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Abstract

In this paper, we propose a new few-shot text classification method. Compared with supervised
learning methods which require a large corpus of labeled documents, our method aims to make it
possible to classify unlabeled text with few labeled data. To achieve this goal, we take advantage
of advanced pre-trained language model to extract the semantic features of each document. Fur-
thermore, we utilize an edge-labeling graph neural network to implicitly models the intra-cluster
similarity and the inter-cluster dissimilarity of the documents. Finally, we take the results of the
graph neural network as the input of a prototypical network to classify the unlabeled texts. We
verify the effectiveness of our method on a sentiment analysis dataset and a relation classification
dataset and achieve the state-of-the-art performance on both tasks.

1 Introduction

In recent years, deep learning has achieved great success in many fields such as computer vision, speech
recognition and natural language processing. However, to train a deep learning model usually requires a
large scale of manually annotated data, which greatly limits the practicality and scalability of the model.

In the text classification task, the problem of greed for large amounts of labeled data also exists.
Text classification is an important task in natural language processing field. Over the years, many text
classification methods have been proposed, varying from CNN based methods (Kim, 2014; Johnson and
Zhang, 2015; Zhang et al., 2015) to RNN, including LSTM and GRU-based methods (Zhou et al., 2015;
Yang et al., 2016). But all the above supervised learning methods require a large corpus of labeled data,
making these models hindered in practical application.

In recent years, some scholars have contributed to solving the few-shot text classification problem.
Han (2018) proposed a dataset FewRel and tested the performance of several typical few-shot learning
models proposed in recent years on this dataset. Yu (2018) proposed an adaptive metric learning model,
which can automatically determine the best weighted combination of a set of metrics obtained from a
meta-learning process for a newly arrived few-shot text classification task. Gao (2019) proposed a pro-
totypical network model (Snell et al., 2017) based on a hybrid attention mechanism, which has a better
performance for noisy data scenes. Sun (2019) improved prototypical network by adopting hierarchical
attention mechanism, which is applied in feature level, word level and instance level to enhance the ex-
pressive ability of semantic space. Geng (2019) applied the dynamic routing algorithm in meta-learning
and proposed an induction network, which achieves a better generalization ability on different few-shot
text classification tasks.

We believe that previous few-shot text classification methods generally have two flaws. First, all the
methods mentioned above adopt a GloVe word embedding combined with CNN or RNN structure for
text embedding instead of more advanced pre-trained language models proposed in recent years, such
as ELMo (Peters et al., 2018), GPT (Radford et al., 2018) and BERT (Devlin et al., 2018). Second,
these methods focus more on the semantic features of the texts itself, ignoring the potential relationships
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between texts. In this paper we propose Edge-Labeling Graph Neural Network-Based Prototypical Net-
work (EGNN-Proto) to further tackle the few-shot text classification task. EGNN-Proto takes advantage
of the advanced pre-trained language model BERT, and improves the prototypical network (Snell et al.,
2017) by combining an edge-labeling graph neural network (Kim et al., 2019) to better characterize and
utilize the relationship between texts to achieve a better performance on few-shot text classification task.
The main contributions of our work are as follows:

• We propose Edge-Labeling Graph Neural Network-Based Prototypical Network (EGNN-Proto) for
few-shot text classification. To our knowledge, our model is the first to combine a graph neural
network with a prototypical network and the first to utilize an edge-labeling graph neural network
to solve the few-shot text classification problem.

• Our method outperforms the current state-of-the-art models on two few-shot text classification
datasets, i.e. Amazon Review Sentiment Classification (ARSC) and Few-shot Relation classifi-
cation dataset (FewRel).

2 Related Works

Few-shot learning (FSL) aims to learn classifiers for new classes with only a few training examples
per class. Given a support set of labeled instances, the goal is to classify instances from query set.
The seminal work on few-shot learning dates back to the early 2000s (Fei-Fei et al., 2003; Fei-Fei et
al., 2006). More recent work can be divided into two types: similarity-based methods (Vinyals et al.,
2016; Snell et al., 2017; Sung et al., 2018) and optimization-based methods (Ravi and Larochelle, 2016;
Munkhdalai and Yu, 2017). Researchers have also studied FSL in various NLP tasks (Yu et al., 2018; Gu
et al., 2018; Gao et al., 2019; Sun et al., 2019; Geng et al., 2019; Hu et al., 2019).

Graph neural networks (GNN) were first proposed by Gori (2005) and Scarselli (2008). Li (2015)
further extended it with gated recurrent units. Generalized convolution-based propagation rules also
have been directly applied to graphs (Bruna et al., 2013; Henaff et al., 2015; Defferrard et al., 2016),
offering a balance between expressivity and sample complexity. In recent years, A few approaches
(Garcia and Bruna, 2017; Kim et al., 2019; Gidaris and Komodakis, 2019) further explored GNNs for
few-shot learning.

3 Method

3.1 Few-shot Text Classification
In few-shot text classification task, we define the set of labeled samples as support set S and the set
of unlabeled samples as query set Q. Following previous works (Sun et al., 2019; Geng et al., 2019),
we adopt the N -way, k-shot setting, where the support set S contains k labeled samples for each of N
classes, noting that k is rather small in a few-shot learning task. Our goal is to perform meta-learning on
the training set, then extract transferable knowledge that will allow us to deliver better few-shot learning
on the support set S and classify the samples from query set Q as accurately as possible.

3.2 Method Overview
As illustrated in Figure 1, our model consists of three major components, i.e., text embedding compo-
nent, edge-labeling graph neural network component and prototypical network component. Text em-
bedding component is mainly used to extract semantic features from the text and transform the original
text sequences into text embedding. Then we adopt edge-labeling graph neural network to model the
intra-cluster similarities and inter-cluster dissimilarities of the texts, thus we can measure the underlying
relationships between a text sample and another. Finally, we classify the samples from query set using a
prototypical network.

3.3 Text Embedding
In a few-shot text classification task, only a small amount of annotated data can be used to train the
classifier. So we choose to make use of a pre-trained language model to help use better extract the
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Figure 1: An Overview of EGNN-Proto. The example shows the workflow of a 2-way 2-shot few shot
text classification task. Document icons in different colors represent text from different classes, and the
icon formed by dotted lines represents the query text. Circles represent the text embeddings, and their
shapes and colors have the same meaning as icons. The strength of edge feature is represented by the
color in the square, following (Kim et al., 2019).

feature of the text. Here we adopt a transformer encoder from BERT (Devlin et al., 2018). A transformer
encoder stack consists of 12 layers of encoders, each of which consists of a bidirectional self-attention
layer and a fully connected layer. Every token in the input of the stack is first embedded into a learned
d-dimensional embedding, and then transformed progressively every time it traverses one of the BERT
Encoder layers. Theoretically, each word embedding output from each encoder layer contains the feature
of the entire text. Here we adopt the word embedding of the special symbol [CLS], which marks the
beginning of a text, from the penultimate layer as the text embedding of the whole text t, represented as
e = femb(t|θemb), where θemb represents parameters in text embedding component, and are fine-tuned
while training.

3.4 Edge-labeling Graph Neural Network

We introduce the edge-labeling graph neural network, which is initially proposed by Kim (2019) for
few-shot image classification task, to better characterize the potential relationships between texts. Given
the text embedding of all samples of a task, a fully connected graph is initially constructed, where each
node represents each sample and each edge represents relationship between the connected nodes. Node
features, which are initialized by the text embeddings of texts, i.e. e, and edge features, which are
initialized based on whether the connected nodes belong to the same class, are alternately updated till
convergence. Finally, the updated node features ef = fegnn(e|θegnn) are obtained for further processing.

3.5 Prototypical Network

Instead of computing the prediction probability of query nodes directly through edge features and node
features as Kim (2019), we introduce prototypical network (Snell et al., 2017) to classify samples from
a more general perspective. Each sample feature ef is initially transformed through a linear layer to get
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a new feature representation el = flinear(ef |θlinear). Then prototypical network computes a prototype
vector as the representation of each class, which is the mean vector representations of the support samples
from the class. We compare the distances between all prototype vectors and a query vector, then classify
the query sample to the nearest one.

4 Experiments

4.1 Implementation Details

In implementation, we adopt BERT-base as text encoder, thus a sample is represented by a 768-
dimensional vector after text embedding. The episode training strategy that Vinyals (2016) proposed
is adopted in training procedure.

4.2 Datasets

We evaluate our method and compare it with other methods on two few-shot task classification datasets,
i.e. Amazon Review Sentiment Classification (ARSC) and Few-shot Relation classification dataset
(FewRel).

ARSC dataset (Blitzer et al., 2007) consists of English reviews of 23 types of products on Amazon.
Following the experiment setting of Yu (2018), we creat a 12-way 5-shot text classification task on this
dataset.

FewRel (Han et al., 2018) is a large-scale supervised dataset consisting of 70000 instances on 100
relations derived from Wikipedia. In our experiment, we follow the settings of Sun (2019) and evaluate
our method on 5-way 5-shot and 10-way 5-shot settings.

4.3 Results and Analysis

Model Mean Acc
Matching Networks� 65.73

Prototypical Networks� 68.17
Graph Network� 82.61

Relation Networks� 83.07
SNAIL� 82.57

ROBUSTTC-FSL� 83.12
Induction Networks� 85.62
EGNN-Proto (ours) 88.26

Model 5 way 5 shot 10 way 5 shot
Finetune∗ 68.66±0.41 55.04±0.31

kNN∗ 68.77±0.41 55.87±0.31
MetaN∗ 80.57±0.48 69.23±0.52
GNN∗ 81.28±0.62 64.02±0.77

SNAIL∗ 79.40±0.22 68.33±0.25
Proto∗ 89.05±0.09 81.46±0.13

PHATT∗ 90.12±0.04 83.05±0.05
HAPN∗ 91.02±0.11 84.16±0.19

EGNN-Proto (ours) 92.29±0.23 86.09±0.31

Table 1: Classification Accuracy (%) on ARSC (on the left) and FewRel Dataset (on the right). The
results of methods � are reported by Geng (2019) while ∗ reported by Sun (2019).

Experiment results on ARSC and FewRel are presented in Table 1. The proposed EGNN-Proto model
achieves an 88.26 % accuracy on ARSC dataset, outperforming the existing state-of-the-art model, In-
duction Networks, by a notable 2.6 % improvement. And EGNN-Proto also shows a great improvement
of accuracy on FewRel dataset.

5 Conclusion

This work addresses the problem of few-shot text classification. We take advantage of advanced pre-
trained language model BERT to extract the semantic feature of the text. Then we introduce edge-
labeling graph neural network to further model the potential relationships between texts. Finally we
utilize a prototypical network to classify the query text. In the experiments, our method achieves the
state-of-the-art performance on both ARSC and FewRel datasets. For future work, we can consider
generalizing our method to other few-shot NLP problems, and even to non-NLP tasks.
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