
Proceedings of the 28th International Conference on Computational Linguistics, pages 5569–5578
Barcelona, Spain (Online), December 8-13, 2020

5569

Automatically Identifying Words That Can Serve as Labels for Few-Shot
Text Classification

Timo Schick Helmut Schmid Hinrich Schütze

Center for Information and Language Processing, LMU Munich, Germany

schickt@cis.lmu.de

Abstract

A recent approach for few-shot text classification is to convert textual inputs to cloze questions
that contain some form of task description, process them with a pretrained language model and
map the predicted words to labels. Manually defining this mapping between words and labels re-
quires both domain expertise and an understanding of the language model’s abilities. To mitigate
this issue, we devise an approach that automatically finds such a mapping given small amounts
of training data. For a number of tasks, the mapping found by our approach performs almost as
well as hand-crafted label-to-word mappings.1

1 Introduction

Pretraining language models on large corpora has led to improvements on a wide range of NLP tasks
(Radford et al., 2018; Devlin et al., 2019; Liu et al., 2019, inter alia), but learning to solve tasks from
only a few examples remains a challenging problem. As small datasets are common for many real-
world applications of NLP, solving this challenge is crucial to enable broad applicability. A promising
direction for many tasks is to reformulate them (e.g., by appending an instruction such as “translate
into French”) so that they can directly be solved by a pretrained language model (Radford et al., 2019;
Schick and Schütze, 2020a; Brown et al., 2020). The key idea of PET (Schick and Schütze, 2020a), one
such approach aimed at text classification, is to rephrase each input as a cloze question for which the
language model’s prediction can somehow be mapped to a label; an example is illustrated in Figure 1.
While PET achieves remarkable results with little or no labeled training data, manually defining the
required mapping between a language model’s predictions and labels is difficult as it requires both task-
specific knowledge and an understanding of the language model’s inner workings to identify words that
it understands sufficiently well.

In this work, we show how this mapping can be obtained automatically, removing the need for expert
knowledge: We introduce PET with Automatic Labels (PETAL), a simple approach for identifying words
that can serve as proxies for labels given small amounts of training data. At its core, our approach breaks
the intractable problem of finding the mapping that maximizes the likelihood of the training data into
several manageable subproblems. Integrating our approach into PET significantly outperforms regular
supervised training and almost matches the performance of PET with a manually defined mapping.

2 Related Work

Reformulating problems as language modeling tasks has been explored in fully unsupervised settings
(Radford et al., 2019; Puri and Catanzaro, 2019; Davison et al., 2019), in few-shot scenarios with
limited amounts of training data (Opitz, 2019; Shwartz et al., 2020; Brown et al., 2020), and even in
high-resource settings (Raffel et al., 2019). The same idea is also commonly used for probing the knowl-
edge contained within pretrained language models (Petroni et al., 2019; Talmor et al., 2019; Schick and
Schütze, 2020b; Ettinger, 2020, inter alia).

1Our implementation is publicly available at https://github.com/timoschick/pet.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

5570

P (x)

American Duo Wins Opening Beach Volleyball Match
x

News:[MASK] 2

1

3

y

World

Business

Sports

v(y)

qp(y | x)

Figure 1: Exemplary application of a pattern-verbalizer pair p = (P, v): An input x is converted into a
cloze question by applying P . The probability qp(y | x) of each label y is derived from the probability
of its verbalization v(y) being a plausible choice for the masked position.

Our method is a direct extension of PET (Schick and Schütze, 2020a) and is similar in spirit to au-
tomatic verbalizer search (AVS) introduced therein. AVS is another method for automatically finding
a mapping from labels to words that works as follows: First, the mapping is initialized by assigning a
random word to each label and then, the mapping is improved over multiple iterations by successively
replacing words with better alternatives given the current mapping in a greedy fashion. In contrast, our
approach offers a closed-form solution that is conceptually simpler and faster, requires fewer hyperpa-
rameters – which can be crucial in a data-scarce scenario – and performs much better, especially for
difficult tasks.

For PET, expert knowledge is mostly encoded in the mapping from a language model’s prediction to
labels, which is why we focus on automating this part. The complementary problem of automatically
transforming inputs before processing them with a language model has been studied by Jiang et al.
(2019). This is also closely related to approaches for extracting patterns in relation extraction (Brin,
1999; Agichtein and Gravano, 2000; Batista et al., 2015; Bouraoui et al., 2020).

3 Pattern-Exploiting Training

We review Pattern-Exploiting Training (PET) as proposed by Schick and Schütze (2020a). Let M be a
pretrained masked language model (MLM), T its vocabulary and [MASK] ∈ T the mask token. We
consider the task of mapping textual inputs x ∈ X to some label y ∈ Y where we assume w.l.o.g. that
Y = {1, . . . , k} for some k ∈ N. In addition to training data T = {(x1, y1), . . . , (xn, yn)}, PET requires
a set of pattern-verbalizer pairs (PVPs). As exemplified in Figure 1, each PVP p = (P, v) consists of

• a pattern P that is used to convert inputs to cloze questions. Formally, P : X → T ∗ is defined as a
function that maps each input to a sequence of tokens containing exactly one [MASK] token;

• a verbalizer v : Y → T that maps each label to a single token representing its meaning. For PET

to work, the verbalizer must be chosen so that for each input x ∈ X , v(y) is a suitable replacement
for the mask token in P (x) if and only if y is the correct label for x. We call v(y) the verbalization
of y and abbreviate it as vy.

Based on this intuition, Schick and Schütze (2020a) define the conditional probability distribution qp of
Y given X as

qp(y | x) =
expM(vy | P (x))∑k
i=1 expM(vi | P (x))

(1)

where M(t | P (x)) denotes the raw score that M assigns to t at the masked position in P (x); that is, the
probability of y being the correct label for x is derived from the probability of its verbalization vy being
the “correct” token at the masked position in P (x).

PET basically works in three steps:

1. For each PVP p, a separate MLM is finetuned on T , using the cross entropy between the true labels
yi and qp(yi | xi) as loss function.

2. The resulting ensemble of finetuned MLMs is used to annotate a large set of unlabeled examples
with soft labels.

5571

3. Another pretrained language model with a sequence classification head is finetuned on the resulting
soft-labeled dataset; this model serves as the final classifier for the task considered.

There are several additional details to PET (e.g., an additional language modeling objective to prevent
catastrophic forgetting); we skip these details as they are not relevant to our approach. For a more
thorough explanation, we refer to Schick and Schütze (2020a).

4 Likelihood Ratio Verbalizer Search

Manually defining the verbalizer v : Y → T required for PET can be challenging: It requires knowledge
not only of a task’s labels and how they can best be expressed in natural language using a single word, but
also of the used MLM’s capabilities as it is crucial to choose only such words as verbalizations that are
understood sufficiently well by the language model and correspond to a single token in its vocabulary.
We thus aim to automatically find a good verbalizer v for some pattern P without requiring task- or
model-specific knowledge.

Our method requires sets Vy ⊆ T of verbalization candidates for each label y ∈ Y ; for now, we
simply assume Vy = T for all y. Let V be the set of all verbalizers consistent with these candidate sets,
i.e., v ∈ V if and only if vy ∈ Vy for all y ∈ Y . A natural criterion for measuring the suitability of a
verbalizer v is to compute the likelihood of the training data given v, leading to the maximum likelihood
estimate

v̂ = argmax
v∈V

∏
(x,y)∈T

q(P,v)(y | x) (2)

Unfortunately, iterating over V to find the best verbalizer is intractable: the number of possible verbaliz-
ers |V| = |T |k grows exponentially in the number of labels and for a typical MLM, T contains tens of
thousands of tokens.

To circumvent this problem, we reframe the k-class classification task as k one-vs-rest classifica-
tions: For each y ∈ Y , we search for a verbalization vy that enables M to distinguish examples
with label y from examples with any other label. To this end, we introduce binarized training sets
Ty = {(x1, ỹ1), . . . , (xn, ỹn)} where ỹi = 1 if yi = y and 0 otherwise. For t ∈ T , we define

q(P,t)(1 | x) =
expM(t | P (x))∑

t′∈T expM(t′ | P (x))
(3)

analogous to Eq. 1 except that we consider all tokens t′ ∈ T for normalization, and q(P,t)(0 | x) =
1− q(P,t)(1 | x). This enables us to formulate (and compute) the maximum likelihood estimate for each
verbalization vy independently as

v̂y = argmax
vy∈Vy

∏
(x,ỹ)∈Ty

q(P,vy)(ỹ | x) (4)

However, this reframing creates a label imbalance: If T is balanced, each Ty contains k − 1 times as
many negative examples as positive ones. To compensate for this, we raise each q(P,vy)(ỹ | x) to the
power of

s(ỹ) =

{
1 if ỹ = 1

ny/(|T | − ny) otherwise
(5)

where ny is the number of examples in T with label y. A similar fix for this imbalance problem was
suggested by Lee et al. (2001) for multi-class classification with support vector machines.

We next reformulate maximizing the likelihood as minimizing the cross entropy between ỹ and
q(P,vy)(ỹ | x), that is, v̂y = argminvy∈Vy LCE(T ; vy) where

LCE(T ; vy) = −
∑

(x,ỹ)∈Ty

s(ỹ) · log q(P,vy)(ỹ | x) (6)

5572

This can easily be derived from Eq. 4 after compensating for the label imbalance as described above.
Unfortunately, there is the following problem with Eq. 6: As the vocabulary T is quite large for most
pretrained MLMs, q(P,vy)(0 | x) will almost always be close to 1 and thus, log q(P,vy)(0 | x) ≈ log 1 = 0.
This means that negative examples contribute almost nothing to this cross entropy loss, so optimizing for
LCE results in verbalizations v̂y that are overall highly likely, but do not necessarily reflect the meaning
of y. We fix this problem by considering not the absolute values of q(P,vi)(ỹ | x), but the likelihood ratio
(LR):

LLR(T ; vy) = −
∑

(x,ỹ)∈Ty

s(ỹ) · log
q(P,vy)(ỹ | x)

q(P,vy)(1− ỹ | x)
(7)

Independently, this LR criterion was recently shown to compare favorably to cross entropy in gradient-
based neural network training for image classification (Yao et al., 2020).

To arrive at LLR, we have made quite a number of modifications to our starting point, the intractable
maximum likelihood estimate. However, the two objectives are in fact quite similar. The key difference
is that Eq. 2 enforces a large distance between M(vy | P (x)) and the maximum score assigned to the
verbalizations of other labels, whereas Eq. 7 enforces a large distance between M(vy | P (x)) and the
average score assigned to the verbalizations of other labels; this is shown in Appendix A.

4.1 Verbalization Candidates

Our above formulation requires sets of verbalization candidates Vy for each y ∈ Y . These candidate sets
can trivially be obtained by setting Vy = T , but to facilitate verbalizer search, we create candidate sets
Vy ⊂ T containing only a small subset of the vocabulary. First, we follow Schick and Schütze (2020a)
and reduce T by removing all tokens that do not correspond to real words or do not contain at least 2
alphabetic characters. From the remaining list, we collect the 10,000 tokens that occur most frequently
in the task’s unlabeled data and denote this filtered vocabulary by Tf .

As our loss formulation in Eq. 7 considers the likelihood ratio, it is indifferent to the overall likelihood
of a token. To make sure that candidates are both syntactically and semantically plausible for a given
pattern, we further restrict the set of candidates by keeping only tokens that maximize the likelihood of
all positive examples: For each label y ∈ Y , we define a candidate set Tf,y that contains the 1000 tokens
t ∈ Tf that maximize LCE(T +

y ; t) where T +
y = {(x, ỹ) ∈ Ty | ỹ = 1}. Naturally, this induces a bias

towards frequent words. As recently shown by Schick and Schütze (2020b), pretrained language models
tend to understand frequent words much better than rare words, so all other things being equal, a frequent
word should be preferred over a rare word as verbalization; that is, this bias towards frequent words is
indeed desirable.

4.2 Multi-Verbalizers

For some tasks, it makes sense to assign multiple verbalizations to some label.2 This applies all the more
if the verbalizations are found automatically, as it may easily occur that the most likely verbalizations
for a given label cover different aspects thereof. We thus introduce the concept of multi-verbalizers, a
generalization of verbalizers to functions v : Y → P(T) where P(T) denotes the power set of T . To
integrate multi-verbalizers into PET, we replace the conditional probability distribution in Eq. 1 with

qp(y | x) =
exp

(
1
|vy |
∑

t∈vy M(t | P (x))
)

∑k
i=1 exp

(
1
|vi|
∑

t∈vi M(t | P (x))
) (8)

That is, we substitute the raw score that M assigns to a label’s verbalization in standard PET with the
average score across all its verbalizations.

2For example, one of the categories in the AG’s News classification dataset (Zhang et al., 2015) is “Science/Tech” which
can best be modeled by using two verbalizations “Science” and “Tech”.

5573

Label CE LR (Vy = T) LR (Vy = Tf,y)

Society the, The, reader Medieval, tradition, Biblical Dictionary, historical, Bible
Science Your, the, The PLoS, biomedical, phylogen scientists, Physics, scientist
Health Your, the, reader Patients, health, Health health, Health, clinical
Education reader, Your, FAQ Libraries, library, bookstore library, teacher, Teachers
Computer reader, the, FAQ toolbar, linux, gcc Linux, hardware, software
Sports reader, Your, the Racing, Motorsport, Sporting sports, Sports, NASCAR
Business reader, Your, the leases, leasing, mortgages estate, property, finance
Entertainment reader, Your, the Movie, fandom, Film Movie, casting, DVD
Relationship the, reader, The couples, Marriage, girlfriends couples, Marriage, psychologist
Politics the, The, Your DOJ, Constitutional, ACLU Constitutional, ACLU, Federal

Table 1: Most likely verbalizations for the Yahoo Questions dataset obtained using CE and LR with
different candidate sets

Label AVS (Vy = Tf) LR (Vy = Tf,y)

Contradiction insists, Kings, insist, contrary, disagree,
Nor, Boris, maintains, Oliver, asserts

but, yet, whereas, Yet, except, unless,
But, reason, unfortunately, However

Neutral sales, Detroit, revenue, earliest, roads,
artwork, designs, revenues, walls, Square

she, he, both, god, meaning, ok, Abdul,
Georgia, ad, significant

Entailment prompted, contacted, randomly, monitor,
database, Register, requested,
investigating, investigate, printer

Register, Computer, Yes, Yeah, Alan,
Sure, Clear, Any, Through, Howard

Table 2: Most likely verbalizations for the MNLI dataset obtained using AVS and LR. Suitable verbal-
izations are underlined.

5 Experiments

For our experiments with PETAL, we use the PET implementation of Schick and Schütze (2020a) and
follow their experimental setup. In particular, we use RoBERTa-large (Liu et al., 2019) as underlying
MLM, we use the same set of hyperparameters for PET, the same evaluation tasks with the same patterns,
and the same strategy for downsampling training sets. We deviate from Schick and Schütze (2020a) in
that we convert all inputs to single sequences (i.e., we remove all [SEP] tokens) as we found this to
slightly improve the verbalizers found by our approach in preliminary experiments. To ensure that our
results are comparable with previous work and improvements in PET’s performance are not simply due
to this modification of patterns, we do so only for finding verbalizers and not for actual PET training and
inference.

We first analyze the verbalizers found by our method qualitatively. To this end, we consider Yahoo
Questions (Zhang et al., 2015), a dataset consisting of questions and answers that have to be categorized
into one of ten possible categories such as “Health”, “Sports” and “Politics”. We use the simple pattern

P (x) = [MASK] Question: x

and 50 training examples, meaning that we provide just five examples per label. Table 1 shows the
most likely verbalizations obtained for all labels using LCE and LLR; for the latter, we consider both
an unrestricted set of verbalization candidates and the candidate sets defined in Section 4. As can be
seen, LCE does not lead to useful verbalizers for the reason outlined in Section 4: it only identifies
words that are overall highly likely substitutes for the [MASK] in P (x). While LLR with Vy = T
finds reasonable verbalizers, some verbalizations are rather uncommon tokens (“PLoS”, “phylogen”,

5574

Method Yelp AG’s Yahoo MNLI Avg.

supervised 44.8 82.1 52.5 45.6 56.3
PET + random 49.3 83.4 47.0 49.2 57.2
PET + AVS 55.2 85.0 58.2 52.6 62.8
PETAL (joint) 56.5 84.9 61.1 60.9 65.9
PETAL (sep) 55.9 84.2 62.9 62.4 66.4
PET + manual 60.0 86.3 66.2 63.9 69.1

Table 3: Accuracy of six methods for |T | = 50 training examples. Avg: Average across all tasks. Un-
derlined: best overall result, bold: best result obtained without using additional task-specific knowledge

“gcc”); using more restrained candidate sets (Vy = Tf,y) mitigates this issue and finds words that, in
most instances, correspond well to the task’s actual labels. The shown verbalizations also illustrate the
benefit of using multi-verbalizers. For example, the verbalizations for “Computer” include “hardware”
and “software”; in isolation, none of these terms fully covers this category, but their combination does
cover most of its aspects.

Next, we consider the more challenging MNLI dataset (Williams et al., 2018), a natural language
inference dataset where given two sentences x1 and x2, the task is to decide whether both sentences
contradict each other, one sentence entails the other, or neither. On this dataset, Table 2 compares PETAL

to AVS, the approach of Schick and Schütze (2020a) for automatically finding verbalizers, using the
pattern

P (x1,x2) = x1? [MASK], x2

and 50 labeled training examples. While both approaches clearly fail to find good verbalizations for the
label “Neutral”, using PETAL results in much better verbalizations for the other two labels, with most of
the words identified by AVS being entirely unrelated to the considered labels.

To evaluate our approach quantitatively, we use the Yelp Review Full Star (Yelp) and AG’s News
(AG’s) datasets (Zhang et al., 2015) in addition to Yahoo Questions and MNLI. The task for Yelp is to
guess the number of stars (ranging from 1 to 5) that a customer gave to a restaurant based on their textual
review; for AG’s, one of the four categories “World”, “Business”, “Sports” and “Science/Tech” has to be
assigned to a news article.

Following Schick and Schütze (2020a), we again consider a scenario where we have |T | = 50 labeled
training examples and a set of 10 000 · k unlabeled examples for each task; the unlabeled examples are
only required for PET and not used for finding a verbalizer. For our approach, we consider both a variant
where verbalizers are computed for each pattern separately (sep), and a variant were a single verbalizer
is computed for all patterns as in AVS (joint); for the latter, the likelihood ratio losses for all patterns are
simply added up and minimized jointly. We use a multi-verbalizer v̂ where v̂(y) are the nv = 10 most
likely verbalizations per label and compare PETAL to the following baselines:

• supervised: Regular supervised learning without PET, i.e., we add a regular sequence classification
head on top of the pretrained language model and perform finetuning as in Devlin et al. (2019).

• PET + random: We generate a multi-verbalizer by randomly choosing 10 words per label uniformly
from Tf . We include this baseline to verify that any improvements over supervised learning are not
simply due to PET using additional unlabeled examples and auxiliary objectives, but that the actual
source of improvement is the improved verbalizer.

• PET + AVS: We generate a multi-verbalizer with 10 labels per word using automatic verbalizer
search with its default parameters.

• PET + manual: We consider the manually defined verbalizers of Schick and Schütze (2020a).
This serves as an upper bound of what is achievable by incorporating task- and model-specific
knowledge.

5575

1 3 5 10 25 50 100
50

60

70

80

90

Yelp

AG’s

Yahoo
MNLI

Verbalizations per Label

A
cc

ur
ac

y

Figure 2: Performance of PETAL (sep) on all four tasks as a function of the number of verbalizations per
label (nv)

Results can be seen in Table 3. On average, PET with random verbalizers performs slightly better than
regular supervised learning; we surmise that this is due to PET leveraging additional unlabeled data. Ran-
dom verbalizers perform much worse than AVS which, in turn, is cleary outperformed by our method
for 3 out of 4 tasks, with an especially large margin on MNLI. This holds true for both the joint and
sep variant of PETAL, with the latter performing slightly better on average. Furthermore, especially for
MNLI, our approach almost matches the performance of PET with manually defined mappings while
requiring no task-specific knowledge for finding verbalizers. The large gap between supervised learn-
ing and PETAL is especially surprising given that the patterns – the only other source of task-specific
knowledge in PET – are very generic in nature.

We finally note that our method adds a single hyperparameter to PET: the number of verbalizations
per label nv, which may be difficult to optimize for small training sets. However, as shown in Figure 2,
results on all tasks are relatively stable for a wide range of values ranging from 1 to 100; the best result
across all tasks is obtained for nv = 3.

6 Conclusion

We have devised PETAL, a simple approach that enriches PET with the ability to automatically map
labels to words. Qualitative and quantitative analysis shows that our approach is able to identify words
that are suitable to represent labels with as little as 50 examples and almost matches the performance
of hand-crafted mappings for some tasks. For future work, it would be interesting to see whether the
patterns required by PET can similarly be obtained in an automated fashion.

Acknowledgements

This work was supported by the European Research Council (grant #740516).

References

Eugene Agichtein and Luis Gravano. 2000. Snowball: Extracting relations from large plain-text collections. In
Proceedings of the Fifth ACM Conference on Digital Libraries, DL ’00, page 85–94, New York, NY, USA.
Association for Computing Machinery.

David S. Batista, Bruno Martins, and Mário J. Silva. 2015. Semi-supervised bootstrapping of relationship ex-
tractors with distributional semantics. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 499–504, Lisbon, Portugal, September. Association for Computational Linguistics.

Zied Bouraoui, Jose Camacho-Collados, and Steven Schockaert. 2020. Inducing relational knowledge from
BERT. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence.

5576

Sergey Brin. 1999. Extracting patterns and relations from the world wide web. In Paolo Atzeni, Alberto Mendel-
zon, and Giansalvatore Mecca, editors, The World Wide Web and Databases, pages 172–183, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are
few-shot learners. Computing Research Repository, arXiv:2005.14165.

Joe Davison, Joshua Feldman, and Alexander Rush. 2019. Commonsense knowledge mining from pretrained
models. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1173–1178,
Hong Kong, China, November. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.

Allyson Ettinger. 2020. What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language
models. Transactions of the Association for Computational Linguistics, 8:34–48, Jan.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2019. How can we know what language models
know? Computing Research Repository, arXiv:1911.12543.

Yoonkyung Lee, Yi Lin, and Grace Wahba. 2001. Multicategory support vector machines. Technical report,
Department of Statistics, University of Madison, Wisconsin.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. RoBERTa: A robustly optimized BERT pretraining approach. Computing
Research Repository, arXiv:1907.11692.

Juri Opitz. 2019. Argumentative relation classification as plausibility ranking. In Preliminary proceedings of the
15th Conference on Natural Language Processing (KONVENS 2019): Long Papers, pages 193–202, Erlangen,
Germany. German Society for Computational Linguistics & Language Technology.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander
Miller. 2019. Language models as knowledge bases? Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP).

Raul Puri and Bryan Catanzaro. 2019. Zero-shot text classification with generative language models. Computing
Research Repository, arXiv:1912.10165.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding
by generative pre-training.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models
are unsupervised multitask learners. Technical report.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text transformer.
Computing Research Repository, arXiv:1910.10683.

Timo Schick and Hinrich Schütze. 2020a. Exploiting cloze questions for few shot text classification and natural
language inference. Computing Research Repository, arXiv:2001.07676.

Timo Schick and Hinrich Schütze. 2020b. Rare words: A major problem for contextualized embeddings and how
to fix it by attentive mimicking. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2020. Unsupervised common-
sense question answering with self-talk. Computing Research Repository, arXiv:2004.05483.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. 2019. oLMpics – on what language model
pre-training captures. Computing Research Repository, arXiv:1912.13283.

5577

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
1112–1122. Association for Computational Linguistics.

Hengshuai Yao, Dong-lai Zhu, Bei Jiang, and Peng Yu. 2020. Negative log likelihood ratio loss for deep neural
network classification. In Kohei Arai, Rahul Bhatia, and Supriya Kapoor, editors, Proceedings of the Future
Technologies Conference (FTC) 2019, pages 276–282, Cham. Springer International Publishing.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification.
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 649–657. Curran Associates, Inc.

A Relation of Maximum Likelihood Estimate and One-Vs-Rest Likelihood Ratio

We analyze the impact of all modifications introduced in Section 4: reframing k-class classification as k
one-vs-rest classifications, downsampling negative examples and replacing LCE with LLR. For the sake
of conciseness, we drop the condition on x and P (x) in qp(y | x) and M(y | P (x)), respectively. We
start by reformulating the maximum likelihood estimate in Eq. 2 as

v̂ = argmin
v∈V

−
∑

(x,y)∈T

log q(P,v)(y) (9)

through logarithmization and multiplication by −1. By applying the definition of qp, we obtain

v̂ = argmin
v∈V

−
∑

(x,y)∈T

log

(
eM(vy)∑k
i=1 e

M(vi)

)
(10)

= argmin
v∈V

−
∑

(x,y)∈T

log(eM(vy))− log(
∑
y′∈Y

eM(vy′))

 (11)

= argmin
v∈V

−
∑

(x,y)∈T

M(vy)− log(
∑
y′∈Y

eM(vy′))

 (12)

Finally, we can derive from the tangent line approximation log(a+ b) ≈ log a+ b/a that the left part of
each addend is a soft approximation of maxy′∈Y M(vy′) (also commonly referred to as LogSumExp), so
we can approximate v̂ as

v̂ ≈ argmin
v∈V

−
∑

(x,y)∈T

(
M(vy)−max

y′∈Y
M(vy′)

)
(13)

We now consider the verbalizer obtained using LLR as in Eq. 7, for which we assume that T is a
balanced dataset. That is, for each label y ∈ Y , there are |T |/k examples with label y in T . We
abbreviate the set Y \ {y} of all labels except y as Y\y.

As LLR for each verbalization vy is independent of all verbalizations for other labels, we can simply
write the optimization criterion for v̂ as the sum of likelihood ratio losses for all verbalizations:

v̂ = argmin
v∈V

−
∑
y∈Y

∑
(x,ỹ)∈Ty

s(ỹ) · log
q(P,vy)(ỹ)

q(P,vy)(1− ỹ)
(14)

As can be seen in the definition of Ty, each (x, y) ∈ T contributes to the above sum k times: k− 1 times
as negative example (x, 0) ∈ Ty′ for each y′ 6= y, and once as a positive example (x, 1) ∈ Ty. We can
thus rewrite the above as

v̂ = argmin
v∈V

−
∑

(x,y)∈T

s(1) · log
q(P,vy)(1)

q(P,vy)(0)
+
∑

y′∈Y\y

s(0) · log
q(P,vy′)(0)

q(P,vy′)(1)

 (15)

5578

and again use the fact that q(P,t)(0) ≈ 1 for all t ∈ T as well as the definition of q(P,t) and s to obtain:

v̂ ≈ argmin
v∈V

−
∑

(x,y)∈T

log q(P,vy)(1)−
∑

y′∈Y\y

s(0) · log q(P,vy′)(1)

 (16)

= argmin
v∈V

−
∑

(x,y)∈T

log
eM(vy)∑
t∈T eM(t)

− 1

k − 1

∑
y′∈Y\y

log
eM(vy′)∑
t∈T eM(t)

 (17)

Using log(a/b) = log a−log b and the fact that
∑

t∈T eM(t) is independent of v, we can further simplify:

v̂ ≈ argmin
v∈V

−
∑

(x,y)∈T

log eM(vy) − 1

k − 1

∑
y′∈Y\y

log eM(vy′)

 (18)

= argmin
v∈V

−
∑

(x,y)∈T

M(vy)−
1

k − 1

∑
y′∈Y\y

M(vy′)

 (19)

= argmin
v∈V

−
∑

(x,y)∈T

(
M(vy)− avg

y′∈Y\y

M(vy′)

)
(20)

This concludes our verification of the statement made in Section 4: Eq. 2 enforces a large distance
between M(vy) and the maximum score of other verbalizations, whereas Eq. 7 penalizes their average
score.

