sentence contains only the -Rating, which excludes RP.

Table 4 lists the results and we observe that: First, each sentiment knowledge (sentiment lexicon,
emoticon, and rating) improves the performance of sentiment analysis. Second, without rating prediction
(-Rating), our model still performs better than the state-of-the-art model (BERT-DAAT). Third, since
cross-domain sentiment analysis focuses on sentence-level sentiment, SENTIXFix without sentence level
objectives (-Rating) does not perform well, while SENTIX can still learn the sentence-level sentiment
information from token level objectives through fine-tuning.

5.4 Influence of Sample Numbers

To study the learning curve in source domain, we test the performance of SENTIX, SENTIXFix, BERT
and BERTFix on target domain with different rates of training samples (Figure 3). First, we find that
our model can be trained with only 1% samples (18 samples), while BERT does not work well with such
limited data size. Furthermore, SENTIX with 1% samples even performs better than BERT with 90%
samples. All these observations denote that SENTIX can reduce the training sample number significantly.
Second, SENTIXFix obtains better results than SENTIX, while BERTFix has a poor performance. This
indicates that the representation of SENTIX contains much more sentiment knowledge than the standard
BERT does.
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SWM WSP EM EP RP B Ñ D B Ñ E B Ñ K D Ñ E D Ñ K E Ñ K
SOTA (BERT-DAAT) 89.70 89.57 90.75 89.30 87.53 93.18
SENTIX � � � � � 91.15 92.50 95.70 92.15 94.95 95.45
-Sentiment � � � 89.97 91.65 94.15 91.25 93.20 94.75
-Emoticon � � � 90.37 92.01 95.05 91.33 94.05 94.67
-Token � 89.15 90.60 93.35 90.25 92.25 93.50
-Rating / -Sentence � � � � 90.16 91.74 95.11 91.69 94.22 94.80
SENTIXFix � � � � � 91.30 93.25 96.20 93.55 96.00 96.20
-Sentiment � � � 90.65 91.90 95.30 92.15 95.25 95.30
-Emoticon � � � 90.44 92.46 94.89 92.83 94.96 95.46
-Token � 89.85 91.00 93.95 92.10 94.65 94.35
-Rating / -Sentence � � � � 88.30 91.05 92.70 90.05 93.03 93.23

Table 4: Ablation study on cross-domain sentiment analysis. Value marked with underline indicates the
worst performance in the group.

(a) (b) (c)

Figure 3: The influence of sample number. We explore the influence of sample number with different
rate of source domain. For the limited space, we only show the results of B Ñ E, D Ñ B, and E Ñ D.

5.5 Visualization of Representation

To understand why our SENTIX work, we visualize the sentence representations of BERT and SENTIX
for B Ñ E task (Figure 4). In other words, the representations of source data points (books) and target
data points (electronic) with positive and negative sentiment labels are provided. In particular, we convert
the 768-dimensional features into two-dimension via t-SNE. From these figures, we obtain the following
observations. First, we find that the sentences with different sentiment polarities are clearly separated in
the source domain for BERT. However, some data points are mixed in the target domain. This indicates
that fine-tuning the BERT overfits in the source domain. Besides, the representations of BERTFix can
hardly split the positive samples from the negative ones. Second, SENTIX performs well on both of
source and target domains, even it overfits in the source domain a little. The samples can be easily
separated on both domains for SENTIXFix, though the difference between positive and negative samples
is not as significant as SENTIX in the source domain. These demonstrate that SENTIX has learned rich
sentiment knowledge via pre-training tasks and avoided overfitting to a large extent.

5.6 Complexity and Convergence Analysis

In this section, we investigate the time complexity, space complexity and convergence of SENTIX on B
Ñ E task (Table 5). In particular, we report the time cost for each epoch on P100 with batch size 16
and the trainable parameters in the training phase. Further, we list the accuracy on the target domain for
the first five epochs to verify the convergence. We observe that SENTIXFix obtains better results with
BERT, and SENTIXFix is three times as fast as BERT. Additionally, SENTIXFix only needs to update the
classifier’s parameters (2k), while the trainable parameters of BERT are much larger (133M). Moreover,
our SENTIX and SENTIXFix converge significantly faster than BERT and achieves more than 90% in the
first epoch in terms of accuracy. SENTIX converges with only one epoch and overfits the source domain
with more epoches, while SENTIXFix does not overfit.
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(a) BERT (b) BERTFix

(c) SENTIX (d) SENTIXFix

Figure 4: Visualization of sentence representation obtained from BERT and SENTIX. We use t-SNE to
transfer 768-dimensional feature space into two-dimensional space for B Ñ E task.

Time complexity Space complexity Convergence (Accuracy)
Time (Speedup) Trainable Parameters Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

BERT 46s (1x) 133M 52.20 73.85 84.05 85.45 86.55
BERTFix 15s (3x) 2K 50.65 50.00 52.45 50.80 51.10
SENTIX 46s (1x) 133M 92.60 92.30 92.05 91.10 90.85
SENTIXFix 15s (3x) 2K 90.55 91.45 92.25 92.75 93.05

Table 5: The results of complexity and convergence. We list the costed time of each epoch and space
complexity of trainable parameters in B Ñ E task with the same batchsize.

6 Related Work

Cross-domain Sentiment Analysis Due to the heavy cost of obtaining large quantities of labeled data
for each domain, many approaches have been proposed for cross-domain sentiment analysis (Blitzer et
al., 2007; Yu and Jiang, 2016; Li et al., 2013; Zhang et al., 2019a; Peng et al., 2018). Most of the previous
works focus on capturing the pivots that are useful for both source domain and target domain (Ziser and
Reichart, 2018; Li et al., 2018). Domain adaptation adversarial training (Ganin et al., 2016) is widely-
used to learn the domain-common sentiment knowledge (Li et al., 2017; Qu et al., 2019). Recently, Du et
al. (2020) integrated BERT into cross-domain sentiment analysis tasks to learn the domain-shared feature
representation. However, most of the existing work focuses on learning the domain-shared representation
in training or fine-tuning, how to learn domain-invariant sentiment knowledge from the pre-training phase
has not been explored.

Pre-trained Model Existing studies (Peters et al., 2018; Devlin et al., 2019) have proved that pre-
training on large-scale unlabelled corpus obtains state-of-the-art performances in the field of natural
language processing (Qiu et al., 2020). On the one hand, many studies applied pre-trained models to
downstream tasks via fine-tuning (Devlin et al., 2019; Dodge et al., 2020; Sun et al., 2019b; Xu et
al., 2019). Devlin et al. (2019) fine-tuned the BERT model on many downstream tasks, such as name
entity recognition and sentiment analysis. Sun et al. (2019a) converted aspect-based sentiment analysis
task into a sentence pair classification task to better utilize the powerful representation of BERT. On
the other hand, some work proposed to add external knowledge into pre-training BERT to enhance the
representations (Zhang et al., 2020). LIBERT (Lauscher et al., 2019) integrated linguistic knowledge
through an additional linguistic constraint task. ERINE (Zhang et al., 2019b) and KnowBERT (Peters
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et al., 2019) integrated entity representation into BERT. Alternatively, Levine et at. (2019) introduced a
SenseBERT to improve lexical understanding by predicting tokens’ supersenses in WordNet. Tian et al.
(2020) and Ke et al. (2019) integrated external knowledge to learn sentiment information. They focused
on improving the performance with fine-tuning on downstream sentiment analysis tasks by training on a
relatively small or one domain dataset. Different from the existing studies, we design several pre-training
objectives via rich domain-invariant sentiment knowledge in large-scale multi-domain unlabeled data for
cross-domain sentiment analysis.

7 Conclusions

In this paper, we pre-train our SENTIX model to induce a general low dimensional representation based
on domain-invariant sentiment knowledge for cross-domain sentiment analysis. In particular, we design
several pre-training tasks to learn the sentiment knowledge from semi-supervised labels (such as senti-
ment words, emoticons, and ratings) based on sentiment masking. SENTIX obtains the state-of-the-art
performance on 12 cross-domain sentiment analysis tasks. The visualization of the feature representa-
tion indicates that SENTIX can reduce overfitting in the source domain. The experimental results also
show that SENTIX requires much less labeled data, training time and trainable parameters to obtain the
equivalent performances of the standard BERT.

In the future, we are interested in exploiting more diverse pre-training datasets (e.g., twitter) and more
kinds of sentiment knowledge. We also think that more self-supervised objectives could be investigated
for the cross-domain sentiment analysis tasks.
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