
Proceedings of the 28th International Conference on Computational Linguistics, pages 5271–5287
Barcelona, Spain (Online), December 8-13, 2020

5271

Diverse Keyphrase Generation with Neural Unlikelihood Training

Hareesh Bahuleyan† Layla El Asri†

† Borealis AI, Montreal, Canada
layla.elasri@borealisai.com
hareeshbahuleyan@gmail.com

Abstract

In this paper, we study sequence-to-sequence (S2S) keyphrase generation models from the
perspective of diversity. Recent advances in neural natural language generation have made possible
remarkable progress on the task of keyphrase generation, demonstrated through improvements on
quality metrics such as F1-score. However, the importance of diversity in keyphrase generation
has been largely ignored. We first analyze the extent of information redundancy present in the
outputs generated by a baseline model trained using maximum likelihood estimation (MLE). Our
findings show that repetition of keyphrases is a major issue with MLE training. To alleviate this
issue, we adopt neural unlikelihood (UL) objective for training the S2S model. Our version of UL
training operates at (1) the target token level to discourage the generation of repeating tokens; (2)
the copy token level to avoid copying repetitive tokens from the source text. Further, to encourage
better model planning during the decoding process, we incorporate K-step ahead token prediction
objective that computes both MLE and UL losses on future tokens as well. Through extensive
experiments on datasets from three different domains we demonstrate that the proposed approach
attains considerably large diversity gains, while maintaining competitive output quality.1

1 Introduction

Automatic keyphrase generation is the task of generating single or multi-word lexical units that provides
readers with high level information about the key ideas or important topics described in a given source text.
Apart from an information summarization perspective, this task has applications in various downstream
natural language processing tasks such as text classification (Liu et al., 2009), document clustering
(Hammouda et al., 2005) and information retrieval (Nguyen and Kan, 2007a).

Traditionally, keyphrases (KPs) were extracted from source documents by retrieving and ranking a set
of candidate phrases through rule based approaches. With recent advances in neural natural language
generation and availability of larger training corpora, this problem is formulated under a sequence-to-
sequence (S2S) modelling framework (Sutskever et al., 2014). This approach has an advantage that it can
generate new and meaningful keyphrases which may be absent in the source text. The earliest work in
this direction was by Meng et al. (2017), who train a S2S model to generate one keyphrase at a time. At
inference time, they decode with beam sizes as high as 200, to generate a large number of KPs and finally
de-duplicate the outputs. However, this is computationally expensive and wasteful because only < 5% of
such KPs were found to be unique (Yuan et al., 2020).

An alternative approach is to train a S2S model to generate multiple keyphrases in a sequential manner,
where the output KPs are separated by a pre-defined delimiter token. This method has an added benefit that
the model automatically learns to generate a variable number of keyphrases depending on the input, instead
of a user-specified fixed number of keyphrases (top-k) from a large list of candidate outputs. However,
some previous approaches (Yuan et al., 2020) still use exhaustive beam search decoding to over-generate
KPs and then apply post-processing to remove repetitions. Apart from the additional computational
requirements, we argue that this method of avoiding information redundancy is a last-minute solution.

1Code is available at https://github.com/BorealisAI/keyphrase-generation
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://

creativecommons.org/licenses/by/4.0/
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Title semi automated schema integration with sasmint

Abstract the emergence of increasing number of collaborating organizations has made clear the need for supporting
interoperability infrastructures , enabling sharing and exchange of data among organizations . schema
matching and schema integration are the crucial components of the interoperability infrastructures
, and their semi automation to interrelate or integrate heterogeneous and autonomous databases in
collaborative networks is desired . the semi automatic schema matching and integration sasmint system
introduced in this paper identifies and resolves (...)

Ground Truth schema integration ; collaboration ; schema matching ; heterogeneity ; data sharing

MLE Baseline schema integration ; sasmint ; schema matching ; schema integration ; schema matching ; sasmint
derivation markup language

DivKGen schema integration ; interoperability infrastructures ; schema matching ; sasmint

Table 1: Comparison of sample outputs generated by our model (DivKGen) vs. an MLE baseline. The
repeating keyphrases are shown in red.

In this paper, we take a principled direction towards addressing the information redundancy issue in
keyphrase generation models. We propose to tackle this problem directly during the training stage, rather
than applying adhoc post-processing at inference time. Specifically, we adopt the neural unlikelihood
training (UL) objective (Welleck et al., 2020), whereby the decoder is penalized for generating undesirable
tokens. Welleck et al. (2020) introduce unlikelihood training for a language model setting. Since we work
with a S2S setup, our version of UL loss consists of two components: (1) a target token level UL loss
based on the target vocabulary to penalize the model for generating repeating tokens; (2) a copy token
level UL loss based on the dynamic vocabulary of source tokens required for copy mechanism (Gu et al.,
2016; See et al., 2017), which penalizes the model for copying repetitive tokens.

S2S models trained with maximum likelihood estimation (MLE) are usually tasked with the next token
prediction objective. However, this does not necessarily incentivize the model to plan for future token
prediction ahead of time. We observe such lack of model planning capability in our initial experiments
with MLE models and to overcome this issue we propose to use K-step ahead token prediction. This
modified training objective encourages the model to learn to correctly predict not just the current token,
but also tokens upto K-steps ahead in the future. We then naturally incorporate UL training on the K-step
ahead token prediction task.

We summarize our contributions as follows: (1) To improve the diversity of generated keyphrases in a
principled manner during training, we adopt the unlikelihood objective for the S2S setting and propose a
novel copy token unlikelihood loss. (2) In order to incentivize model planning, we augment our training
objective function to incorporate K-step ahead token prediction. Additionally, we also introduce the
K-step ahead unlikelihood losses. (3) We propose new metrics for benchmarking keyphrase generation
models on diversity criterion. We carry out experiments on datasets from three different domains (scientific
articles, news and community QA) and validate the effectiveness of our approach. We observe substantial
gains in diversity while maintaining competitive output quality.

2 Background and Motivation

2.1 Problem Definition
The task of keyphrase generation can be formulated in the following manner. Given a source document
x, we are required to generate a set of keyphrases Y = {y1

,y
2
, . . . ,y

∣Y∣} that best describe the input.
The source document is denoted as a sequence of S words: x = (x1, x2, . . . , xS). Each target keyphrase
y
i
= (y1, y2, . . . , yTi

) is also a word sequence of length Ti.
We follow the modelling setup adopted in previous work on keyphrase generation (Ye and Wang,

2018; Chan et al., 2019). Given document-keyphrases pair (x,Y), we concatenate all the ground truth
keyphrases into a single linearized output sequence y = y

1 ⋄ y
2 ⋄ . . . ⋄ y

∣Y∣, where ⋄ denotes a special
delimiter token that is inserted in between consecutive keyphrases. The training data now consists of
(x,y) pairs and one can conveniently use a sequence-to-sequence (S2S) modelling architecture to learn
the mapping from x to y.
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2.2 Sequence Encoder-Decoder
A bi-directional LSTM encoder (Hochreiter and Schmidhuber, 1997) reads the variable length source
sequence x = (x1, . . . , xi, . . . , xS) and produces a sequence of hidden state representations h =

(h1, . . . , hi, . . . , hS) with hi ∈ Rdh , using the operation hi = fenc(xi, hi−1) where fenc is a differ-
entiable non-linear function.

For the decoder, we use a uni-directional LSTM which computes a hidden state st ∈ Rds at each
decoding time step based on a non-linear function defined as st = fdec(et−1, st−1). At training time, et−1
is the embedding of the ground truth previous word and at inference time, it is the embedding of the word
predicted at the previous time step.

2.3 Attention Guided Decoding
By incorporating global attention mechanism (Bahdanau et al., 2015) into the basic S2S architecture,
it is possible to dynamically align source information with the target hidden states during the decoding
process. This is achieved by computing an alignment score between the decoder hidden state st and each
of the encoder hidden representations {hi}Si=1. At decoding time step t, this corresponds to

αti =
exp{α̃ti}

∑S
i′=1 exp{α̃ti′}

; where α̃ti = stWahi (1)

where αti is referred to as the attention probability score and Wa is a learnable attention weight matrix.
Next we compute the attention context vector as a weighted summation across source hidden states.

ct =
S

∑
i=1

αtihi (2)

Finally, the probability distribution over a predefined vocabulary VTarget of target tokens is obtained as

Ptarget(yt) = softmax(Wv s̃t) ; where s̃t = tanh(Wu [st ⊕ ct]) (3)

where ⊕ refers to the concatenation operator. Note that Wu and Wv are trainable decoder parameters
and yt ∈ VTarget . For notational brevity, we omit the bias terms.

2.4 Copy Mechanism
We incorporate copy mechanism (Gu et al., 2016) to alleviate the out-of-vocabulary issue during generation,
by allowing the decoder to selectively copy tokens from the source document. Specifically, we employ
a learnable switching parameter pgen = sigmoid(Wc [st; ct; et−1]) which refers to the probability of
generating a token from the target vocabulary VTarget. Thus, (1 − pgen) corresponds to the probability of
copying a token present on the source side whose dynamic vocabulary is denoted by Vx. The generation
probability and the copy probability at time step t are then combined to predict the next token as follows:

P (yt) = pgenPtarget(yt) + (1 − pgen)Pcopy(yt) (4)

where yt ∈ VTarget ∪ Vx and Pcopy(yt) = ∑i∶xi=yt
αti is the copy probability of token yt defined as a

sum of its attention weights across all its occurrences in the source text.

2.5 Maximum Likelihood Training
Encoder-decoder models for sequence generation are typically trained using Maximum Likelihood
Estimation (MLE). Concretely, for a given instance in the training data, MLE objective corresponds to
learning the model parameters θ that minimizes the negative log-likelihood loss defined as follows:

LMLE = −
L

∑
t=1

logP (yt∣y1∶t−1,x,θ) (5)

where yt is the t-th token in the ground truth output sequence y whose total length is L tokens.
We begin with a setup where the S2S model for keyphrase generation is trained using MLE. We

carry out preliminary experiments analyzing the diversity of the generation process and demonstrate the
shortcomings of MLE-based training (Section 2.6) which paves way for the proposed approach (Section 3).
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#Keyphrases % duplicate keyphrases % duplicate tokens

Ground Truth 5.3 0.1 7.3
MLE Baseline 7.3 26.6 36.0

Table 2: A pilot study on KP20k dataset validates our hypothesis about MLE-based training, which tends
to generate a large number of repetitions in its outputs. The reported numbers are obtained by averaging
the metrics across the test set.

2.6 Lack of Diversity Issue
We conduct a pilot study using KP20k dataset (Meng et al., 2017), a corpus of scientific articles. Each
article consists of a title, an abstract and a set of associated keyphrases. Table 1 shows one such example,
along with outputs from two systems - a S2S model trained purely with MLE objective and our proposed
model which is trained with a combination of unlikelihood training and future token prediction. It can be
observed that with MLE objective alone, the S2S model tends to generate the same keyphrase over and
over again. On the other hand, the output keyphrases from the proposed model summarizes the abstract of
the scientific article, without any repetitions.

Furthermore, in Table 2 we quantify this lack of diversity issue using two simple metrics - the percentage
of duplicate keyphrases and the percentage of duplicate tokens. On average, for an MLE model, about 27%
of the generated KPs and 36% of the generated tokens are duplicates. These values are much higher than
the percentage of repetitions present in the ground truth data. This implies that a significant computational
effort is spent in the generation of redundant information. Moreover, additional post-processing pipelines
are required in order to get rid of these repetitions. From a user experience point of view, the developed
system should generate high quality KPs that describe the main ideas in the source text, without any
information redundancy. We design our system keeping this objective in mind.

3 Proposed Approach

Rather than addressing the information redundancy issue through post-processing, we take a principled
approach in this direction during training itself. Firstly, we adopt neural unlikelihood training (Welleck et
al., 2020) for sequence-to-sequence setting by directly penalizing the decoder for either generating or
copying repeating tokens. Secondly, we improve the planning capability of the decoder by incorporating a
K-step ahead token prediction loss. This is achieved by using the same decoder hidden state but different
attention mechanisms to decide which source tokens to be attended to, for predicting the target at the
current time step, 1-step ahead and so on. An illustration of our approach is presented in Figure 1.

3.1 Target Token Unlikelihood Loss
The goal of unlikelihood training is to suppress the model’s tendency to assign high probabilities to
unnecessary tokens. During decoding, say at time step t, we maintain a negative candidate list Ct

Target that
consists of tokens that should ideally be assigned a low probability for the current time step prediction.
Formally, given Ct

TargetUL = {c1, . . . , cm} where cj ∈ VTarget, we define the unlikelihood loss based on
the target vocabulary across all time steps as follows

LTargetUL = −
L

∑
t=1

∑
c∈Ct

Target

log (1 − Ptarget(c∣y1∶t−1,x,θ)) (6)

Intuitively, assigning a high probability to a negative candidate token leads to a larger loss. Following
Welleck et al. (2020), our negative candidate list for LTargetUL consists of the ground truth context
tokens from the previous time steps, i.e., Ct

Target = {y1, . . . , yt−1} \ {yt}. In this manner, we effectively
discourage the model from repeatedly generating tokens that are already present in the previous contexts.

3.2 Copy Token Unlikelihood Loss
In contrast to Welleck et al. (2020) who introduce UL training for language model setting, our application
employs this method for a S2S task. As described in Section 2.4, our decoder utilizes a copy mechanism
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Figure 1: (a) Illustration of unlikelihood training. In the above example, at decoding time step t = 6, the
previous tokens from the target context form the negative candidate list denoted by Ct=6

Target. The Target UL
loss is computed using the probabilities assigned to these tokens. Similarly, the Copy UL loss discourages
the model from copying the words displayed in red from the source document at t = 6. Ideally, we would
like the model to copy the word ‘collection’. (b) Depiction of K−step ahead prediction with K = 2.
Different attention matrices are used to compute the corresponding attention context vectors for k = 0, 1, 2.
These are then individually fed to the final softmax layer along with the shared decoder hidden state to
predict the token at the respective k. Copy mechanism is omitted from Figure 1(b) for simplicity.

that dynamically creates an extended vocabulary during generation based on the source tokens (Vx). An
undesirable side-effect of copying is that the model might repeatedly attend to (and copy) the same set of
source tokens over multiple decoding time steps, leading to repetitions in the output. To circumvent this
issue, we propose an approach that we refer to as copy token unlikelihood loss.

For penalizing unnecessary copying, our negative candidate list at each time step is composed of ground
truth context tokens from previous time steps that also appear in the source text (and thus can be copied).

LCopyUL = −
L

∑
t=1

∑
c∈Ct

Copy

log (1 − Pcopy(c∣y1∶t−1,x,θ)) (7)

where Ct
Copy = {yi ∣ yi ∈ {y1, . . . , yt−1} \ {yt} and yi ∈ Vx} and Pcopy(c∣.) refers to the probability

of copying a given token c determined by the attention mechanism over the source tokens (Section 2.4).

3.3 K-Step Ahead Token Prediction Loss

Keyphrases are made up of one or more tokens. The decoder in S2S models is usually tasked with simply
predicting the next token given the context so far. This greedy approach does not incentivize the model
to plan for the upcoming future tokens ahead of time. We mitigate this issue by directly incorporating
the prediction of tokens K-steps ahead from the current time step into our training objective. To do so,
we start with Equation 5, the MLE-based objective for next token prediction at time step t. This can be
generalized for the prediction of upto K tokens ahead in time as follows:

LK−StepMLE = −
L

∑
t=1

K

∑
k=0

γk logP (yt+k∣y1∶t−1,x,θ) (8)

where γk refers to the coefficient of the kth step ahead token prediction loss. Note that the next token
prediction MLE objective in Equation 5 is a special case of Equation 8 where K = 0 and γ0 = 1.0. One
can think of the K-step ahead losses as a way to reward the model to plan the surface realization of the
output sequence ahead of time. Intuitively, it makes sense to assign a high weightage to current token
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prediction (i.e., for k = 0) and relatively downweight the losses incurred from future token predictions.
We accomplish this by decaying the coefficient γk using the formula γk =

1.0
k+1

.
For K-Step ahead prediction, we consider two implementation choices: (1) For each k, learn a different

transformation W
k
v (in Equation 3) from the hidden representation to the logits over the vocabulary

VTarget. However, this increases the number of model parameters by k × dst × ∣VTarget∣ where dst is the
decoder hidden size. (2) With the second option, for each k, a different attention weight matrix W

k
a is

learnt, while having a shared output transformation layer based on Wv. More specifically, Equations 1
and 2 can be re-written as

α̃
k
ti = stW

k
ahi ; α

k
ti =

exp{α̃k
ti}

∑S
i′=1 exp{α̃k

ti′
}

; c
k
t =

S

∑
i=1

α
k
tihi (9)

The intuition behind such a formulation is that the different attention mechanisms (for different k’s)
learn different weighting schemes over the source tokens that enable the prediction of the future token at
time step t + k. Moreover, this is much more parameter efficient because the number of extra parameters
introduced into the model is only k × dst × dst , where dst ≪ ∣VTarget∣. Hence, we adopt the second
implementation choice in our experiments.

3.4 K-Step Ahead Unlikelihood Loss
In Section 3.3, we introduce an MLE-based loss for the task of K-step ahead token prediction. This
idea can be naturally extended to the unlikelihood setting. Concretely, we impose the target and copy
unlikelihood losses on the K-step ahead token prediction task as follows:

LK−StepTargetUL = −
L

∑
t=1

K

∑
k=0

γk ∑
c∈Ct+k

Target

log (1 − Ptarget(c∣y1∶t−1,x,θ)) (10)

LK−StepCopyUL = −
L

∑
t=1

K

∑
k=0

γk ∑
c∈Ct+k

Copy

log (1 − Pcopy(c∣y1∶t−1,x,θ)) (11)

where the negative candidate lists are Ct+k
Target = {y1, . . . , yt+k−1} \ {yt+k} and Ct+k

Copy = {yi ∣ yi ∈
{y1, . . . , yt+k−1} \ {yt+k} and yi ∈ Vx}. Penalizing the model for future repetitions through the K-step
ahead unlikelihood losses should further enhance overall diversity of its outputs.

3.5 Overall Training Objective
To summarize, our S2S model is trained with a combination of likelihood and unlikelihood losses on the
current (k = 0) and future (k = 1, . . . ,K) token prediction tasks. The overall loss function is given by:

L = LK−StepMLE + λTLK−StepTargetUL + λCLK−StepCopyUL (12)

where λT and λC are hyperparameters that control the weight of target and copy UL losses respectively.

4 Experiment Setup

Evaluation Metrics. To measure the quality of generated keyphrases, i.e., its relevance with respect
to the source document, we compare the generated set of KPs to the KPs in the corresponding ground
truth data. To this end, we report F1@M , where M refers to the number of model predicted keyphrases.
We also include the corresponding precision and recall metrics. As justified in previous work (Chan
et al., 2019; Yuan et al., 2020), F1@M captures the ability of abstractive S2S models in generating
a variable number of KPs depending on the source document, in comparison to traditional extractive
methods where one is required to specify a cutoff in order to output the top-k keyphrases. However,
different from previous work, we report the overall F1@M score rather than separately computing this
score for keyphrases present vs. absent in the source text. This is because our goal in this work is to
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overcome the lack of diversity issue in keyphrase generation models, and not necessarily to generate more
absent keyphrases.
In order to evaluate the model outputs on the criterion of diversity, we define the following metrics:
% Duplicate KPs = (1 − Number of Unique Keyphrases

Total Number of Generated Keyphrases) ∗ 100

% Duplicate Tokens = (1 − Number of Unique Tokens
Total Number of Generated Tokens) ∗ 100

# KPs: We report the number of keyphrases generated. Ideally, the model should generate the same
number of keyphrases as present in the ground truth target sequence.

The next three metrics measure the inter-keyphrase similarity among the generated set of keyphrases - a
lower value indicates fewer repetitions and thus more diversity in the output.

Self-BLEU: We use Self-BLEU (Zhu et al., 2018) which computes pairwise BLEU score (Papineni et
al., 2002) between generated KPs. This metric captures word level surface overlap.

EditDist2: String matching can also be carried out at the character level. Through our EditDist metric,
we calculate the pairwise Levenshtein Distance between KPs output by the model.

EmbSim: With Self-BLEU and EditDist, we can only capture surface level repetitions between KPs.
To overcome this limitation, we propose to use pre-trained phrase-level embeddings that measures
inter-keyphrase similarity at a semantic level. Specifically, we compute pairwise cosine similarities
between Sent2Vec embedding representations (Pagliardini et al., 2018) of keyphrases. Sent2Vec has
been reported to perform well in previous work on keyphrase extraction (Bennani-Smires et al., 2018).

All reported metrics are computed for each test set output, followed by averaging across all records.

Datasets. We carry out experiments on datasets from three domains 3: (1) KP20K (Meng et al., 2017)
is a dataset of scientific articles; (2) KPTimes (Gallina et al., 2019) consists of news articles and editor
assigned keyphrases; (3) StackEx (Yuan et al., 2020) is a dataset curated from a community question
answering forum with keyphrases being the user assigned tags.

Baselines. We compare our approach to five S2S keyphrase generation baselines4 (4 MLE-based models
and 1 which uses a reinforcement learning objective) — (1) catSeq: A S2S model trained solely using the
MLE objective. (refer to Equation 5). (2) catSeqD: Introduced by Yuan et al. (2020), this method uses
auxiliary semantic coverage and orthogonality losses to enhance generation diversity. (3) catSeqCorr:
Chen et al. (2018) augment the attention scheme in the catSeq model with a coverage module and review
mechanism. (4) catSeqTG: Instead of simply concatenating the article title and abstract together to form
the source document, Chen et al. (2019b) design a model architecture that separately encodes the title
information using an attention-guided matching layer. (5) catSeqTG-2RF1: Chan et al. (2019) extend the
catSeqTG model by training it using a reinforcement learning (RL) objective where F1-score is directly
used as the reward. Implementation details of our model are provided in Appendix B.

5 Results and Analysis

We report quality and diversity metrics on five baselines and three variants of the proposed approach
(Table 3). We refer to our model as DivKGen; the base UL variant is trained with the regular MLE
objective plus target and copy level unlikelihood losses. The rows denoted by +K-StepMLE and +K-
StepUL are variants built on top of the base variant, by cumulatively incorporating K-Step ahead token
prediction MLE andK-Step ahead UL losses respectively. For each dataset, we also report the ground truth
statistics. For instance, the KP20K has an average keyphrase count of 5.3 in the test set with only 0.1%
duplicate KPs and 7.3% duplicate tokens. In comparison, the MLE baseline (catSeq) produces a much

2We utilize the fuzzywuzzy library in Python: https://github.com/seatgeek/fuzzywuzzy. It computes a
score between 0 and 100, where 100 means exactly matching keyphrases.

3Additional results on five datasets that only provide a test set for evaluation (INSPEC, KRAPIVIN, NUS, SEMEVAL, DUC)
are provided in the Appendix C.

4We use the open-source code provided by Chan et al. (2019) for implementing the baselines: https://github.com/
kenchan0226/keyphrase-generation-rl
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Quality Evaluation Diversity Evaluation

P@M R@M F1@M #KPs %Duplicate
KPs ↓

%Duplicate
Tokens ↓

Self-
BLEU ↓

Edit-
Dist ↓

Emb-
Sim ↓

Sc
ie

nt
ifi

c
A

rt
ic

le
s

-K
P
2
0
K Ground Truth - - - →5.3 0.1 7.3 3.8 32.7 0.159

catSeq 0.291 0.260 0.274 7.3 26.6 36.0 26.6 45.6 0.328
catSeqD 0.294 0.257 0.274 6.7 25.7 35.3 27.0 45.3 0.325
catSeqCorr 0.283 0.264 0.273 7.0 23.2 33.5 24.5 44.0 0.309
catSeqTG 0.295 0.262 0.278 6.8 24.7 34.3 26.2 45.2 0.323
catSeqTG-2RF1 0.274 0.286 0.280 7.5 30.9 41.7 30.7 46.7 0.341

DivKGen (UL) 0.277 0.261 0.269 5.0 5.3 12.6 9.7 34.4 0.181
+K-StepMLE 0.274 0.239 0.255 4.6 6.1 13.9 11.5 36.2 0.197
+K-StepUL 0.273 0.240 0.256 4.6 4.9 11.7 8.8 35.2 0.185

N
ew

s
A

rt
ic

le
s

-K
P
T
i
m
e
s Ground Truth - - - →5.0 0.1 4.9 2.2 26.5 0.135

catSeq 0.399 0.375 0.387 5.9 13.7 20.7 17.2 32.7 0.202
catSeqD 0.395 0.374 0.384 6.2 15.8 22.6 18.3 33.5 0.212
catSeqCorr 0.397 0.376 0.386 5.6 10.3 17.6 13.8 31.6 0.190
catSeqTG 0.402 0.380 0.391 5.9 13.8 21.2 17.6 32.8 0.203
catSeqTG-2RF1 0.389 0.386 0.387 6.0 14.0 21.0 18.6 32.5 0.192

DivKGen (UL) 0.385 0.320 0.350 4.3 2.3 7.0 4.2 27.8 0.142
+K-StepMLE 0.391 0.316 0.349 4.3 3.3 7.9 5.3 27.9 0.147
+K-StepUL 0.371 0.314 0.340 4.6 3.6 8.7 5.8 28.3 0.149

C
om

m
un

ity
Q

A
-S
t
a
c
k
E
x Ground Truth - - - →2.7 0.3 2.9 1.5 24.2 0.167

catSeq 0.526 0.518 0.522 2.7 4.3 7.4 4.1 28.2 0.226
catSeqD 0.510 0.524 0.517 2.8 5.0 8.6 4.8 28.8 0.230
catSeqCorr 0.501 0.526 0.513 2.9 5.4 9.3 5.2 29.1 0.235
catSeqTG 0.522 0.529 0.526 2.8 3.5 7.0 3.9 27.5 0.216
catSeqTG-2RF1 0.433 0.570 0.492 3.8 6.7 11.8 6.2 29.0 0.220

DivKGen (UL) 0.512 0.453 0.481 2.2 0.3 1.4 0.5 23.3 0.175
+K-StepMLE 0.532 0.438 0.480 2.0 0.4 1.5 0.6 23.1 0.171
+K-StepUL 0.516 0.454 0.483 2.2 0.4 1.6 0.7 23.7 0.170

Table 3: KP generation results on datasets from 3 domains, evaluated on both quality and diversity criteria.

higher percentage of repetitions. This is also evident from the inter-keyphrase pairwise similarity metrics
Self-BLEU, EditDist and EmbSim. Surprisingly, the previous best performing model catSeqTG-2RF1,
which uses RL to improve F1 score, does worse than all MLE baselines in terms of diversity.

In contrast, DivKGen, our proposed approach achieves much better diversity than all baselines. The
repetition percentages are lowered and are relatively closer to the ground truth. There is a large boost by
simply adding token and copy UL losses to the baseline MLE model. For KP20K dataset, we obtain small
diversity gains through the incorporation of K-Step ahead losses whereas for the other two datasets, it
does not result an improvement. A possible explanation is that the base DivKGen (UL) variant itself steers
the diversity statistics to be quite close to that of the ground truth of these datasets. As a result, it becomes
increasingly difficult to achieve a further reduction in this gap through any additional model changes.

With regards to quality evaluation metrics, it can be observed that DivKGen models have slightly lower
scores. This can be explained from a quality-diversity trade-off viewpoint. As the model attempts to
explore the output space through the generation of more interesting KPs, it may output new KPs that are
not present in the ground truth, thus resulting in lower precision. DivKGen generates shorter sequences
(and hence may not be able to produce all the KPs as per the ground truth) than the baselines, which could
explain the lower recall.

Quality-Diversity Trade-off. We train different versions of DivKGen (UL) model on KP20K dataset by
varying λT

5, the UL loss coefficient (refer Equation 12). As depicted in Figure 2, it can be seen that there
is an obvious quality-diversity trade-off. For higher values of λT , we achieve a higher level of diversity

5For simplicity, we set λT = λC to control the number of variable hyperparameters in the quality-diversity trade-off analysis.
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DivKGen Variants Overall
F1@M ↑

%Duplicate
KPs ↓

%Duplicate
Tokens ↓

Self-
BLEU↓

w/ TargetUL 0.277 12.0 19.8 16.7
w/ CopyUL 0.263 14.1 22.7 19.9
w/ K-StepMLE 0.265 12.6 18.9 16.3
w/ TargetUL+ CopyUL 0.269 5.3 12.6 9.7
+K-StepMLE 0.255 6.1 13.9 11.5
+K-StepUL 0.256 4.9 11.7 8.8

Table 4: Ablation study on the KP20k dataset. Each row
denotes a DivKGen model variant obtained by adding the
specified component. The last row corresponds to the full
model.

Figure 2: Illustration of quality-
diversity trade-off: %Unique KPs =
(100−%Duplicate KPs) is used as a
representative metric for diversity.

(more unique KPs) at the cost of quality (and vice versa). Similar behaviour has been reported previously
in the text generation literature (Bahuleyan et al., 2018; Gao et al., 2019). Hence, we recommend tuning
the hyperparameters λT and λC to achieve a desired level of diversity.

Ablation Study. We conduct an ablation analysis to investigate the effect of different losses. We start
with the MLE baseline and add loss components one-by-one as presented in Table 4. It is evident that the
best diversity is obtained while using the full model (last row). Also, interestingly each individual loss
component by itself (i.e., TargetUL, CopyUL and K-StepMLE), is not as effective as their combination.
This suggests that each of the losses contribute in a synergetic manner to maximize diversity gains.

6 Related Work

Keyphrase Generation and Extraction. Traditional KP extraction methods such as TextRank (Mi-
halcea and Tarau, 2004) and TopicRank (Bougouin et al., 2013) first select candidate phrases from the
source document using heuristics and then rank these candidates based on some measure of relevance
or importance. Meng et al. (2017) formulate keyphrase generation as a S2S learning problem, with an
advantage over previous extractive methods that it could even generate relevant KPs absent from the
source text. A limitation of their approach is that one was still required to rank the top-k KPs. This was
addressed in works by (Ye and Wang, 2018) and (Yuan et al., 2020) which could generate a variable
number of KPs depending on the input. We adopt a similar setup but carry out a comprehensive analysis
of such models in terms of their output diversity, which has been largely ignored in previous work.

Diversity in Language Generation. Diversity promoting objectives for text generation have been
previously explored in the literature (Li et al., 2016; Niu and Bansal, 2020; Jiang et al., 2020). However,
these studies examine the overall corpus level diversity. For instance, the lack of diversity in a dialogue
system, due to the fact that the model generates frequently seen responses from the training set. In our
case, we address a different kind of diversity issue, arising as a result of repetitions occurring within
individual outputs. Thus neural unlikelihood training (Welleck et al., 2020) is well suited to our problem.
Test time decoding strategies to improve diversity such as top-k sampling (Fan et al., 2018), nucleus
sampling (Holtzman et al., 2020) and diverse beam search (Vijayakumar et al., 2018) are orthogonal to
our approach and can naturally be incorporated.

7 Conclusion and Future Work

In this work, we first point out the shortcomings of MLE based training for keyphrase generation. We
specifically address the lack of output diversity issue via the use of unlikelihood training objective. We
adopt a target level unlikelihood loss and propose a novel copy token unlikelihood loss, the combination of
which provides large diversity gains. In addition, a K-step ahead MLE and UL objective is incorporated
into the training. Through extensive experiments on datasets from three different domains, we demonstrate
the effectiveness of our model for diverse keyphrase generation. For future work, we plan to explore
directions that would enable us to simultaneously optimize for quality and diversity metrics.
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Appendix
Diverse Keyphrase Generation with Neural Unlikelihood Training

A Dataset Statistics

Table 5 presents the number of instances in each dataset, split across training, validatation and test sets.

Dataset #Train #Validation #Test

KP20K 530k 20k 20k
KPTimes* 260k 10k 20k
StackEx 299k 16k 16k

INSPEC − 1500 500
SEMEVAL − 144 100
KRAPIVIN − 1844 460

NUS − − 211
DUC − − 308

Table 5: Train/validation/test statistics of the datasets used in this work.

*Note that our test set for KPTimes is a combination of 10k records from KPTimes and 10k records
from JPTimes (Gallina et al., 2019).

B Implementation Details

We use the AllenNLP package (Gardner et al., 2018), which is built on PyTorch framework (Paszke et al.,
2019), for implementing our models. We provide as input to the model the concatenated title and abstract.
Following (Yuan et al., 2020), the ground truth target keyphrases are arranged as a sequence, where the
absent KPs follow the present KPs. The size of source and target vocabularies are set to 50k and 10k
respectively. The delimiter token that is inserted in between target keyphrases is denoted as <SEP>. Both
the LSTM6 encoder and decoder have a hidden size of 100d. Word embeddings on both the source and
target side are also set to 100d and randomly initialized. We use Adam optimizer (Kingma and Ba, 2015)
with default parameters to train the model. The batch size is set to 64 and we incorporate early stopping
based on validation F1 score as the criterion.

Regarding the loss term coefficients for UL losses and K-step ahead loss, we set λT = 15.0, λC = 18.0
and γ0 = 1.0, which are obtained based on performance on validation set after grid search hyperparameter
optimization. The hyperparameter tuning is carried out on KP20K dataset and the best values are adopted
for other datasets too. The value of K is set to 2, which corresponds to upto 2-step ahead prediction.

For test time decoding, unlike previous work (Ye and Wang, 2018; Chen et al., 2019a; Yuan et al., 2020),
we do not apply exhaustive decoding with large beam sizes, followed by pruning and de-duplication of
the output. This is because our model is trained to generate outputs without repetitions. As such, we do
not require any adhoc post-processing strategies to improve diversity. Thus we adopt greedy decoding
at test time as well, similar to (Chan et al., 2019). For quality evaluation, we use the evaluation scripts7

provided by (Chan et al., 2019). Note that Porter Stemming is applied on the outputs for the purpose of
quality evaluation.

C Results on Evaluation-Only Datasets

We present additional results in Table 6 and Table 7 on the following datasets: INSPEC (Hulth and
Megyesi, 2006), KRAPIVIN (Krapivin et al., 2009), NUS (Nguyen and Kan, 2007b), SEMEVAL (Kim
et al., 2010) and DUC (Wan and Xiao, 2008). These datasets are smaller in size and hence, similar to
previous work we only use them as test sets. DUC is a dataset with news articles and their associated

6Our initial experiments with Transformer-based architectures (Vaswani et al., 2017) showed similar performance, but
required a lot more parameters. We thus carry out experiments with LSTM models as they are more parameter efficient and had
lesser computational requirements. A similar observation has been reported in (Meng et al., 2019)

7https://github.com/kenchan0226/keyphrase-generation-rl
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keyphrases. Hence, we use the models trained on KPTimes for evaluation on DUC. Since the remaining
datasets are from the domain of scientific articles, we test them using the best checkpoints obtained from
training on KP20K dataset.

Quality Evaluation Diversity Evaluation

P@M R@M F1@M #KPs %Duplicate
KPs ↓

%Duplicate
Tokens ↓

Self-
BLEU ↓

Edit-
Dist ↓

Emb-
Sim ↓

S
E
M
E
V
A
L

Ground Truth - - - →15.1 1.6 26.6 12.7 32.6 0.152

catSeq 0.321 0.105 0.158 12.1 46.2 53.8 31.9 52.3 0.415
catSeqD 0.306 0.105 0.157 11.5 43.3 53.3 33.2 53.5 0.420
catSeqCorr 0.291 0.102 0.151 9.5 29.9 39.8 24.2 45.7 0.322
catSeqTG 0.325 0.099 0.152 11.8 45.2 53.5 34.0 55.5 0.450
catSeqTG-2RF1 0.338 0.117 0.174 7.5 32.0 41.3 29.7 46.5 0.327

DivKGen (UL) 0.341 0.155 0.213 4.8 4.8 13.1 8.4 36.0 0.177
+K-StepMLE 0.340 0.142 0.201 4.4 4.3 14.7 10.2 37.6 0.194
+K-StepUL 0.339 0.135 0.193 4.4 4.6 10.9 6.9 35.2 0.171

I
N
S
P
E
C

Ground Truth - - - →9.8 0.3 15.7 7.6 33.8 0.168

catSeq 0.301 0.161 0.210 10.8 39.4 49.3 29.6 50.4 0.396
catSeqD 0.289 0.146 0.194 9.5 36.1 46.4 29.5 48.6 0.376
catSeqCorr 0.281 0.153 0.198 9.8 33.6 43.7 26.4 47.0 0.351
catSeqTG 0.308 0.163 0.213 11.6 41.3 51.6 31.6 51.0 0.405
catSeqTG-2RF1 0.302 0.165 0.213 7.9 37.6 47.7 32.1 51.5 0.402

DivKGen (UL) 0.375 0.226 0.282 5.1 6.2 13.5 11.3 33.3 0.172
+K-StepMLE 0.366 0.207 0.264 4.8 7.5 15.7 13.6 35.9 0.194
+K-StepUL 0.360 0.200 0.257 4.9 6.8 14.0 11.5 35.7 0.176

K
R
A
P
I
V
I
N

Ground Truth - - - →5.7 0.1 9.8 4.6 34.6 0.174

catSeq 0.289 0.247 0.266 8.4 33.5 42.5 28.3 49.8 0.381
catSeqD 0.280 0.234 0.255 7.3 29.4 39.6 27.5 48.2 0.358
catSeqCorr 0.264 0.237 0.249 8.4 30.2 39.7 26.1 46.6 0.346
catSeqTG 0.267 0.235 0.250 8.2 30.2 40.3 28.0 48.3 0.362
catSeqTG-2RF1 0.273 0.257 0.265 7.4 32.3 42.2 29.7 47.8 0.357

DivKGen (UL) 0.244 0.237 0.240 5.8 6.7 14.2 9.2 34.0 0.182
+K-StepMLE 0.263 0.221 0.241 5.1 8.1 15.8 11.9 36.8 0.209
+K-StepUL 0.258 0.227 0.242 5.5 8.4 15.0 10.5 35.7 0.194

Table 6: Results of keyphrase generation on SEMEVAL, INSPEC and KRAPIVIN datasets.



5285

Quality Evaluation Diversity Evaluation

P@M R@M F1@M #KPs %Duplicate
KPs ↓

%Duplicate
Tokens ↓

Self-
BLEU ↓

Edit-
Dist ↓

Emb-
Sim ↓

N
U
S

Ground Truth - - - →11.7 5.3 23.6 12.3 32.8 0.161

catSeq 0.391 0.210 0.274 11.7 43.6 52.0 31.6 53.7 0.442
catSeqD 0.397 0.206 0.271 10.4 41.4 49.6 32.2 52.9 0.433
catSeqCorr 0.396 0.217 0.281 10.7 38.9 47.8 29.8 50.1 0.398
catSeqTG 0.407 0.203 0.271 11.3 42.9 51.8 33.6 54.3 0.445
catSeqTG-2RF1 0.385 0.228 0.286 7.6 32.6 44.1 30.0 47.4 0.355

DivKGen (UL) 0.376 0.238 0.292 5.3 6.5 15.0 10.3 34.8 0.189
+K-StepMLE 0.394 0.225 0.287 4.8 8.6 17.7 14.1 37.7 0.218
+K-StepUL 0.393 0.218 0.281 4.4 5.9 13.5 10.0 36.6 0.202

D
U
C

Ground Truth - - - →8.1 0.2 14.1 6.4 33.4 0.176

catSeq 0.106 0.059 0.076 5.9 19.5 28.5 24.6 38.0 0.243
catSeqD 0.104 0.057 0.074 6.2 20.5 29.8 24.8 38.1 0.249
catSeqCorr 0.103 0.057 0.073 5.5 15.0 24.9 20.3 36.8 0.226
catSeqTG 0.111 0.060 0.078 5.7 18.0 27.8 22.8 37.1 0.231
catSeqTG-2RF1 0.115 0.069 0.086 6.2 19.4 28.9 27.1 36.2 0.217

DivKGen (UL) 0.135 0.065 0.088 4.2 3.4 9.5 5.6 30.4 0.151
+K-StepMLE 0.152 0.069 0.095 4.0 3.0 9.7 5.7 30.8 0.148
+K-StepUL 0.143 0.070 0.094 4.5 3.8 9.9 6.7 29.4 0.139

Table 7: Results of keyphrase generation on NUS and DUC datasets.

D Qualitative Results

In Tables 8, 9 and 10, we present qualitative results from the three domains respectively, i.e., scientific
articles, news and community QA forums. The input to each model is the title and the abstract, and
the expected output is displayed as the ground truth. In these case study examples, it can be observed
that both the MLE and RL baseline tend to generate numerous repetitions in their output sequence. Our
DivKGen base variant (UL) achieves good diversity, although occasionally it does generate few repetitions.
However, we are able to avoid duplicates with the DivKGen (Full) model, which additionally incorporates
the K-step ahead losses. We attribute this to be due to the enhanced model planning capabilities that
DivKGen (Full) exhibits, by learning what the future tokens should or shouldn’t be.
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Dataset : KP20K

Title automatic image segmentation by dynamic region merging .

Abstract this paper addresses the automatic image segmentation problem in a region merging
style . with an initially oversegmented image , in which many regions or superpixels
with homogeneous color are detected , an image segmentation is performed by iteratively
merging the regions according to a statistical test . there are two essential issues in a region
merging algorithm order of merging and the stopping criterion . in the proposed algorithm
, these two issues are solved by a novel predicate , which is defined by the sequential
probability ratio test and the minimal cost criterion . starting from an oversegmented
image , neighboring regions are progressively merged if there is an evidence for merging
according to this predicate . we show that the merging order follows the principle of
dynamic programming . this formulates the image segmentation as an inference problem
, where the final segmentation is established based on the observed image . we also
prove that the produced segmentation satisfies certain global properties . in addition , a
faster algorithm is developed to accelerate the region merging process , which maintains a
nearest neighbor graph in each iteration . experiments on real natural images are conducted
to demonstrate the performance of the proposed dynamic region merging algorithm .

Ground Truth image segmentation ; region merging ; dynamic programming ; wald sequential probabil-
ity ratio test

catSeq MLE Baseline image segmentation ; region merging ; region merging ; dynamic programming ; image
segmentation

catSeqTG-2RF1 (RL) image segmentation ; region merging ; dynamic programming ; image segmentation ;
dynamic programming

DivKGen (UL) image segmentation ; region merging ; region merging ; dynamic programming ; nearest
neighbor graph

DivKGen (Full) image segmentation ; dynamic programming ; region merging ; stopping criterion

Table 8: Case Study on KP20K dataset.
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Dataset : KPTimes

Title n.f.l . said to be closer to testing for h.g.h .

Abstract the n.f.l . owners and players have figured out how to divide up their money , and have
spent a busy week reconstituting rosters and renewing rivalries . but there is still unfinished
business in their labor standoff , and the most important issue remaining could be the
question of drug testing . the n.f.l . , whose new collective bargaining agreement is
expected to be completed and ratified by thursday , could begin blood testing for human
growth hormone as soon as september , according to a person briefed on the negotiations
who was not authorized to speak publicly , making it the first major north american sports
league to conduct such testing on its top players with the union consent . players had long
resisted blood testing under the former union president gene upshaw , and negotiators are
still determining ways to make the program acceptable to current players . details to be
worked out include how many players will be tested for performance enhancing drugs
and how they would be randomly selected when drug testing resumes . there was no drug
testing of any kind conducted during the lockout . but commissioner roger goodell and
demaurice smith , the players union executive director , were said by people briefed on
negotiations to have long seen the need for growth hormone testing and to want to cast
the n.f.l . as a leader in combating drugs in major sports . they have pointed to the joint
actions of upshaw and the former commissioner paul tagliabue , who moved to start the
steroid testing program in the late . i think both sides have a commitment to being leaders
in this area and to having the best

Ground Truth human growth hormone ; goodell roger ; national football league ; doping sports ; football
; organized labor ; smith demaurice ; tests drug use

catSeq MLE Baseline human growth hormone ; national football league ; football ; tests and testing ; national
football league ; tests drug use ; tests drug use ; national football league ; tests drug use ;
doping sports ; tests drug use ; national football league ; tests drug use

catSeqTG-2RF1 (RL) human growth hormone ; baseball ; national football league ; tests drug use ; national
football league ; football ; national football league ; lockouts ; organized labor

DivKGen (UL) human growth hormone ; drug abuse and traffic ; national football league ; goodell roger
; lockouts ; national football league

DivKGen (Full) human growth hormone ; upshaw gene ; goodell roger ; national football league ;
organized labor ; lockouts ; football

Table 9: Case Study on KPTimes dataset.

Dataset : StackEx

Title do deep learning algorithms represent ensemble based methods ?

Abstract shortly about deep learning for reference ) : deep learning is a branch of machine learning
based on a set of algorithms that attempt to model high level abstractions in data by
using a deep graph with multiple processing layers , composed of multiple linear and non
linear transformations.various deep learning architectures such as deep neural networks ,
convolutional deep neural networks , deep belief networks and recurrent neural networks
have been applied to fields like computer vision , automatic speech recognition , natural
language processing , audio recognition and bioinformatics where they have been shown
to produce state of the art results on various tasks.my question can deep neural networks
or convolutional deep neural networks be viewed as ensemble based method of machine
learning or it is different approaches

Ground Truth deep learning ; machine learning ; neural networks ; convolutional neural networks

catSeq MLE Baseline deep learning ; machine learning ; deep learning

catSeqTG-2RF1 (RL) deep learning ; machine learning ; neural network ; machine learning

DivKGen (UL) deep learning ; machine learning ; ensemble modeling

DivKGen (Full) deep learning ; neural networks

Table 10: Case Study on StackEx dataset.


