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Abstract

Through the progress made in a sentence-level neural machine translation (NMT), a context-
aware NMT has been rapidly developed to exploit previous sentences as context. Recent work
in the context-aware NMT incorporates source- or target-side contexts. In contrast to the source-
side context, the target-side context causes a gap between training that utilizes a ground truth
sentence and inference using a machine-translated sentence as context. This gap leads to transla-
tion quality deteriorating because the translation model is trained with only the ground truth data
that cannot be used in the inference. In this paper, we propose sampling both the ground truth
and the machine-translated previous sentences of the target-side for the context-aware NMT. The
proposed method can make the translation model robust against mistakes and biases made at
the inference. Models using our proposed approach show improvements over models using the
previous approaches in English ↔ Japanese and English ↔ German translation tasks.

1 Introduction

Neural machine translation (NMT) (Sutskever et al., 2014; Bahdanau et al., 2015; Vaswani et al., 2017)
has made great progress in translating sentences in isolation. In contrast to isolated sentences, sentences
in documents cannot be correctly translated without context outside the current sentence (Läubli et al.,
2018). To address this problem, various context-aware NMT models have been developed to exploit
preceding and/or succeeding sentences in source- and/or target-side languages as context (Wang et al.,
2017; Tiedemann and Scherrer, 2017; Bawden et al., 2018; Voita et al., 2018; Voita et al., 2019; Maruf
and Haffari, 2018; Maruf et al., 2019; Agrawal et al., 2018; Kuang et al., 2018; Miculicich et al., 2018).
Bawden et al. (2018) used NMT models with source- and target-side contexts in the previous sentence,
and reported that the source-side context was effective for improving the translation quality. However,
the target-side context led to lower quality even though they highlighted the importance of the target-side
context. Agrawal et al. (2018) also pointed out that the use of the target-side context increases the risk
of error propagation. We considered that the reason for the low quality was a gap between a training
and an inference when using target-side context in the model. At the training phase, the ground truth
sentences (references) were used as the target-side context, and at the inference phase, the sentences
predicted by a translation model were used. The predicted sentence includes translation errors such as
mistranslation, under-translation, and over-translation not included in the ground truth sentence. Even if
there are no translation errors in the predicted sentence, there is a bias of translationese that is outputs of
machine translation tend to be simpler and more standardized than human-translated texts (Toral, 2019).
Therefore, the predicted target-side sentence tends to have lower diversity than the ground truth sentence.
This different use, called exposure bias (Bengio et al., 2015; Ranzato et al., 2016), led to lower translation
quality. The following example, extracted from the IWSLT2017 Japanese-English dataset (Cettolo et al.,
2012), presents the previous target-side ground truth and predicted sentences (ground truth context and
predicted context) in addition to the source sentence and target sentences (reference and vanilla NMT
output).
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Ground truth context: She lays eggs, she feeds the larvae – so an ant starts as an egg, then it’s a larva.
Predicted context: And when they get their eggs, they get their eggs, and the queen is there.
Source sentence: 脂肪を吐き出して幼虫を育てます
Reference: She feeds the larvae by regurgitating from her fat reserves.
Vanilla NMT output: They take fat and they raise the larvae of their larvae.

This example indicates two things: (a) the context information, which is a previous target-side sentence
in this example, is effective to translate the source sentence correctly, and (b) the ground truth context
and predicted context are different. First, we can find that both the ground truth context and the predicted
context include significant information (that is “she” for the ground truth context and “queen” for the
predicted context) for a correct translation, where the subject of the source is “she.” The vanilla NMT
trained without the contexts fails to translate the subject of the sentence shown in the vanilla NMT output
of the above example. Second, the predicted context includes some translation errors of mistranslation,
under-translation, and over-translation not included in the ground truth context. This means that there is
the exposure bias.

In this paper, we propose a controlled sampling with both the ground truth sentence and the predicted
sentence of the target-side context to alleviate the gap between the training and the inference, inspired by
the scheduled-sampling method (Bengio et al., 2015). At the first epoch, we train the translation model
with only the ground truth contexts, without the predicted contexts. Then we change the training data for
each epoch in order to gradually force the translation model to deal with noise. The predicted contexts
are generated by the vanilla NMT model. We implement the proposed method on a concatenation-
based context-aware NMT and a multi-encoder context-aware NMT. Experimental results on English ↔
Japanese translation tasks in the News corpus and IWSLT2017 dataset (Cettolo et al., 2012) and English
↔ German translation tasks in the IWSLT2017 dataset show that our proposed method can improve on
the previous model in terms of bilingual evaluation understudy (BLEU) scores.

2 Context-aware NMT

In this section, we introduce two existing techniques for context-aware NMT that have been actively
developed in recent work.

2.1 Concatenation-based Context-aware NMT
This model concatenates the current sentence and the previous sentence with a special token (such as
BREAK ) as described in (Tiedemann and Scherrer, 2017). They proposed two methods in the infer-

ence phase that translate both the previous and the current source sentence (2-TO-2) and only the current
sentence (2-TO-1). The 2-TO-2 model outputs the special token between the previous and current trans-
lated sentence that shows the concatenated position. Hence, the translation result of the current sentence
can be obtained by extracting tokens following the special token and discarding preceding tokens.

2.2 Multi-encoder Context-aware NMT
A multi-encoder context-aware NMT models encode the previous sentence and the current sentence
separately, and the two generated vectors are combined to form a single vector for the input to the
decoder. In this model, there are two types of options: where to integrate and how to integrate. First,
there are two choices for “where to integrate”: outside or inside the decoder. We used the approach
of the integration inside the decoder with a parallel attention because it has the best reported results as
described in (Kim et al., 2019). This method relates the context to the target history independently of
the current source-side sentence and makes the decoding speed faster. Second, there are three choices
for “how to integrate” as shown in (Bawden et al., 2018): an attention concatenation, an attention gate
or a hierarchical attention. We used the attention gate because it achieved the best results in exploratory
experiments. The attention gate makes a single vector c with the previous sentence vector cr and the
current sentence vector cs as the below equations:

g = tanh(Wrcr +Wscs) + bg, (1)

c = g ⊙ (Wtcr) + (1− g)⊙ (Wucs), (2)
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Figure 1: The architecture of our method with a single encoder. (a) Concatenate the previous sentence
and the current sentence with a special token (such as BREAK ) and multi-source encoder. (b) Com-
bine the outputs from the encoders with a simple projection and sum.

where bg is a bias vector, Wr,Ws,Wt,Wu are weight matrices, and ⊙ is an element-wise multiplication.
A gate g is learnt from two sentence vectors in order to give differing importance to the elements of each
vector.

3 Proposed Method

We propose a sampling method that can be applied to the context-aware NMTs in the previous section
to alleviate the gap between the training and inference phases in context-aware translation tasks with
target-side context.

3.1 Model

The approach of the method is to train the target-side context by using both ground truth and predicted
sentences in encoders of an NMT architecture. Figure 1 shows two types of architectures to implement
our model: the concatenation-based context-aware NMT and the multi-encoder context-aware NMT
in the previous section. Let Xj = (xj1, ..., x

j
L) be the j-th source sentence in a document, Ŷ j−1 =

(ŷj−1
1 , ..., ŷj−1

M ) be the (j − 1)-th ground truth sentence, and Ȳ j−1 = (ȳj−1
1 , ..., ȳj−1

N ) be the (j − 1)-th
predicted sentence. L, M , and N show the number of tokens of each sentence. The predicted sentences
are generated with a non-context-aware NMT beforehand. Let p be a sampling rate to use either the
ground truth sentence Ŷ j−1 or the predicted sentence Ȳ j−1. When p = 1, the model is trained with only
the ground truth sentences as the target-side context, while when p = 0, the model is trained with only
the predicted sentences. During the inference, the previous predicted sentence is always inputted, i.e.,
p = 0. Then, for the architecture in Figure 1 (a), the vector outputted by the source encoder is inputted
to the decoder. The decoder outputs a translation result Y j of only the current source sentence. For the
architecture of Figure 1 (b), the two resulting vectors outputted by the source and context encoders are
combined to form a single vector, and a target-side sentence Y j is predicted through the decoder.

3.2 Controlled Sampling for the Context-aware NMT

The appropriate sampling rate p of the training phase, whether we use the predicted sentence Ȳ j−1 or
the ground truth sentence Ŷ j−1, depends on a task. In the case of training with only the ground truth
sentence (p = 1), a translation model can be trained effectively because the model can concentrate on
training to acquire the information for predicting the next sentence. Intuitively, it is appropriate to use ei-
ther the ground truth sentence Ŷ j−1 or the predicted sentence Ȳ j−1 as the target-side context during the
training when the predicted sentences are high enough quality to acquire the necessary information for
predicting the next sentence. However, since the predicted sentences contain noise like mistranslation,
under-translation, and over-translation, a translation model has to deal with not only the acquisition of the
information but also its own mistakes (noise) in the target-side context during the inference phase. Fur-
thermore, even if there is no noise in the predicted sentence, there is a bias of translationese. Outputs of
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Corpus name Language pair Train Development Test
News English-Japanese 220,180 2,000 2,000
TED Talk English-Japanese 194,170 879 1,285

English-German 203,998 888 1,080

Table 1: Number of sentences in each dataset.

machine translation tend to be simpler and more standardized than original human-translated texts (Toral,
2019). Therefore, predicted sentences tend to have lower diversity than ground truth sentences. To train
both target-side sentences with different features effectively, we propose a controlled sampling method
inspired by curriculum learning approach (Bengio et al., 2009) and scheduled sampling (Bengio et al.,
2015). The idea is to change the training data for each epoch in order to gradually force the translation
model to deal with noise. Our method involves the following steps:

1. At the beginning of training, the initial sampling rate p1 = 1 at which the translation model is totally
trained with the ground truth sentence is used.

2. The value of pe is updated every epoch and strictly decreased via the inverse sigmoid decay of the
following equation:

pe =
k

k + exp(e− 2/k)
, (3)

where e = 2, 3, ... is the number of training epochs, which start from 2. k is a hyper-parameter to
control the speed of convergence where k ≥ 1 depends on the baseline translation quality. The higher
the translation quality, the smaller the value of k (set near to one). Under the above procedure, the model
learns to handle the noise and be more robust against the noise in the inference.

4 Experiments

To evaluate our method, we experimented on two document-level parallel datasets in two language pairs
for machine translation.

4.1 Data

We used two parallel corpora as follows.

• News (Japanese ↔ English). We used a content-equivalent translated news corpus (Mino et al.,
2020). The corpus was low-noise parallel data made by manually translating Japanese news articles
into English in a content-equivalent manner. We removed news titles from development and test
sets.

• TED Talk (Japanese ↔ English, English ↔ German). We used the IWSLT 2017 (Cettolo et al.,
2012) datasets based on the TED Talks where each talk is considered a document. We used the
“train” set for training and the “dev2010” set for validation for all the tasks. The “tst2014” was used
for testing English ↔ Japanese tasks and the “tst2015” was used for testing English ↔ German
tasks.

Table 1 shows the statistics of each corpus.

4.2 Systems

Our method can be implemented to various types of context-aware NMT systems. In this paper, we
applied our method to the concatenation-based context-aware NMT model (Figure 1 (a)) and the multi-
encoder context-aware NMT model (Figure 1 (b)). Though various numbers of sentences can be utilized
as context in each model, we used only one previous sentence for each model to reduce memory con-
sumption.
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4.3 Settings
We used the Moses toolkit1 to clean and tokenize the English and German data and KyTea (Neubig et
al., 2011) to tokenize the Japanese data. Then, we used a vocabulary of 48K units based on a joint byte-
pair encoding (BPE) (Sennrich et al., 2016) for the source and target. The frequency threshold for the
vocabulary filter was set to 35.

For the concatenation-based context-aware NMT, we used the encoder and decoder of the transformer
model (Vaswani et al., 2017), which was a state-of-the-art NMT model. The transformer model con-
tains a multi-headed attention mechanism, applied as self-attention, and a position-wise fully connected
feed-forward network. The encoder converted the received source-language sentence into a sequence of
continuous representations, and the decoder generated the target-language sentence. We implemented
this system with the Sockeye toolkit (Hieber et al., 2018). For the multi-encoder context-aware NMT, we
also used the transformer model and implemented it by modifying the architecture as shown in (Littell
et al., 2019). All models were trained on an Nvidia P100 Tesla GPU. In training each model, we applied
stochastic gradient descent (SGD) with Adam (Kingma and Ba, 2015) as the optimizer, using a learning
rate of 0.0002, multiplied by 0.7 after every eight checkpoints. We set the batch size to 5000 tokens and
the maximum sentence length to 200 BPE units for the concatenation-based context-aware NMT and to
100 BPE units for the multi-encoder context-aware NMT. For the other hyperparameters of the models,
we used the default Sockeye parameter values. We applied early stopping with a patience of 32. Decod-
ing was performed through beam search with a beam size of 5, and we did not apply ensemble decoding
with multiple models, although this could have improved the translation quality. The hyperparameter k
of our proposed method in Equation (3) was set to 2.

To evaluate the translation quality, we trained five models with different seeds and used the median
BLEU score of the five translation results. We calculated case-insensitive BLEU (Papineni et al., 2002)
scores by using multi-bleu.perl2.

4.4 Baseline Methods
To measure the effectiveness of our proposed approach, we consider the following baselines.

• Sentence-level translation (Single-Sentence). To compare translations with and without context
information beyond the current sentence, we used a single sentence translation as the baseline: non-
context-aware translation. The Single-Sentence method was implemented using the transformer
model.

• Context-aware translation with a source-side previous sentence (Src-Context), a target-side
previous ground truth sentence (Trg-Context GT), and a target-side predicted sentence (Trg-
Context Pred.) In the case of the context-aware translation, two types of sentences can be used
as context: source-side sentences and target-side sentences. To investigate which type of context
is effective, we separately used source-side sentences and target-side sentences as context. For the
target-side sentences, since either the ground truth sentences or the predicted sentences can be used,
we used both for the baseline methods. As a result, we compared six types of baseline methods
for the context-aware translation: three concatenation-based context-aware NMT systems with Src-
Context (Bawden et al., 2018; Agrawal et al., 2018), Trg-Context GT, and Trg-Context Pred and
three multi-encoder context-aware NMT systems with Src-Context and Trg-Context GT (Bawden et
al., 2018), and Trg-Context Pred respectively. All baseline methods of the context-aware translation
were implemented to the concatenation-based context-aware NMT and the multi-encoder context-
aware NMT the same as the proposed method.

4.5 Results
We list the experimental results of English↔Japanese tasks with News and TED Talk corpora and
English↔German tasks with TED Talk corpus in Tables 2 and 4. First, we show the experimental results

1https://github.com/moses-smt/mosesdecoder
2https://github.com/moses-smt/mosesdecoder/blob/ master/scripts/generic/multi-bleu-detok.perl
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Context in
training

Trg Trg News TED Talk
Method NMT GT MT EN-JA JA-EN EN-JA JA-EN EN-DE DE-EN
Single-Sentence vanilla 41.99 24.23 15.69 8.48 24.04 28.46
Trg-Context GT concat. ✓ 41.45 24.40 14.72 7.55 25.09 29.11
Trg-Context Pred. concat. ✓ 42.07 23.83 15.32 7.37 23.99 29.05
Proposed method (Fig. 1 (a)) concat. ✓ ✓ 42.89 24.62 15.33 8.36 25.09 29.74
Trg-Context GT multi-enc. ✓ 42.40 24.80 16.15 8.98 25.96 30.25
Trg-Context Pred. multi-enc. ✓ 42.45 24.31 16.27 9.15 25.98 30.23
Proposed method (Fig. 1 (b)) multi-enc. ✓ ✓ 42.79 24.86 16.37 9.66 26.01 30.60

Table 2: English↔Japanese (News and TED Talk) and English↔German (TED Talk) translation re-
sults of the comparison between the target-side context-aware NMTs: vanilla is the non-context-aware
transformer NMT, concat. is the concatenation-based context-aware NMT, and multi-enc. is the multi-
encoder context-aware NMT.

using our proposed method and the other target-side context-aware NMTs that are Trg-Context GT and
Trg-Context Pred. Then we show the experimental results using source-side context-aware NMTs that is
Src-Context to compare the effectiveness between the source-side context and the target-side context.

Effectiveness of our proposed method in News and TED Talk corpora. Table 2 shows the results
of the context-aware NMTs using the target-side context. In the experimental results with the News
corpus, the context-aware NMTs using the target-side context improved the translation performance
compared with the vanilla NMT. There are no clear differences between the concatenation-based context-
aware NMT and the multi-encoder context-aware NMT. For the TED corpus, the multi-encoder context-
aware NMT achieved better results than the concatenation-based context-aware NMT. Both our proposed
methods improved the translation quality compared with the baseline methods: Single-Sentence, Trg-
Context GT, and Trg-Context Pred. To evaluate the effectiveness of our proposed method in a different
domain, we experimented with the English↔Japanese dataset of another corpus: TED Talk corpus. The
experimental results of the multi-encoder context-aware NMTs show they are superior at exploiting the
context, whereas the concatenation-based context-aware NMT did not improve. Thus, our proposed
method of the multi-encoder context-aware NMT improved the translation quality compared with the
baseline methods in the English↔Japanese task in different domains.

Effectiveness in a different language pair. We experimented using English↔Japanese and
English↔German datasets of TED Talk corpus to determine the tendencies of the translation quality
on different language pairs. For the both language pairs, our proposed method of the multi-encoder
context-aware NMTs achieved better results than all the baseline systems. Thus, our proposed method
was found to be effective in English-Japanese and English-German language-pairs.

Results using the ground truth context for inference. Recent work of context-aware NMT exploit-
ing the target-side context, including this paper, uses the predicted sentence in the inference phase. To
investigate the upper bound scores using the target-side context, we used the ground truth sentence in
both the training and the inference. Table 3 shows the translation results when the ground truth sentence
is used in the inference phase of the Trg-Context GT method. Our proposed method achieved comparable
results to the Trg-Context GT method with the ground truth sentence.

Comparison between the source-side context and target-side context. Table 4 shows the results of
the source-side context-aware NMTs (Src-Context). Our proposed method achieved comparable results
to the Src-Context when using the multi-encoder context-aware NMT. As a result, we concluded that
the target-side context improves the document-level translation quality as effectively as the source-side
context does. Since the source-side context-aware NMT and the target-side context-aware NMT require
different resources (the source-side and target-side contexts, respectively), the target-side context-aware
NMT does not compete against the source-side context-aware NMT. We consider that it is important to
improve the target-side context-aware NMT without requiring the resources of source-side context.
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News TED Talk
Method EN-JA JA-EN EN-JA JA-EN EN-DE DE-EN
Single-Sentence 41.99 24.23 15.69 8.48 24.04 28.46
Trg-Context GT with the predicted sent. 42.40 24.80 16.15 8.98 25.96 30.25
Trg-Context GT with the ground truth sent. 42.50 25.09 16.39 9.51 25.98 30.33
Proposed method 42.79 24.86 16.37 9.66 26.01 30.60

Table 3: Translation results of the multi-encoder context-aware translation system trained with a target-
side previous ground truth context when the ground truth context is used in the inference phase (Trg-
Context GT with the ground truth sent.) and when the predicted sentence is used in the inference phase
(Trg-Context GT with the predicted sent.).

Context in training
Trg Trg News TED Talk

Method NMT Src GT MT EN-JA JA-EN EN-JA JA-EN EN-DE DE-EN
Single-Sentence vanilla 41.99 24.23 15.69 8.48 24.04 28.46
Src-Context concat. ✓ 42.87 24.40 15.17 8.79 25.96 30.03
Proposed method
(Fig. 1 (a)) concat. ✓ ✓ 42.89 24.62 15.33 8.36 25.09 29.74
Src-Context multi-enc. ✓ 42.06 24.37 15.58 9.33 25.97 29.55
Proposed method
(Fig. 1 (b)) multi-enc. ✓ ✓ 42.79 24.86 16.37 9.66 26.01 30.60

Table 4: English↔Japanese (News and TED Talk) and English↔German (TED Talk) translation re-
sults of the comparison between the use of source and target contexts: vanilla is the non-context-aware
transformer NMT, concat. is the concatenation-based context-aware NMT, and multi-enc. is the multi-
encoder context-aware NMT.

Examples. We show the output examples of the Japanese-to-English task with the TED Talk corpus
in Table 5. “The previous ground-truth target sentence” and “The previous predicted target sentence”
show sentences used as context information. “The current sentence” shows a source sentence to be trans-
lated. The multi-encoder context-aware NMTs were used for the four context-aware methods. Japanese
sentences of the examples include zero anaphora, where pronouns can be omitted when they are pragmat-
ically or grammatically inferable from intra- and inter-sentential context (Okumura and Tamura, 1996;
Iida et al., 2016). The first example (#1) is the simplest case. The previous and the current sentences are
same for the English-side (“We choose to go to the moon.”). On the other hand, for the Japanese-side, the
subject pronoun of the current sentence (“we”) is omitted as zero anaphora. Due to zero anaphora, the
Single-Sentence NMT failed to translate the current sentence. In contrast, the other four context-aware
NMTs succeeded in translating the current sentence. From this example, it appears that the context-aware
NMTs try to resolve the zero anaphora and are effective to translate documents correctly. The same as the
first example, since the pronoun (“him”) is omitted in the current sentence of the second example (#2),
the sentence is not translated correctly with the Single-Sentence NMT. Among the context-aware NMTs,
while the Src-Context and our proposed method NMTs translate the pronoun correctly, the Trg-Context
GT and Trg-Context Pred. NMTs mistranslate even though a clue to predict the pronoun is contained
in the previous predicted target contexts. It appears that Trg-Context GT and Trg-Context Pred. NMTs
could not encode the target-side context appropriately whereas our proposed method could exploit the
target-side context. The third example (#3) is the case where only the proposed method can predict the
pronoun (“his”) correctly.

5 Related Work

NMT models exploiting context beyond the current sentence are an active research area. Bawden et al.
(2018), Läubli et al. (2018), Müller et al. (2018), and Voita et al. (2018) showed that the document-level



4490

Input and ref. (Upper side) Sentences
and method (Lower side)

#1

The previous ground truth We choose to go to the moon.
target sentence
The previous predicted We decided to go to the moon.
target sentence
The current sentence 月に行くことにしたんです
Reference We choose to go to the moon.
Single-Sentence I went to the moon.
Src-Context We decided to go to the moon.
Trg-Context GT We decided to go to the moon.
Trg-Context Pred. We decided to go to the moon.
Proposed method We decided to go to the moon.

#2

The previous ground truth On the day after September 11 in 2001, I heard the growl of a
target sentence sanitation truck on the street, and I grabbed my infant son and I

ran downstairs and there was a man doing his paper recycling
route like he did every Wednesday.

The previous predicted On September 11, 2001, I heard a young man flying in a city,
target sentence and he went down, and a man came down the stairs, he was going

down the stairs, he was going down a piece of paper, and he was
doing it every Wednesday.

The current sentence あの日に一日中仕事をしてくれていることに感謝しようとし
ましたでも涙が出てきたのです

Reference And I tried to thank him for doing his work on that day of all
days, but I started to cry.

Single-Sentence And I was trying to appreciate the fact that I was doing my work
every day, but tears were coming out.

Src-Context And on that day, I decided to thank him for doing my work, but
I came up with tears.

Trg-Context GT And I was going to thank you for that day, and I was going to
thank you for doing my work every day, but I got to tears.

Trg-Context Pred. And on that day, I thank you very much for doing everything
in that day, but tears come up and tears come up.

Proposed method And I was grateful for that day, and I tried to thank him for
doing work all the day, but I had tears in my tears.

#3

The previous ground truth I would like to talk to you about a story about a small town kid.
target sentence
The previous predicted I’m going to talk about a boy in a village.
target sentence
The current sentence 名前は知りませんが彼の話はできます
Reference I don’t know his name, but I do know his story.
Single-Sentence I don’t know the name, but I can tell you his story.
Src-Context You don’t know the name, but you can talk to him.
Trg-Context GT I don’t know the name, but I can tell him.
Trg-Context Pred. He doesn’t know the names, but he can tell the story.
Proposed method I don’t know his name, but I can tell you his story.

Table 5: The output examples using the multi-encoder context-aware NMT in the Japanese→English
task of the TED Talk corpus: the upper-side shows the input and reference sentences and the lower-side
shows outputs of each method.



4491

context helps to maintain lexical, tense, deixis, and ellipsis consistencies in the current sentence. Fur-
thermore, the context can resolve anaphoric pronouns and other discourse characteristics. Most context-
aware NMT systems are modified to take additional source- and/or target-side context as their input.
Recent work in the context-aware NMT can be classified into multi-input models and multi-encoder
models. Tiedemann and Scherrer (2017) proposed concatenating the previous and the current source
sentences with a special token (such as BREAK ) as multi-input to a translation model. Bawden et
al. (2018) extended multi-encoder NMT systems (Zoph and Knight, 2016; Libovický and Helcl, 2017;
Wang et al., 2017) to exploit the previous source sentence as the context. These systems combine the in-
formation from the current sentence and the context of the source-side with either concatenation, gating
or hierarchical attention. Kim et al. (2019) investigated the difference in a multi-input model and two
types of multi-encoder NMT models, where the first method is an integration outside the decoder, which
combines encoder representations of all input sentences before being fed to the decoder, and another
method is to integrate each encoder representation inside the decoder.

In addition to the use of the source-side previous sentences as context, the use of the target-side previ-
ous sentences was also studied. Agrawal et al. (2018) proposed the concatenating translation model with
up to two previous sentences for the target-side in addition to up to three previous sentences and one next
source sentence for the source-side. They reported that a large number of previous target-side sentences
deteriorates performance because of error propagation. Though using various types of the context such as
both source and target previous sentences may improve the translation quality, it tends to require a huge
memory and a long computational time. Bawden et al. (2018) applied the use of the target-side context
to the multi-encoder model, though they reported deteriorated BLEU scores. They used the previous
reference during training, and the previous output of a baseline translation model during inference as
target-side context. In this paper, we focus mainly on the effective use of the target-side context. Recent
work on the use of target-side sentences as context shows the importance of using target-side context.
However, the improvement in translation quality is not stable.

The main idea of our work is borrowed from a scheduled sampling (Bengio et al., 2015). Bengio et al.
(2015) proposed the schedule sampling method to solve an exposure bias problem, which refers to a gap
between maximum likelihood estimation training and inference for an auto-regressive language model.
Zhang et al. (2019) proposed a sampling method with decay to alleviate the exposure bias in a recurrent
neural network (RNN) based NMT model. They showed that the method to feed either the ground truth
or the previous predicted words as context effectively reduced the gap between training and inference.
We extended this scheduled-sampling idea to the context-aware NMT where the model was trained with
the ground truth previous sentence of the target-side and the model generates translation results with the
predicted previous sentence of the target-side.

6 Conclusion

In this work, we have presented a controlled sampling method for a context-aware neural machine trans-
lation (NMT) using target-side previous ground-truth and predicted sentences as context. Our aim is to
tackle the exposure bias of the target-side context between the training and the inference on the basis
of the scheduled-sampling method. We implemented and evaluated the proposed method on two types
of context-aware NMT systems: concatenation-based context-aware and a multi-encoder context-aware
NMTs. The experimental results verified the effectiveness of our proposed method in terms of BLEU.
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