
Proceedings of the 28th International Conference on Computational Linguistics, pages 437–449
Barcelona, Spain (Online), December 8-13, 2020

437

Improving Abstractive Dialogue Summarization with Graph Structures
and Topic Words

Lulu Zhao
Beijing University of Posts
and Telecommunications,

Beijing, China
zhaoll@bupt.edu.cn

Weiran Xu ∗
Beijing University of Posts
and Telecommunications,

Beijing, China
xuweiran@bupt.edu.cn

Jun Guo
Beijing University of Posts
and Telecommunications,

Beijing, China
guojun@bupt.edu.cn

Abstract

Recently, people have been beginning paying more attention to the abstractive dialogue summa-
rization task. Since the information flows are exchanged between at least two interlocutors and
key elements about a certain event are often spanned across multiple utterances, it is necessary
for researchers to explore the inherent relations and structures of dialogue contents. However,
the existing approaches often process the dialogue with sequence-based models, which are hard
to capture long-distance inter-sentence relations. In this paper, we propose a Topic-word Guided
Dialogue Graph Attention (TGDGA) network to model the dialogue as an interaction graph ac-
cording to the topic word information. A masked graph self-attention mechanism is used to in-
tegrate cross-sentence information flows and focus more on the related utterances, which makes
it better to understand the dialogue. Moreover, the topic word features are introduced to assist
the decoding process. We evaluate our model on the SAMSum Corpus and Automobile Master
Corpus. The experimental results show that our method outperforms most of the baselines.

1 Introduction

Due to the explosive growth of the textual information, text summarization, which is an important task
in Natural Language Processing (NLP), has been widely studied for several years. It can be categorized
into two types: extractive and abstractive. Extractive methods select sentences or phrases from the source
text directly (Nallapati et al., 2017; Zhou et al., 2018; Zhang et al., 2018a; Wang et al., 2019), while
abstractive methods, which are more similar to how humans summarize texts, attempt to understand the
semantic information of source text and generate new expressions as the summary. Recently, neural
network methods have led to encouraging results in the abstractive summarization of single-speaker
documents like news, scientific publications, etc (Rush et al., 2015; Gehrmann et al., 2018; Xu et al.,
2020). These approaches employ a sequence-to-sequence general framework where the documents are
fed into an encoder network and another decoder network learns to decode the summary.

With the popularity of phone calls, e-mails, and social network applications, people share information
in more different ways, which are often in the form of dialogues. Different from news texts, dialogue
is a dynamic information exchange flow, which is often informal, verbose and repetitive, sprinkled with
false-starts, backchanneling, reconfirmations, hesitations, and speaker interruptions (Sacks et al., 1974).
Besides, utterances are often turned from different interlocutors, which leads to the topic drifts, and lower
information density. These problems need to be solved using natural language generation techniques with
a high level of semantic understanding.

Some early works benchmarked the abstractive dialogue summarization task using the AMI meeting
corpus, which contains a wide range of annotations, including dialogue acts, topic descriptions, etc.
(Carletta et al., 2005; Mehdad et al., 2014; Banerjee et al., 2015). Goo and Chen (2018) proposed to
use the high-level topic descriptions (e.g. costing evaluation of project process) as the gold references
and leveraged dialogue act signals in a neural summarization model. They assumed that dialogue acts
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indicated interactive signals and used these information for a better performance. Because this meeting
dataset has a low number of summaries and is different from real dialogues, this network can not reflect
its effectiveness on dialogue summarization. Customer service interaction is also a common form of
dialogue, which contains questions of the user and solutions of the agent. Liu et al. (2019a) collected
a dialogue-summary dataset from the logs in the DiDi customer service center. They proposed a novel
Leader-Writer network, which relies on auxiliary key point sequences to ensure the logic and integrity of
dialogue summaries, and designs a hierarchical decoder. The rules of labeling the key point sequences are
given by domain experts, which needs to consume a lot of human efforts. Considering the lack of high-
quality datasets, Gliwa et al. (2019) created the SAMSum Corpus and further investigated the problems of
dialogue summary generation. They only proposed the dataset and experimented with general networks
of text summarization. Although some progress has been made in abstractive dialogue summarization
task, previous methods do not develop specially designed solutions for dialogues, and are all dependent
on sequence-to-sequence models, which can not handle the sentence-level long-distance dependency and
capture the cross-sentence relations.

To mitigate these issues, an intuitive way is to model the relations of sentences using the graph struc-
tures, which can break the sequential positions of dialogues and directly connect the related long-distance
utterances. In this paper, we propose a Topic-word Guided Dialogue Graph Attention (TGDGA) network
that discovers the intra-sentence and inter-sentence relations by graph neural networks, and generates
summaries relied on the graph-to-sequence framework and topic words. Nodes of different granular-
ity levels represent topic word features and utterance sequence features, respectively. The edges in the
graph are initialized by the linguistic information relationships between the nodes. The masking mecha-
nism operated in the graph self-attention layer only leverages related utterances and filters out redundant
utterances. The dialogue graph aggregates the useful conversation history and captures cross-sentence
relations effectively. Besides, we encode the topic words to the topic information representation and
integrate it into the decoder, to guide the process of generation.

The key contributions of this work include:

• To the best of our knowledge, we are the first to construct the whole dialogue as a graph for ab-
stractive dialogue summarization. The proper graph structure permits easier analysis of various
key information in the dialogue and separates available utterances. Graph neural networks avoid
the problem of long-distance dependency and the cross-sentence relations can be extracted, which
makes the information flow of the dialogue more clearer.

• We devise a topic-word guided graph-to-sequence network that generates dialogue summaries in
an end-to-end way. The topic word information is leveraged through graph attention mechanism,
coverage mechanism, and pointer mechanism, which makes the summary more centralized with key
elements. Experiments show that our model outperforms all baselines on two benchmark datasets
without the pre-trained language models.

2 Related Work

2.1 Abstractive document summarization
With the development of the encoder-decoder framework on machine translation, more and more re-
searchers take note of its great potential in document summarization area, especially for abstractive
methods. Rush et al. (2015) were the first to apply the general seq2seq model with an attention mecha-
nism. Li et al. (2017) creatively incorporated the variational auto-encoder into the seq2seq model to learn
the latent structure information. To alleviate the Out-Of-Vocabulary (OOV) problem, Gu et al. (2016)
introduced the copy mechanism in sequence-to-sequence learning by copying words from the source
text. See et al. (2017) proposed a pointer-generator network and incorporated an additional coverage
mechanism into the decoder. Moreover, Reinforcement Learning (RL) approaches have been proved to
further improve the performance. Sharma et al. (2019) presented a two-step approach: an entity-aware
content selection module to identify salient sentences from the input and a generation module to generate
summaries. Reinforcement learning was used to connected the two components.
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Figure 1: A general architecture of Topic-word Guided Dialogue Graph Attention model for abstractive
dialogue summarization.

2.2 Abstractive dialogue summarization

Due to the lack of publicly available resources, some tentative works for dialogue summarization have
been carried out in various fields. Goo and Chen (2018) produced the summaries of AMI meeting corpus
based on the annotated topics the speakers discuss about. In their work, a sentence-gated mechanism
was used to jointly model the explicit relationships between dialogue acts and summaries. For customer
service, Liu et al. (2019a) proposed a model where a key point sequence acts as an auxiliary label in
the training procedure. In the prediction procedure, the Leader-Writer network predicts the key point se-
quence first and then uses it to guide the prediction of the summaries. For Argumentative Dialogue Sum-
mary Corpus, Ganesh and Dingliwal (2019) used the sequence tagging of utterances for identifying the
discourse relations of the dialogue and fed these relations into an attention-based pointer network. From
consultation between nurses and patients, Liu et al. (2019b) arranged a pilot dataset. They presented
an architecture that integrates the topic-level attention mechanism in the pointer-generator network, uti-
lizing the hierarchical structure of dialogues. Besides, Gliwa et al. (2019) introduced a new abstractive
dialogue summarization dataset and verify the performances of general sequence-based models.

2.3 Graph Neural Networks for NLP

The Graph Neural Networks (GNNs) have attracted growing attention recently, which are good for rep-
resenting graph structures in NLP tasks, such as sequence labeling (Marcheggiani and Titov, 2017),
relation classification (Zhao et al., 2020), text classification (Zhang et al., 2018b), and text generation
(Song et al., 2018). For summary task, early traditional works made use of inter-sentence cosine similar-
ity to build the connectivity graph like LexRank (Erkan and Radev, 2004) and TextRank (Mihalcea and
Tarau, 2004). Later, some works used discourse inter-sentential relationships to build the Approximate
Discourse Graph (ADG) (Yasunaga et al., 2017) and Rhetorical Structure Theory (RST) graph (Xu et
al., 2019). They usually rely on external tools and cause error propagation. To avoid these problems,
Transformer encoder was used to create a fully-connected graph that learns relations between pairwise
sentences (Zhong et al., 2019). Nevertheless, how to construct an effective graph structure for summa-
rization remains a difficult problem.

3 Methodology

In this section, we introduce the Topic-word Guided Dialogue Graph Attention Network for the summary
generation. The TGDGA includes four parts: (1) Dialogue Graph Construction (2) Graph Encoder (3)
Sequential Context Encoder (4) Topic-word Guided Decoder. Figure 1 presents the overview of our
model.
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Figure 2: (a) The detailed illustration of graph attention mechanism between utterance node and topic
word node. Grey boxes and orange circles represent utterance nodes and topic word nodes respectively.
(b) The general architecture of graph encoder. (c) Masked graph self-attention mechanism transforms
the original dialogue into different edge-weighted graphs. Numbers in the matrix denote the weights.

3.1 Dialogue Graph Construction
Given an input graphG = {V,E}, V stands for a node set which is defined as V = Vu∪Vw, andE is the
edge set which is defined E = Euu ∪ Euw. Here, Vu = {u1, ..., um} and Vw = {w1, ..., wn} donate m
utterances and n topic words of the dialogue, respectively. euuij ∈ Euu (i ∈ {1, ...,m}, j ∈ {1, ...,m})
corresponds to the relationship between utterance nodes. ei ∈ Euw (i ∈ {1, ..., n}) represents the
relationship between utterance nodes and topic word nodes. The nodes and edges in the graph are
initialized in the following way.

Node initialization Considering that the topic word information plays an important role in the
dialogue, we assign some high probable topic words trained by LDA model (Hoffman et al., 2010). LDA
is a probabilistic topic model and its parameters are estimated using the collapsed Gibbs sampling al-
gorithm (Zhao et al., 2011). Moreover, the names of all interlocutors mentioned in the dialogue history
are also added into the topic word set. We use a Convolutional Neural Network (CNN) with different
filter sizes to capture the local feature representations zi for each utterance ui. Each topic word wi is
transformed into a real-valued vector representation εi by looking up the word embedding matrix, which
is initialized by a random process. To update utterance node representations, we introduce a shared graph
attention mechanism (Veličković et al., 2018) which can characterize the strength of contextual correla-
tions between utterance node uj and topic word node wi (i ∈ Nj), where Nj is the topic neighborhood
of utterance node uj , as shown in Figure 2 (a). Besides, it can also diminish the repercussion of imperti-
nent topic words and emphasize the relevant ones to the utterance. The utterance node representation xj
is calculated as follows:

Aij = f (εi, zj) = εTi zj

αij = softmaxi (Aij) =
exp (Aij)∑

k∈Nj
exp (Akj)

xj = σ

∑
i∈Nj

αijWaεi


(1)

where Wa is a trainable weight and αij is the attention coefficient between εi and zj .
Edge initialization If we hypothesize that each utterance node is contextually dependent on all

the other nodes in a dialogue, then a fully connected graph would be constructed. However, this leads
to a huge amount of computation. Therefore, we adopt a strategy to construct the edges of the graph,
which associates the utterances of the dialogue according to the topic word information. If node ui and
uj share at least one topic word, an edge euuij = 1 is assigned to them.

3.2 Graph Encoder
After we get the constructed graph G with utterance node features x and the edge set E, we feed them
into a graph encoder to represent the dialogue. As shown in Figure 2 (b), the graph encoder is composed
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of M identical blocks and each block consists of two types of layers: the masked graph self-attention
layer, and the feed forward layer.

Masked Graph Self-Attention Layer Different parts of the dialogue history have distinct levels
of importance that may influence the summary generation process. We choose to use the masked attention
mechanism to focus more on the salient utterances. The general self-attention operation captures the
interactions between two arbitrary positions of a single sequence (Vaswani et al., 2017). However, our
masked self-attention operation only calculates the similarity relationship between two connected nodes
in the graph and masks the irrelevant edges, as shown in Figure 2 (c). The similarity relationship is
regarded as the edge weight which can be learned by the model in an end-to-end fashion. This layer is
designed as follows:

headli = Attention
(
QWQ,l

i ,KWK,l
i , V W V,l

i

)
Attention (Q,K, V ) = softmax

(
Q×K√

d

)
V

gl =
[
headl1; ...;head

l
H

]
W o,l

(2)

where W o, WQ
i , W V

i , and WK
i are weight matrices, H is the head number, and d is the dimension of

utterance node features x ∈ Rm×d. In the first block, Q, K, and V are x. For the following blocks l,
they are the feed forward layer output vector f l−1 ∈ Rm×d of block l − 1.

Feed Forward Layer This layer contains two linear combinations with a ReLU activation in
between just as Transformer (Vaswani et al., 2017). Formally, the output of the linear transformation
layer is defined as:

f l = ReLU
(
glwl

1 + bl1

)
wl
2 + bl2 (3)

where w1, and w2 are weight matrices. b1, and b2 are bias vectors.

3.3 Sequential Context Encoder

Because dialogues are sequential by nature, parts of the contextual information will also flow along the
sequence. The tokens of the dialogue are fed one-by-one into a single-layer bidirectional LSTM unit,
producing a sequence of encoder hidden states hi, i = 1, 2, ..., N . Finally, we concatenate the last layer
representation of graph encoder fM and the last state representation of the sequential context encoder
hN as the initial state of the decoder s0.

s0 =
[
fM ;hN

]
(4)

3.4 Topic-word Guided Decoder

Most encoder-decoder models just use the source text as input, which leads to a lack of topic word infor-
mation in the generated summaries. We propose a topic-word guided decoder to enhance the topic word
information from two aspects: the coverage mechanism and pointer mechanism. In detail, we take mean
pooling over all topic word node representations of a dialogue as the topic information representation ε̄,
representing the prior knowledge in the decoding steps:

ε̄ =
1

n

n∑
i=1

εi (5)

Coverage mechanism Repetition is a common problem in the generation task, especially the
names of interlocutors, and important actions. For instance, “Lilly and Lilly are going to eat salmon”.
Therefore, we adapt the coverage mechanism to solve the problem. Traditional coverage mechanism is
hard to identify topic word information, which just involves the decoder state and the encoder hidden
states (See et al., 2017). We add the topic words into the coverage mechanism:

at = softmax
(
vT tanh

(
Whhi +Wsst +Wcc

t
i +W kε̄+ battn

))
(6)
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where ct =
∑t−1

t′=0 a
t. v, Wh, Ws, Wc, Wk, and battn are learnable parameters. The coverage vector ct

makes it easier for the attention mechanism to avoid repeatedly attending to the same locations, and thus
avoids generating repetitive text. The attention distribution is used to produce a weighted sum of encoder
hidden states, known as the context vector h∗t :

h∗t =
∑
i

atihi (7)

To produce the vocabulary distribution Pvocab, the context vector, decoder state, and the topic vector are
fed through two linear layers:

Pvocab = softmax
(
U ′ (U [st, h

∗
t , ε̄] + b) + b′

)
(8)

where U , U ′, b and b′ are learnable parameters.
Pointer mechanism Due to the limitation of the fixed vocabulary size, some topic word informa-

tion may be lost in the summaries. Therefore, we modify the pointer mechanism which can extend the
target vocabulary to include topic words. The topic vector ε̄, the context vector h∗t , the decoder input
dt, and the decoder hidden state st are taken as inputs to calculate a soft switch pgen, which is used to
choose between generating a word from the target vocabulary or copying a word from the input text:

pgen = σ(wT
h∗h
∗
t + wT

s st + wT
d dt + wT

k ε̄+ bgen) (9)

where wT
h∗ , w

T
s , wT

d , wT
k , and bgen are learnable parameters. σ is the sigmoid function. We obtain the

following probability distribution over the extended vocabulary:

P (w) = pgenPvocab (w) + (1− pgen)
∑

i:wi=w

ati (10)

Note that if w is an out-of-vocabulary word, P (w) is zero.

3.5 Loss Function

For each timestep t, the loss function consists of the negative log likelihood loss of the target word w∗t
and the coverage loss . The composite loss function is defined as:

losst = −logP (w∗t ) + λ
∑
i

min
(
ati, c

t
i

)
(11)

4 Dataset and Experimental Setup

4.1 Dataset

We perform our experiments on the SAMSum Corpus and the Automobile Master Corpus, which are
both new corpora for dialogue summarization. The SAMSum Corpus is an English dataset about nat-
ural conversations in various scenes of the real-life, which includes chit-chats, gossiping about friends,
arranging meetings, discussing politics, consulting university assignments with colleagues, etc (Gliwa et
al., 2019). The standard dataset is split into 14732, 818, and 819 examples for training, development,
and test. The Automobile Master Corpus is from the customer service question and answer scenarios. 1

We use a portion of the corpus that consists of high-quality text data, excluding picture and speech data.
It is split into 183460, 1000, and 1000 for training, development, and test. More statistics of two datasets
are in the Table 1.

1This dataset is released by the AI industry application competition of Baidu.
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Instance SAMSum Corpus Automobile Master Corpus
Avg Dia Avg Tur Avg Sum Avg Tw Avg Dia Avg Tur Avg Sum Avg Tw

Train 120.26 11.13 22.81 13.74 181.94 11.18 23.25 14. 50
Dev 117.46 10.72 22.80 13.69 190.03 10.25 22.82 14.36
Test 122.71 11.24 22.47 13.80 181.13 11.21 22.56 14.57

Table 1: Data statistics. Avg Dia, and Avg Sum are the average number of tokens in dialogues and
summaries, respectively. Avg Tur is average number of utterances in dialogues, and Avg Tw is the
average number of topic word extracted from dialogues.

4.2 Training details

We filter stop words and punctuations from the training set to generate a limited vocabulary size of
40k. The dialogues and summaries are truncated to 500, and 50 tokens, and we limit the length of each
utterance to 20 tokens. The embedding size is set to 128. The word embeddings are shared between the
encoder and the decoder. The hidden size of graph encoder and sequential context encoder is 128 and
256, respectively. We use a block number of 2, and the head number of 4 for masked graph self-attention
operation. At test time, the minimum length of the generated summary is set to 15, and the beam size is
5. For all the models, we train for 30000 iterations using Adam optimizer (Kingma and Ba, 2014) with
an initial learning rate of 0.001 and the batch size of 8.

4.3 Baseline methods

We compare our proposed model with the following baselines:
Longest-3: This model is commonly used in the news summarization task, which treats 3 longest

utterances in order of length as a summary.
Seq2Seq+Attention: This model is proposed by Rush et al. (2015), which uses an attention-based

encoder that learns a latent soft alignment over the input text to help inform the summary.
Transformer: This model is proposed by Vaswani et al. (2017), which relies entirely on an attention

mechanism to draw global dependencies between the input and output.
LightConv: This model is proposed by Wu et al. (2019), which has a very small parameter footprint

and the kernel does not change over time-steps.
DynamicConv: This model is also proposed by Wu et al. (2019), which predicts a different convolu-

tion kernel at every time-step and the dynamic weights are a function of the current time-step only rather
than the entire context.

Pointer Generator: This model is proposed by See et al. (2017), which aids the accurate reproduction
of information by pointing and retains the ability to produce new words through the generator.

Fast Abs RL: This model is proposed by Chen and Bansal (2018), which constructs a hybrid
extractive-abstractive architecture, with the policy-based reinforcement learning to bridge together the
two networks.

Fast Abs RL Enhanced: This model is a variant of Fast Abs RL, which adds the names of all other
interlocutors at the end of utterances.

5 Results and Discussions

5.1 Main Results

Results on SAMSum Corpus The results of the baselines and our model on SAMSum dataset are
shown in Table 2. We evaluate our models with the standard ROUGE metric, reporting the F1 scores for
ROUGE-1, ROUGE-2, and ROUGE-L (which respectively measure the word-overlap, bigram-overlap,
and longest common sequence between the reference summary and the summary to be evaluated). By
observation, the inclusion of a Separator 2 is advantageous for most models, because it improves the
discourse structure. Compared to the best performing model Fast Abs RL Enhanced, the TGDGA model

2Separator is a special token added artificially, e.g. <EOU> for models using word embeddings, | for models using subword
embeddings. The use of it is proposed by Gliwa et al. (2019).
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obtains 1.16, 1.09, and 1.26 points higher than it for R-1, R-2, and R-L. The masked graph self-attention
operation of our model and the extractive method of Fast Abs RL Enhanced model play a similar role in
filtering important contents in dialogues. However, our model does not need to use reinforcement learn-
ing strategies, which greatly simplifies the training process. Besides, the TGDGA model outperforms the
Transformer model based on fully connected relationships, which demonstrates that our dialogue graph
structures effectively prune unnecessary connections between utterances. Since the additional topic word
information, our model also surpasses the pointer generator model by 2.23, 3.87, and 3.86 points.

Results on Automobile Master Corpus Table 2 shows experimental results on Automobile Mas-
ter dataset. Our TGDGA achieves Rouge-1, Rouge-2, and Rouge-L of 42.98, 17.58, and 38.11, which
outperforms the baseline methods by different margins. Unlike the SAMSum dataset, Fast Abs RL En-
hanced model has no obvious advantage over other sequence models. This is because that the average
number of utterances in the dialogue is more and the information is more scattered. We also notice that
our model outperforms the pointer generator model as well. Due to the limited computational resource,
we don’t apply a pre-trained contextualized encoder (i.e. BERT) to our model, which we will regard as
our future work. Therefore, we only compare with models without BERT for the sake of fairness.

Model SAMSum Corpus Automobile Master Corpus
Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

Longest-3 32.46 10.27 29.92 30.72 9.07 28.14
Seq2Seq 21.51 10.83 20.38 25.84 13.82 25.46
Seq2Seq + Attention 29.35 15.90 28.16 30.18 16.52 29.37
Transformer 36.62 11.18 33.06 36.21 11.13 34.08
Transformer + Separator 37.27 10.76 32.73 37.43 11.87 34.97
LightConv 33.19 11.14 30.34 34.68 12.41 31.62
DynamicConv 33.79 11.19 30.41 34.72 12.45 31.86
DynamicConv + Separator 33.69 10.88 30.93 34.41 12.38 31.22
Pointer Generator 38.55 14.14 34.85 39.17 15.39 34.76
Pointer Generator + Separator 40.88 15.28 36.63 39.23 15.42 34.53
Fast Abs RL 40.96 17.18 39.05 39.82 15.86 36.03
Fast Abs RL Enhanced 41.95 18.06 39.23 40.13 16.17 36.42
TGDGA (ours) 43.11 19.15 40.49 42.98 17.58 38.11

Table 2: Results in terms of Rouge-1, Rouge-2, and Rouge-L on the SAMSum Corpus test set and
Automobile Master Corpus test set.

Human Evaluation We further conduct a manual evaluation to assess the models. Since the
ROUGE score often fails to quantify the machine generated summaries (Schluter, 2017), we focus on
evaluating the relevance and readability of each summary. Relevance is a measure of how much salient
information the summary contains, and readability is a measure of how fluent and grammatical the sum-
mary is. 50 samples are randomly selected from the test set of SAMSum Corpus and Automobile Master
Corpus, respectively. The reference summaries, together with the dialogues are shuffled then assigned to
5 human annotators to score the generated summaries. Each perspective is assessed with a score from 1
(worst) to 5 (best) to indicate whether the summary is understandable and gives a brief overview of the
text. The average score is reported in Table 3. As we can see, Pointer Generator suffers from repetition
and generates many trivial facts. For Fast Abs RL Enhanced model, it successfully concentrates on the
salient information, however, the dialogue structure is not well constructed. By introducing the topic
word information and coverage mechanism, our TGDGA model avoids repetitive problems and better
extracts the core information in the dialogue.

5.2 Ablation Study

We examine the contributions of three main components, namely, graph encoder, topic information in
coverage mechanism, topic information in pointer mechanism, using the best-performing TGDGA model
on test set of the SAMSum corpus. The results are shown in Table 4. First, we discuss the effect of
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Dataset Model Relevance Readability

SAMSum
Pointer Generator + Separator 2.36 4.25
Fast Abs RL Enhanced 2.67 4.73
TGDGA (ours) 2.91 4.86

Automobile Master
Pointer Generator + Separator 2.41 4.18
Fast Abs RL Enhanced 2.59 4.35
TGDGA (ours) 2.88 4.62

Table 3: Human Evaluation on the SAMSum Corpus test set and Automobile Master Corpus test set.

the graph encoder. The removal of it (i.e. TGDGA w/o GE) leads performance to drop greatly. It
suggests that graph encoder effectively uses the conversational structure to capture utterance-level long-
distance dependencies. Moreover, after we get rid of the topic information in coverage mechanism
(i.e. TGDGA w/o TICM) and in pointer mechanism (i.e. TGDGA w/o TIPM), respectively, both of
the models could not keep as competitive as TGDGA, verifying that topic information is significant for
generating informative and faithful summaries.

Model Rouge-1 Rouge-2 Rouge-L
TGDGA 43.11 19.15 40.49
TGDGA w/o GE 42.87 18.35 39.71
TGDGA w/o TICM 43.05 19.10 40.37
TGDGA w/o TIPM 42.93 18.97 40.14

Table 4: An ablation study for three components in TGDGA on test set of SAMSum.

Dialogue

Lilly: sorry, I’m gonna be late.
Lilly: don’t wait for me and order the food.
Gabriel: no problem, shall we also order something for you?
Gabriel: so that you get it as soon as you get to us?
Lilly: good idea!
Lilly: pasta with salmon and basil is always very tasty there.

Reference Lilly will be late. Gabriel will order pasta with salmon and basil for
her.

Longest-3 gabriel: no problem, shall we also order something for you? gabriel:
so that you get it as soon as you get to us? lilly: pasta with salmon and
basil is always very tasty there.

Pointer Generator lilly will be late. lilly will order pasta.
Fast Abs RL Enhanced lilly will be late. lilly and gabriel are going to pasta with salmon and

basil is always tasty.
TGDGA (ours) lilly will be late. she wants gabriel to order pasta with salmon and basil.

Table 5: An example of summaries generated by different models. The pink font represents the topic
word and the blue font represents interlocutor’ name.

5.3 Case Study

Table 5 shows an example of dialogue summaries generated by different models. The summary gen-
erated by the Pointer Generator model repeats the same name “lilly” and only focuses some pieces of
information in the dialogue. For Fast Abs RL Enhanced model, it adds information about the other in-
terlocutors, which makes the generated summary contain both interlocutors’ names: lilly and gabriel,
and obtains other valid key elements, e.g. pasta with salmon and basil because of the extractive method.
However, Fast Abs RL Enhanced model usually makes a mistake in deciding who performs the action
(the subject) and who receives the action (the object), which may be due to the way the dialogue is
constructed. Important utterances are firstly chose and then summarizes each of them separately. This
leads to the narrowing of the context and losing pieces of important information. Our model uses topic
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word information to guide the construction of dialogue structure, and on the basis of not deleting the
dialogue content, we use the masked graph self-attention mechanism to strengthen the expression of the
main content in the dialogue. Topic words are also used in the decoding process to match person names
and events correctly.

5.4 Attention Visualization
Intuitively, masked graph self-attention mechanism models the interaction between contextual utterances
with relevance. If the model works as expected, more attention should be paid to utterances with similar
topic word information. To further analyze the attention learned in the model, we visualize the utterance
attention weights when constructing dialogue graph structures in Figure 3. The figure is colored with
different levels of attention, in which the white one represents that there is no attention weight between
two utterances, and the darker one represents that there is a greater attention value between two utter-
ances. In this example, for utterance 1, utterance 6 gets the highest attention weight, and utterance 4 gets
a higher weight. Utterance 2, 3, and, 5 do not participate in the attention mechanism operation at all.
This suggests that in this case, the model can focus on more important utterance information correctly.

Anne: yeah, Mark told me he's age was 30, today I saw his passport, he's 40.

Anne: you were right, he was lying to me.

Irene: oh no, what happened?

Jane: who? that Mark guy?

Irene: you sure it's so important?

Anne: he lied to me, Irene.

u1

u1

u2

u2 u3

u3

u4

u4

u5

u5

u6

u6

Figure 3: Visualization of attention in the TGDGA model. Darker color indicates a higher attention
weight.

6 Conclusion

In this paper, we propose a Topic-word Guided Dialogue Graph Attention model to automatically gen-
erate summaries of dialogues with a graph-to-sequence framework. The dialogue is organized into an
interaction graph, which improves context understanding for sentence-level long-dependency and builds
more complex relations between utterances. The introduction of masking mechanism helps our model
to select salient utterances and aware of the hierarchical structure of dialogues. We also incorporate
topic words information into the summary generation process. Experimental results strongly support the
improvements in our proposal. Furthermore, we will take the pre-trained language models into account
for better encoding representations of words and expect more advanced work to be done in the area of
evaluation metrics in the future.
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