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Abstract

Emotion recognition in textual conversations (ERTC) plays an important role in a wide range of
applications, such as opinion mining, recommender systems, and so on. ERTC, however, is a
challenging task. For one thing, speakers often rely on the context and commonsense knowledge
to express emotions; for another, most utterances contain neutral emotion in conversations, as a
result, the confusion between a few non-neutral utterances and much more neutral ones restrains
the emotion recognition performance. In this paper, we propose a novel Knowledge Aware In-
cremental Transformer with Multi-task Learning (KAITML) to address these challenges. Firstly,
we devise a dual-level graph attention mechanism to leverage commonsense knowledge, which
augments the semantic information of the utterance. Then we apply the Incremental Transformer
to encode multi-turn contextual utterances. Moreover, we are the first to introduce multi-task
learning to alleviate the aforementioned confusion and thus further improve the emotion recog-
nition performance. Extensive experimental results show that our KAITML model outperforms
the state-of-the-art models across five benchmark datasets.

1 Introduction

Emotion recognition in textual conversations (ERTC), which aims to identify the emotion of each utter-
ance from the transcript of a conversation, has become a popular research topic in recent years. ERTC can
be widely used in various scenarios, such as opinion mining of comments in social media (Chatterjee et
al., 2019), emotion analysis of customers in artificial customer service, and others. In addition, it can also
be applied to chat robots to analyze the user’s emotional state in real time and generate emotion-aware
responses (Poria et al., 2019b; Zhou et al., 2018a; Huang et al., 2018).

Truth Prediction
Others Angry Sad Happy

Others 4424 101 60 92
Angry 54 237 6 1

Sad 44 11 192 3
Happy 88 0 2 194

Table 1: A confusion matrix of the emotion recognition results on the EmoContext test dataset (Chatterjee
et al., 2019) from Knowledge-Enriched Transformer (Zhong et al., 2019b), which is the current state-
of-the-art model. We notice that there are barely miss-classifications among the non-neutral categories
(Angry, Sad, and Happy). Most of the errors, shown in the bold font, correspond to the confusion between
a few non-neutral categories and much more neutral category (Others).

However, there are several challenges when analyzing emotion in natural conversations. Firstly, unlike
vanilla emotion recognition of sentences (Wang and Manning, 2012; Seyeditabari et al., 2018), ERTC
requires comprehensively considering the context in the conversation. Secondly, knowledge plays an
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important role in ERTC as speakers often express emotions relying on the context and commonsense
knowledge (Zhong et al., 2019b). Moreover, most utterances contain neutral emotion in conversations,
and the heavily imbalanced class distribution can easily lead to the confusion between a few non-neutral
utterances (e.g., happy, sad, and angry, etc.) and much more neutral ones (e.g., neutral or others), which
restrains the emotion recognition performance. Table 1 shows a confusion matrix of emotion recognition
results from the current state-of-the-art model and there appears a serious confusion between a few non-
neutral categories and much more neutral category.

Some prior studies have been conducted to model contextual information for emotion recognition in
conversations (Poria et al., 2017; Majumder et al., 2019). These methods first adopt convolutional neural
networks (CNN) to extract utterance-level features and then use context-level recurrent neural networks
(RNN) to model the contextual utterances in conversation. However, RNN and CNN have difficulty
modeling long-distance dependencies (Vaswani et al., 2017), which may be useful in ERTC. Zhong et
al. (2019b) uses a context-aware affective graph attention mechanism to incorporate external knowledge
for ERTC. However, they don’t consider various relations in external knowledge base, which may cause
the loss of semantic information. In addition, to the best of our knowledge, no existing work considers
the confusion between a few non-neutral utterances and much more neutral ones.

In this paper, We propose a novel Knowledge Aware Incremental Transformer with Multi-task Learn-
ing (KAITML) to address the aforementioned challenges. Firstly, we enhance the background and se-
mantic information of the given utterance to facilitate ERTC with the retrieved relevant knowledge graphs
from a large-scale commonsense knowledge base. Specifically, we propose a dual level graph attention
mechanism to encode these relevant knowledge graphs, which consists of a node-level attention to learn
the importance of different neighboring nodes and a relation-level attention to learn the importance of
different relations to the current node. Then we apply the Incremental Transformer (Li et al., 2019) to
incrementally encode multi-turn contextual utterances, which could capture the intra-utterance and inter-
utterance correlations by the self-attention (Cheng et al., 2016) and context-attention (Zhang et al., 2018)
modules, respectively. Moreover, we introduce multi-task learning to alleviate the confusion between
a few non-neutral utterances and much more neutral ones, as shown in Table 1. Specifically, we first
focus on the binary classification, “non-neutral” versus “neutral”, and then classifies the “non-neutral”
ones into fine-grained emotion categories. These two auxiliary tasks are jointly trained with the original
emotion recognition task.

In summary, this paper makes the following contributions:

• We devise a dual-level graph attention mechanism to support better understanding of utterances
for ERTC by considering various relations in external knowledge base. Furthermore, we apply the
Incremental Transformer to model multi-turn contextual utterances and recognize emotions.

• We are the first to introduce multi-task learning with two auxiliary tasks to alleviate the aforemen-
tioned confusion and thus further improve emotion recognition performance.

• Experimental results show that our proposed KAITML model outperforms the state-of-the-art mod-
els across five benchmark datasets in F1 score. In addition, context, commonsense knowledge and
multi-task learning are all beneficial to the emotion recognition performance.

2 Related Work

Emotion recognition in conversations has grabbed much attention from researchers in the past few years
due to the proliferation of publicly available conversational dataset (Poria et al., 2019a; Chatterjee et
al., 2019; Li et al., 2017; Zhou et al., 2018a) and its widespread applications in opinion mining, recom-
mender systems, emotion-aware dialogues generation, and so on (Poria et al., 2019b). Some of the deep
learning-based models have been proposed for emotion recognition in conversations, in only textual and
multimodal settings (containing textual, acoustic, and visual information).

Poria et al. (2017) proposes a long short-term memory network (LSTM) (Hochreiter and Schmidhu-
ber, 1997) based model to capture contextual correlations from the utterances of a user-generated video
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for multimodal sentiment classification. Hazarika et al. (2018b) proposes conversational memory net-
work (CMN) that exploits distinct memory units for each speaker to model emotional dynamics and
detect emotion in a dyadic conversation. Later, Hazarika et al. (2018a) improves upon this approach with
interactive conversational memory network (ICON), which utilizes the interactive memory unit to hierar-
chically model the self- and inter-speaker emotional influences for emotion recognition in conversational
videos. Majumder et al. (2019) proposes the DialogueRNN model that exploits three gated recurrent
units (GRU) (Cho et al., 2014) to capture speaker information, context and emotional information of the
preceding utterances, respectively. They achieve the state-of-the-art performance on several multimodal
conversation datasets. Compared to these gated RNNs and CNNs based models, we apply the Incre-
mental Transformer (Li et al., 2019) to incrementally encode multi-turn contextual utterances, where the
shorter path of information flow in the self-attention (Cheng et al., 2016) and context-attention (Zhang
et al., 2018) modules in the Incremental Transformer allows our model to exploit contextual information
more efficiently.

Recently, a considerable literature has grown up around the theme of incorporating external knowledge
in generative conversation systems, including question answering systems (Hao et al., 2017; Mihaylov
and Frank, 2018), open-domain dialogue systems (Young et al., 2018; Zhou et al., 2018b; Zhong et
al., 2019a), and task-oriented dialogue systems (He et al., 2019; Madotto et al., 2018; Chen et al.,
2019). Zhong et al. (2019b) proposes a Knowledge-Enriched Transformer (KET) achieving the state-of-
the-art performance on multiple textual conversation datasets, where contextual utterances are encoded
using hierarchical self-attention and commonsense knowledge is incorporated using a context-aware
affective graph attention mechanism. However, they ignore various relations in external knowledge
base, which may cause the loss of semantic information. By contrast, our dual-level graph attention
mechanism, can take advantage of the various relations in external knowledge base to better augment the
semantic information of the utterances.

3 Our Proposed KAITML Model

3.1 Task Definition and Overview

Let 〈X(i)
j , Y

(i)
j 〉, i = 1, ...N, j = 1, ...Ni be a collection of 〈utterance, label〉 pairs in a given conversa-

tion dataset, where N denotes the number of conversations and Ni denotes the number of utterances in
the ith conversation. The objective of the task is to maximize the following function:

argmax
θ

N∏
i=1

Ni∏
j=1

P(Y (i)
j | X(i)

j , X
(i)
j−1, ..., X

(i)
j−M ; θ). (1)

where X(i)
j denotes target utterance, Y (i)

j denotes the emotion label of target utterance, θ denotes the

model parameters we need to optimize and X(i)
j−1, ..., X

(i)
j−M denote contextual utterances. Here, we

limit the number of contextual utterances to M . We follow (Su et al., 2018; Zhong et al., 2019b) to
directly discard early contextual utterances. Similar to (Zhong et al., 2019b; Poria et al., 2017), we clip
and pad each utterance X(i)

j to a fixed K number of tokens. The overview of our KAITML model and
detailed architecture of model components are presented in Figure 1.

3.2 Knowledge Interpreter

Commonsense knowledge is fundamental to understanding conversations (Zhou et al., 2018b). We use
ConceptNet (Speer et al., 2017) as a external commonsense knowledge base in our model. ConceptNet is
a large-scale multilingual semantic graph where concepts are nodes in the graph and relations are edges,
which describes general human knowledge in natural language. Each 〈concept1, relation, concept2〉
triple is termed an assertion. At present, ConceptNet comprises 5.9M assertions, 3.1M concepts and 38
relations for English.

The knowledge interpreter is designed to facilitate the understanding of an utterance. It takes as input
an utterance X(i)

n = x1x2...xK , n = j −M, ..., j and retrieves a few relevant knowledge graphs G(i)
n =
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Figure 1: The top is the overview of KAITML and the bottom is the detailed architecture of model
components. (a) Self-Attentive Encoder. (b) Incremental Encoder. (c) Knowledge Interpreter.

{g1, g2, ..., gK} where each token in the utterance corresponds to a graph, as shown in Figure 1 (c). In
general, the knowledge interpreter uses each token xk, k = 1, ...,K (non-stopword) in an utterance X(i)

n

as the key node to retrieve a graph gk comprising its immediate neighbors from ConceptNet, as shown
in the red box in Figure 1 (c). For each gk, we remove nodes that are stopwords or not in our vocabulary.
Each retrieved graph gk consists of a key node (the red dots) and its neighboring nodes (different colors
denote different relations), where each node c is converted into a vector representation c ∈ Rd, where d
denotes the size of vector. Then, the knowledge interpreter computes the graph vector gk ∈ Rd of the
retrieved graph gk using the dual-level graph attention mechanism.

We use a token embedding layer to convert each token xk inX(i)
n into a vector representation xk ∈ Rd.

To encode positional information, the position encoding (Vaswani et al., 2017) is added as follows:

xk = Embed(xk) + Pos(xk). (2)

Finally, the knowledge-enriched token embedding ek can be obtained via a linear transformation:

ek = W [xk; gk]. (3)

where [; ] denotes concatenation and W ∈ Rd×2d denotes a model parameter. All K tokens in X(i)
n form

a knowledge-enriched utterance embedding E
(i)
n ∈ RK×d that is then fed to the Incremental Transformer,

as shown in Figure 1.

Dual-level Graph Attention Mechanism
The dual-level graph attention mechanism is designed to generate a representation for a retrieved knowl-
edge graph, inspired by (Velickovic et al., 2018), which will be used to augment the semantics of each
token in an utterance. Compared to (Velickovic et al., 2018), our graph attention considers not only all
nodes in a graph but also relations between nodes. The dual-level graph attention mechanism, including
node-level and relation-level attentions, can learn the importance of different neighboring nodes as well
as the importance of different relations to a key node.
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Node-level Attention. The node-level attention takes as input the node vectors F (gk) = {crs}, r =
1, ...Rk, s = 1, ...Nr in the retrieved knowledge graph gk, where Rk denotes the number of relations in
gk and Nr denotes the number of nodes in the rth relation, to produce relation vectors tr as follows:

tr =

Nr∑
s=1

αrsc
r
s, (4)

αrs =
exp(xk · crs)

Nr∑
h=1

exp(xk · crh)
. (5)

Relation-level Attention. The relation-level attention takes as input the relation vectors tr, r =
1, ...Rk, to produce a graph vector gk as follows:

gk =

Rk∑
r=1

βrtr, (6)

βr =
exp(xk · tr)

Rk∑
h=1

exp(xk · th)
. (7)

If |gk| = 0, where |gk| denotes the number of nodes in gk, we set gk to the average of all node
vectors (Zhong et al., 2019b).

3.3 Incremental Transformer

We apply the Incremental Transformer (Li et al., 2019) to encode multi-turn contextual utterances, as
shown in Figure 1, which contains Self-Attentive Encoder and Incremental Encoder.

Self-Attentive Encoder
The Self-Attentive Encoder is a transformer encoder as described in (Vaswani et al., 2017), which en-
codes the first utterance.

As shown in Figure 1 (a), the Self-Attentive Encoder contains a stack of L identical layers. Each
layer has two sub-layers. The first sub-layer is a multi-head self-attention (MultiHead) (Vaswani et al.,
2017). MultiHead(Q,K,V ) is a multi-head attention function that takes a query matrix Q, a key
matrix K, and a value matrix V as input. In current case, Q = K = V . That’s why it’s called self-
attention. And the second sub-layer is a simple, position-wise fully connected feed-forward network
(FFN). This FFN consists of two linear transformations with a ReLU activation in between, FFN(x) =
max(0, xW1 + b1)W2 + b2, where W1, b1,W2, b2 denote model parameters. (Vaswani et al., 2017)

Formally, for the first knowledge-enriched utterance embedding E
(i)
j−M ∈ RK×d, its representation

C
(i)[L]
j−M ∈ RK×d is computed as follows:

A
(i)[l]
j−M = MultiHead(C(i)[l−1]

j−M ,C
(i)[l−1]
j−M ,C

(i)[l−1]
j−M ), (8)

C
(i)[l]
j−M = FFN(A

(i)[l]
j−M ). (9)

where l = 1, ..., L, C(i)[0]
j−M = E

(i)
j−M , A(i)[l]

j−M ∈ RK×d is the hidden state computed by multi-head

attention at the lth layer, C(i)[l]
j−M ∈ RK×d denotes the representation of E(i)

j−M after l layer. The residual
connection and layer normalization are omitted in the presentation for simplicity. More details can be
found in (Vaswani et al., 2017).
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Incremental Encoder
The Incremental Encoder is a variant of the transformer encoder with an additional context-
attention (Zhang et al., 2018) module, which encodes multi-turn utterances using an incremental encod-
ing scheme. It takes the output of previous utterances and current utterance as input, and use attention
mechanism to incrementally model relevant context.

As shown in Figure 1 (b), the Incremental Encoder contains a stack of L identical layers. Each layer
has three sub-layers. For each knowledge-enriched utterance embedding E

(i)
n ∈ RK×d, n = j −M +

1, ..., j, its representation C
(i)[L]
n ∈ RK×d is computed as follows:

The first sub-layer is a multi-head self-attention:

A(i)[l]
n = MultiHead(C(i)[l−1]

n ,C(i)[l−1]
n ,C(i)[l−1]

n ), (10)

where l = 1, ...L, C(i)[l−1]
n ∈ RK×d is the output of the previous layer and C

(i)[0]
n = E

(i)
n .

The second sub-layer is a multi-head context-attention:

B(i)[l]
n = MultiHead(A(i)[l]

n ,C
(i)[L]
n−1 ,C

(i)[L]
n−1 ), (11)

where C
(i)[L]
n−1 ∈ RK×d is the representation of the previous utterances after L layers.

The third sub-layer is a position-wise fully connected feed-forward network:

C(i)[l]
n = FFN(B(i)[l]

n ). (12)

Finally, C(i)[L]
j ∈ RK×d is the representation of relevant context (including target utterance), as shown

in Figure 1, which is then fed into a max-pooing layer to learn discriminative features among positions
and derive the final representation O

(i)
j ∈ Rd:

O
(i)
j = MaxPooling(C(i)[L]

j ). (13)

3.4 Multi-task Learning
We introduce multi-task learning to alleviate the confusion between a few non-neutral categories (e.g.,
happy, sad, and angry, etc.) and much more neutral category (e.g., neutral or others) and thus further
improve emotion recognition performance, as shown in Figure 1, which contains three different tasks.

Task 1 is the original emotion recognition task, which predicts the emotion label, including non-neutral
categories and neutral category, of target utterance X(i)

j . Its loss on one sample 〈X(i)
j , Y

(i)
j 〉 is computed

as follows:

loss1 = −
q∑
t=1

Y1
(i)
jt

log Ŷ1
(i)
jt , (14)

Ŷ1
(i)
j = softmax(O(i)

j W1 + b1). (15)

where W1 ∈ Rd×q and b1 ∈ Rq denotes model parameters, q denotes the number of categories,
Ŷ1

(i)
j ∈ Rq denotes the predicted probability distribution of task 1, and Y1

(i)
j ∈ Rq (one-hot vector,

the corresponding category position is 1, and the remaining positions are 0) denotes the ground-truth
probability distribution of task 1.

Task 2 focuses on the binary classification, “non-neutral” versus “neutral”, which determines whether
the target utterance X(i)

j is “non-neutral” or “neutral”. Its loss on one sample 〈X(i)
j , Y

(i)
j 〉 is computed

as follows:

loss2 = −
2∑
t=1

Y2
(i)
jt

log Ŷ2
(i)
jt , (16)

Ŷ2
(i)
j = softmax(O(i)

j W2 + b2). (17)
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where W2 ∈ Rd×2 and b2 ∈ R2 denotes model parameters, Ŷ2
(i)
j ∈ R2 denotes the predicted probability

distribution of task 2, and Y2
(i)
j ∈ R2 (one-hot vector) denotes the ground-truth probability distribution

of task 2.
Task 3 classifies the “non-neutral” into fine-grained emotion categories. Its loss on one sample
〈X(i)

j , Y
(i)
j 〉 is computed as follows:

loss3 =
1

2

q−1∑
t=1

(Y3
(i)
jt
− Ŷ3

(i)
jt )

2, (18)

Ŷ3
(i)
j = sigmoid(O(i)

j W3 + b3). (19)

where W3 ∈ Rd×(q−1) and b3 ∈ Rq−1 denotes model parameters, q − 1 denotes the number of non-
neutral categories, Ŷ3

(i)
j ∈ Rq−1 denotes the predicted output of task 3, and Y3

(i)
j ∈ Rq−1 denotes the

ground-truth output of task 3 (when Y (i)
j is neutral category, Y3

(i)
j is a vector of all zeros, otherwise it’s

a one-hot vector).
During training, the total loss of our model is defined as:

Loss =
loss1 + λ1loss2 + λ2loss3

1 + λ1 + λ2
. (20)

where λ1, λ2 ∈ [0, 1] are weight coefficients of loss2, loss3, respectively.

4 Experimental Setting

4.1 Datasets and Evaluations

We evaluate our model on the following five benchmark datasets. Some of datasets, such as MELD,
IEMOCAP, EmoryNLP, are multimodal conversation datasets containing textual, acoustic, and visual
information. In this paper, we recognize emotion in conversations only based on textual information.
The statistics and evaluation metrics of these datasets are drawn in Table 2.

Dataset #Conv. (Train/Val/Test) #Utter. (Train/Val/Test) #Classes Evaluation

EC 30160/2755/5509 90480/8265/16527 4 Micro-F1(exclude “others”)
DailyDialogue 11118/1000/1000 87170/8069/7740 7 Micro-F1(exclude “neutral”)

MELD 1038/114/280 9989/1109/2610 7 Weighted-F1
EmoryNLP 659/89/79 7551/954/984 7 Weighted-F1
IEMOCAP 100/20/31 4810/1000/1523 6 Weighted-F1

Table 2: Dataset descriptions.

EmoContext(EC) (Chatterjee et al., 2019): Short dialogues composed of three turns comes from social
media. Its emotion labels include happy, sad, angry and others.
DailyDialogue (Li et al., 2017): Daily communications written by human. Its emotion labels include
anger, disgust, fear, joy, sadness, surprise and neutral.
MELD (Poria et al., 2019a): Scripts collected from the Friends TV series. Its emotion labels are the
same as the ones used in DailyDialogue.
EmoryNLP (Zahiri and Choi, 2018): Scripts collected from the Friends TV series as well. Its emotion
labels include sad, mad, scared, powerful, peaceful, joyful and neutral, which are different from MELD.
IEMOCAP (Busso et al., 2008): Two-way emotional conversation. Its emotion labels include happiness,
sadness, anger, frustrated, excited and neutral.

The evaluation metric of each dataset is the same as the one used in (Zhong et al., 2019b).



4436

4.2 Baselines
We compare our proposed model with the following baselines:
cLSTM: It first adopt a bidirectional LSTM to extract utterance-level features and then use a context-
level unibidirectional LSTM to model the contextual utterances.
CNN (Kim, 2014): A single-layer CNN is trained on utterance-level without context.
CNN+cLSTM (Poria et al., 2017): It first adopt an CNN to extract utterance-level features and then
apply a context-level unibidirectional LSTM to learn context representations.
BERT BASE (Devlin et al., 2019): Base version of Bert. It takes as input each utterance with its context
as a single text.
DialogueRNN (Majumder et al., 2019): It exploits three gated recurrent units (GRU) to capture speaker
information, context and emotional information of the preceding utterances, respectively.
KET (Zhong et al., 2019b): It’s the state-of-the-art model for ERTC, where contextual utterances are
encoded using hierarchical self-attention and commonsense knowledge is incorporated using a context-
aware affective graph attention mechanism.

4.3 Hyper-parameter Settings
We use Adam optimizer (Kingma and Ba, 2015) to train our model with learning rate of 0.0001 and a
batch size of 64 in all datasets. We set the class weights in cross-entropy loss as the ratio of the class
distribution in the validation set to the class distribution in the training set for each dataset (Zhong et
al., 2019b). Thus, we can tackle the mismatch in class distribution between validation set and training
set. The initial token and node embeddings are pre-trained with GloVe (Pennington et al., 2014). The
detailed hyper-parameter settings for KAITML are presented in Table 3.

Dataset d p f M L h λ1 λ2

EC 300 400 1 2 2 4 1.0 0.7
DailyDialogue 300 400 3 6 3 4 1.0 1.0

MELD 300 400 1 6 1 4 1.0 0.7
EmoryNLP 100 200 1 6 2 4 0.9 0.5
IEMOCAP 300 400 1 6 1 4 0.9 0.6

Table 3: Hyper-parameter settings for KAITML. d: token/node embedding size. p: hidden size in FFN.
f : minimum token frequency in vocabulary. M : context length. L: number of encoder layers. h: number
of heads in MultiHead. λ1, λ2: weight coefficients of loss2, loss3, repectively.

5 Result Analysis

Model EC DailyDialogue MELD EmoryNLP IEMOCAP

cLSTM 69.13 49.90 49.72 26.01 34.84
CNN (Kim, 2014) 70.56 49.34 55.86 32.59 52.18

CNN+cLSTM (Poria et al., 2017) 72.62 50.24 56.87 32.89 55.87
Bert BASE (Devlin et al., 2019) 69.46 53.12 56.21 33.15 61.19

DialogueRNN (Majumder et al., 2019) 74.05 50.65 56.27 31.70 61.21
KET (Zhong et al., 2019b) 73.48 53.37 58.18 34.39 59.56

KAITML (ours) 75.39 54.71 58.97 35.59 61.43

Table 4: Performace comparisons on the five test sets (%). Bold font denotes the best performance.

5.1 Comparison with Baselines
Table 4 shows the performance of different models on 5 benchmark datasets. We can see that our model
outperforms all the baselines, on all the datasets, which shows the effectiveness of our proposed model
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for ERTC. Through paired t-test, there were significant differences between our proposed model and all
baselines (p ≤ 0.05). Note that all the results of baselines are directly cited from (Zhong et al., 2019b).

The state-of-the-art KET model performs best overall among all baselines. And our KAITML model
surpasses the KET model by around 1.5% performance on all the dataset tested. To explain this gap
in performance, it’s significant to understand the nature of these models. KAITML and KET both in-
corporate external commonsense knowledge and model contextual information based on transformer for
ERTC. This is a key limitation in other baseline models, as external commonsense knowledge can en-
rich the background and semantic information of utterances and the self-attention module in transformer
allows model to exploit contextual information more efficiently than CNNs and gated RNNs in other
baseline models. As for the difference of performance between KAITML and KET, we believe that
this is due to the difference of graph attention mechanism and multi-task learning. That KET doesn’t
consider various relations in external knowledge base may cause the loss of semantic information. By
contrast, KAITML tries to overcome this issue by using a dual-level graph attention mechanism, which
can exploit the various relations in external knowledge base and thus support better understanding of
utterances. In addition, the multi-task learning in KAITML can alleviate the confusion between a few
non-neutral utterances and much more neutral ones and thus further improve the emotion recognition
performance.

5.2 Ablation Study

context knowledge multi-task EC DailyDialogue MELD EmoryNLP IEMOCAP

! ! ! 74.97 56.76 54.22 38.10 50.83
% ! ! 68.92 54.84 52.68 37.85 49.25
! % ! 73.90 55.87 53.09 34.75 49.16
! ! % 73.46 55.57 53.83 36.84 49.19

Table 5: Ablation results on five validation sets (%). Context, commonsense knowledge and multi-task
learning are all beneficial to the emotion recognition performance.

To comprehensively study the impact of context, knowledge and multi-task learning, we remove them
one at a time and investigate their contribution on all datasets. As expected, following Table 5, context,
knowledge and multi-task learning are all essential to the strong performance of our model on all datasets
and their combination achieves the best performance. Note that removing knowledge has a greater im-
pact on small datasets (i.e., EmoryNLP and IEMOCAP) than big datasets (i.e., EC, DailyDialogue and
MELD), which is expected because external commonsense knowledge can help model understand utter-
ances, especially when there is insufficient data. Moreover, compared to other datasets, the performance
of the EC drops a lot, around 6%, when removing context. The reason may be that there are more short
utterances on EC, like “ok”, “yes”, whose emotion depends on the context it appears in. With multi-task
learning, we observed that the confusion between non-neutral categories and neutral category is allevi-
ated in the confusion matrix and the performance improves by about 1.2% on all datasets on average.

5.3 Error Analysis

By analyzing our predicted emotion labels, we found that the model error is mainly caused by the follow-
ing aspects. Firstly, misclassifications are often among similar emotion classes in the confusion matrix,
like ‘happy’ and ‘excited’, ‘angry’ and ‘frustrated’. Secondly, the performance of emotion classes with
small amount data available is poor, like ‘fear’ and ‘disgust’ in DailyDialogue dataset. Thirdly, some of
datasets, such as MELD, IEMOCAP, EmoryNLP, that we use in our experiment are multimodal. And
we found that acoustic, and visual modality provide key information to recognize emotions in a few
utterances (e.g., ‘okay’, ‘yes’, etc.) while our proposed KAITML model considers only textual modality.
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6 Conclusion and Future Work

In this paper, we propose a novel Knowledge Aware Incremental Transformer with Multi-task Learning
(KAITML) for emotion recognition in textual conversations, which can effectively incorporate contex-
tual information and commonsense knowledge, and alleviate the confusion between a few non-neutral ut-
terances and much more neutral ones. Moreover, extensive experimental results show that our KAITML
model outperforms state-of-the-art models across five benchmark dataset. Future work will focus on the
following directions: 1) how to differentiate similar emotions, 2) how to recognize emotion using limited
data, 3) how to incorporate multimodal information for emotion recognition in conversations.
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