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Abstract

In this paper we present a character-level sequence-to-sequence lemmatization model, utilizing
several subword features in multiple configurations. In addition to generic n-gram embeddings
(using FastText), we experiment with concatenative (stems) and templatic (roots and patterns)
morphological subwords. We present several architectures that embed these features directly at
the encoder side, or learn them jointly at the decoder side with a multitask learning architecture.
The results indicate that using the generic n-gram embeddings (through FastText) outperform the
other linguistically-driven subwords. We use Modern Standard Arabic and Egyptian Arabic as
test cases, with up to 22% and 13% relative error reduction, respectively, from a strong baseline.
An error analysis shows that our best system is even able to handle word/lemma pairs that are
both unseen in the training data.

1 Introduction

Lemmatization is an important natural language processing task that maps inflected and possibly ambigu-
ous word forms to abstract lemmas. Lemmatization is particularly important for modeling morphologically
rich languages to address the sparsity of inflected forms. Data-driven lemmatization models have the
challenge of generalizability beyond the training data, to handle unseen words, unseen lemmas and new
contexts. Semitic languages, like Arabic and Hebrew, add other challenges: while words are generally writ-
ten without disambiguating diacritical marks, unambiguous lemmas are expected to be fully diacritized;
and there are many clitics that may be interpreted as part of the stem leading to alternative lemma readings
in different contexts (see Table 1). Semitic languages are also known for their extensive use of templatic
morphology which can greatly help in the task of lemmatization, except that words can have multiple
pattern (template) readings also. As such, we expect that modeling subword features is a key to the
lemmatization task. In this paper we experiment with several kinds of subword entities, without relying on
expensive external resources. We experiment with generic n-gram embeddings, captured through FastText
(Bojanowski et al., 2017), which generates word embeddings through n-gram sequence embedding. We
also introduce and utilize greedy morphological subword features, which can be determined consistently at
runtime without using any morphological dictionaries (Greedy columns in Table 1). We also use Morfessor
(Creutz and Lagus, 2005) to obtain morpheme-like subwords. We compare several architectures that
condition on these subwords at the encoder, or learn them jointly in a multitask learning architecture.

The results indicate that the generic FastText embeddings matched or outperformed the other
linguistically-driven subwords. These subwords are nevertheless considered linguistically shallow, as
opposed to models using deeper – and more expensive – linguistic resources, like morphological analyzers
(Zalmout and Habash, 2019; Pasha et al., 2014). We use Modern Standard Arabic (MSA) and Egyptian
Arabic (EGY) as test cases, where our models provide about 22% relative error reduction for MSA, and
13% for EGY, from a baseline using character-level sequence-to-sequence model with attention. Our
models also outperform a strong baseline system that uses rich morphological dictionaries, and can scale
to unseen words/lemmas.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



4677

Gold Greedy
# Surface Form Lemma Gloss [Lemma] Stem Pattern Root Stem Pattern Root

(1a) wllbywt bayt and for the [house]s bywt wll+__w_+ byt bywt wll+_yw_+ bt
(1b) Albywt bayt the [house]s bywt Al+__w_+ byt bywt Al+_yw_+ bt
(1c) wllsywf sayf and for the [sword]s sywf wll+__w_+ syf sywf wll+_yw_+ sf
(2a) AlktAb kut∼Ab the [writer]s ktAb Al+__A_+ ktb ktAb Al+__A_+ ktb
(2b) AlktAb kitAb the [book]s ktAb Al+__A_+ ktb ktAb Al+__A_+ ktb
(3a) kbAby kabAb my [kebab] kbAb __A_+y kbb bAb k+_A_+y bb
(3b) kbAby bAb like my [door] bAb k+_A_+y bwb bAb k+_A_+y bb

Table 1: Examples highlighting the complexity of lemmatization in MSA. Examples 1a-c highlight
cases where greedy features, albeit different from their gold values, can consistently help across words.
Examples 2a-b are ambiguous cases but with identical gold and greedy features; while, in examples 3a-b,
greedy features are inconsistent with gold features and the disambiguation task is more involved.

2 Related Work

Lemmatization has been shown to be very useful in several NLP tasks, including machine translation
(Sennrich and Haddow, 2016; Fraser et al., 2012) and parsing (Dozat and Manning, 2018; Björkelund
et al., 2010; Seddah et al., 2010), among others. Early contributions used finite state machines (Schmid
et al., 2004; Minnen et al., 2001), which could not handle unseen words and had limited in-context
modeling capacity. Other contributions approached lemmatization as a lemma-selection task (Roth et
al., 2008; Ezeiza et al., 1998), where the goal is to select the correct lemma from a set of lemmas
provided by a morphological analyzer. These systems handled in-context analysis better, but had a
limited capability of modeling unseen words. To handle unseen words, these models rely entirely on the
morphological analyzer, and would usually involve other tasks that might help the disambiguation pipeline
(like POS tagging). Other data-driven models approach lemmatization as a classification task (Müller
et al., 2015; Chrupala et al., 2008), through obtaining the set of edit operations that transform words
into lemmas, and then learning to select the optimal lemma from a set of candidates. These candidates
are generated by applying all possible edit-trees learned from the training data. There were also several
lemmatization contributions utilizing sequence-to-sequence models (Bergmanis and Goldwater, 2018;
Pütz et al., 2018), which consider lemmatization as a generation task. Several other contributions use
additional morphosyntactic features as part of the modeling architecture (Kanerva et al., 2019; Kondratyuk
et al., 2018). As far as we are aware, no other contributions explicitly utilize other word-level features,
like embeddings, stems, or orthographic patterns, in lemmatization.

3 Approach

Greedy vs Gold Stems The stem is the form of the word after all inflectional affixes are removed from
the surface form. The surface form can be represented as (prefix+stem+suffix), so stemming removes
the affixes at both ends of the word to get its base form. In contrast to lemmatization, which generates
proper citation forms. Gold stems (and gold patterns and roots) are pre-annotated and can be used while
training only, ideally as auxiliary tasks. Greedy stems are heuristic, and can be used both at training and
runtime. Greedy stems are obtained through greedily matching the longest possible affixation sequence
from both sides of the surface form, assuming the availability of a set of the potential affixation sequences
in the language. The affixes set is inexpensive to obtain through minimal linguistic annotation, or can be
obtained directly from the training data if available. The greedily matched sequences are removed from
the sides of the word, and the rest is returned as the greedy stem. Table 1 shows a few examples. In our
case, the training dataset contains the gold stems, which we used to extract the affixation sequences. In
our training data, greedy stems matched gold stems about 65% of the time. Despite being crude, this
approach should work as long as this method results in consistent stemming behavior. Since our data
does not have gold templatic roots, we approximate the roots and patterns through a simple orthographic
variation (Eskander et al., 2013). Orthographic roots (henceforth roots) are obtained through further
abstracting the stem (gold or greedy), by removing the vowel letters. Orthographic patterns (henceforth
patterns) are obtained by removing root letters from the stem of the surface word, and keeping affixes.
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Morfessor Base Words Morfessor (Creutz and Lagus, 2005) is an unsupervised morphological seg-
mentation tool, based on a probabilistic generative model, designed to handle languages with mainly
concatenative morphologies. Morfessor generates morpheme-like segmentations, which often resemble
linguistic morpheme segments. The Morfessor segmentation does not specify the base word explicitly, we
therefore consider the least frequent segment in the detected word segments (relative to all the segments
in the model) as the base word. This is under the assumption that base words are less frequent than affixes.
In MSA, the base words from Morfessor matched the gold stems about %68 of the time.

Architecture We use a similar architecture to Lematus (Bergmanis and Goldwater, 2018) as a baseline.
The model is based on a context-aware character-level sequence-to-sequence architecture, where context
is modeled through a sliding window around the target word. Lematus uses a fixed 20-character window
for each side. However, our experiments show that respecting the word-boundaries, by looking at the
characters of the n words before and after the target word, provides better results. We use two LSTM
layers for both the encoder and decoder (bidirectional for the encoder). We use Luong attention (Luong et
al., 2015) over the encoder outputs hi, and use the last encoder output as the initial state for the decoder.

Conditioning on the Subwords at the Encoder We condition on the different subwords through
concatenating their embedding vector with the input character embeddings. Each character embedding
ci is replaced by the concatenation [ci;wj ] before being fed to the encoder, where wj is the subword
embedding for the word in which character i appears in. These features are incorporated at training time
and runtime, and do not rely on expensive gold data. This is why we use the greedy stems, patterns, and
roots here, instead of the gold subwords. The embedding vectors for the different subwords can be learnt
as part of the end-to-end system, or pretrained using a large external corpus. For pretraining, we apply
the Morfessor and greedy stemming approaches (repeated for the roots and patterns) to a large external
corpus, then learn the embeddings using Word2Vec (Mikolov et al., 2013). We use the same corpus to
learn the FastText embeddings.

Multitask Learning at the Decoder The gold stems, patterns, and roots can also be learnt jointly with
the lemmatization task, as auxiliary tasks. In this model the encoder is shared between lemmatization and
the other tasks, with the same input and parameters of the Bi-LSTM network. The different tasks (gold
subwords) would have separate decoders specific to each task. The gold subword tasks are also modeled
on the character-level, like the lemmatization task. The loss is the average of the individual decoder losses,
which are based on minimizing cross entropy H for the decoder of each feature f , where F is the set of
word-level features we model (gold stems, roots, or patterns), in addition to lemmatization:

H(ŷ, y) =
1

|F |
∑
f∈F

Hf (ŷ, y)

4 Experiments and Results

We work with two Arabic variants, MSA and EGY, as test cases. Arabic is a morphologically-rich
language, with many affixes that result in a large number of inflected forms for each word.

Datasets We use the words and lemmas from the Penn Arabic Treebank (PATB parts 1,2, and 3)
(Maamouri et al., 2004), of about 503K training tokens (of which 63K are for development), for MSA,
and the ARZ corpus (Maamouri et al., 2012), parts 1 through 5, of about 133K training tokens for EGY

(of which 21K are for development). We follow the data splits recommended by Diab et al. (2013) for
both. We use the LDC’s Gigaword corpus (Parker et al., 2011) to train the pretrained MSA embeddings,
and the BOLT Arabic Forum Discussions corpus (Tracey et al., 2018) for the EGY embeddings.

Baselines We use several baselines to highlight different aspects of the contributions. The first baseline
is based on a simple maximum likelihood estimation (MLE) approach. We use the training data to identify
the most common lemma for each surface form without considering the context, and use this word-lemma
mapping for inference. At inference time we return the mapped lemma if the word is seen in the training
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Model MSA EGY

Maximum Likelihood Estimation (MLE) 90.6 77.5
LSTM LM (Zalmout and Habash, 2017) 92.5 82.8
Seq2seq+attention 93.5 76.6
Limited context seq2seq+attention* (baseline) 94.1 81.8

+ Morfessor base words 95.0 82.0
+ Greedy roots 95.1 82.2
+ Greedy stems 95.1 81.9
+ Greedy patterns 94.5 80.8
+ Pretrained n-grams (FastText) 95.4 83.3
+ Pretrained Morfessor base words 95.2 82.4
+ Pretrained greedy roots 95.3 82.6
+ Pretrained greedy stems 95.4 82.8
+ Pretrained greedy patterns 94.9 81.8
+ Multitask learning with predicted roots 95.0 81.9
+ Multitask learning with predicted stems 94.5 81.5
+ Multitask learning with predicted patterns 94.0 81.2

Gold Stems (oracle) 95.6 83.6

Table 2: Results for the various baselines and models (accuracy). *The limited context seq2seq with
attention model is the main baseline in this work.

Dialect Model Seen Unseen
Words Lemmas Words Lemmas

MSA

% of train data 92.0% 93.8% 8.0% 6.2%
MLE 96.9 92.4 19.5 65.0
Baseline 96.5 95.9 67.4 67.3
Best model 97.3 96.9 73.1 71.9

EGY

% of train data 84.6% 94.1% 15.4% 5.9%
MLE 90.4 81.2 8.2 22.7
Baseline 88.4 86.4 48.9 17.2
Best model 89.4 87.5 52.7 23.9

Table 3: Error analysis results.

data, and back-off to the word itself if the word is unseen. This approach has several limitations, but could
nevertheless serve as an assessment of the difficulty of the lemmatization task.

We also use Lematus (Bergmanis and Goldwater, 2018) as a baseline for the sequence-to-sequence
approach. Lematus uses a sliding window of a fixed number of characters around the target word, and
passes the context and target word into a character-based sequence-to-sequence model. However, instead
of the character-based context, we use a word-level context of two words before and after the target
word, which we found to provide better results. We use this as the main baseline in this work, where the
various models are compared against it. We also report the results of a selection-based lemmatization
model (Zalmout and Habash, 2017), using an LSTM-based language model with access to rich external
morphological analyzers (which makes it not directly comparable to our model).

Experimental Setup We use layers of size 400 for both the encoder and decoder, dropout value of
0.4, fixed sampling probability of 0.4 (Bengio et al., 2015), word embedding size of 250, and character
embedding size of 100. We train the models for 50 epochs, and use the Adam (Kingma and Ba, 2014)
optimizer with a learning rate of 0.0005. We use beam decoding with beam size of 5. We only use the
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subwords that are associated with at least two words, with a special token for the others, which eliminates
many noisy subwords. We use a context window of three words around the target word.

Results and Discussion The results in Table 2 show that the generic FastText embeddings outperform
all of the other subword features, in both MSA and EGY, with a significant improvement over the
baseline. The morphological subwords (stems, roots, and patterns), in addition to the Morfessor base
words, whether with learnt or pretrained embeddings, all show improvements over the baseline, but
still lag behind or match the FastText results. The multitask learning architecture, modeling the gold
subwords as auxiliary tasks, also shows limited improvement over the baseline, or does slightly worse
for EGY. This suggests that using the simple and generic FastText embeddings provides the same or
better results than more sophisticated subword identification approaches. We also tried combinations of
the subwords, like FastText embeddings with other morphological subwords. The combinations did not
result in any significant accuracy improvement. The results further show that our models outperform the
language-modeling-based approaches, which use expensive external morphological analyzers.

Oracular Experiments The datasets that we work with, for both MSA and EGY, include gold stem
annotations for all words. To be able to fully assess the maximum potential accuracy gain of utilizing
morphological subwords at the lemmatization task, we use the gold stems for an oracular experiment. We
condition on the gold stems just like we did for the greedy subwords and Morfessor base words. The
resulting accuracy represents the upper limit when it comes to utilizing stems through our architecture.
Table 2 shows the result for the oracular experiment, compared with the all the other models and baselines.
The gold stems provide only a slight improvement over the FastText embeddings, for both MSA and EGY.
This indicates that using inexpensive unsupervised embeddings provides a competitive result compared to
much more expensive supervised annotations, that are difficult to obtain at runtime.

Error Analysis Table 3 shows the baselines and best system results when handling seen and unseen
words/lemmas in the training data. The results indicate significant accuracy gains for our models compared
to the baselines in both. Moreover, the model seems to be able to handle the cases where both the word
and lemma are not seen in the training data. The word wAlmwrdyn “and the suppliers”, for example, is
not in the training data, nor its corresponding lemma, muwar~id “supplier”. The model was nevertheless
still able to lemmatize it correctly in context.

Model MSA EGY

Best model (FastText embeddings) 95.4 83.3
MLE + best model 95.0 84.1

Table 4: Results for using MLE for the seen words, and
the best model as backoff for the unseen words.

We can also observe in Table 3 that the MLE
baseline is very competitive in the seen words
and lemmas. We therefore experiment with
using the MLE model for the seen words in the
training data, and backing off to our sequence-
to-sequence model for the unseen words. The
results of this setup are presented in Table 4.
This approach results in large gains for EGY,
but not for MSA. This is probably due to the much larger training dataset available for MSA, where the
model can generate more accurate lemmas overall for both seen and unseen words and lemmas.

We also analyzed the errors in a sample of 1,000 tokens from the development set, lemmatized using
both the models with pretrained stems and FastText subwords. We found that many of the errors in the
model using FastText embeddings tend to be correct lemmas, but not suitable for the word in its context.
Whereas the errors in the model with pretrained stems tend to be invalid lemmas altogether.

5 Conclusions

In this paper we presented a character-level sequence-to-sequence lemmatization model, with access to
additional subword features. Our experiments show that simply conditioning on the pretrained FastText
word embeddings at the encoder, in addition to the character embeddings, improves accuracy significantly.
FastTex embeddings also provide the same or better results compared to sophisticated morphological
subword identification approaches. Our models outperform a strong baseline, which has access to
expensive external resources, and can handle ambiguous and unseen words.
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