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Abstract

Conversational recommender systems focus on the task of suggesting products to users based on
the conversation flow. Recently, the use of external knowledge in the form of knowledge graphs
has shown to improve the performance in recommendation and dialogue systems. Information
from knowledge graphs aids in enriching those systems by providing additional information such
as closely related products and textual descriptions of the items. However, knowledge graphs are
incomplete since they do not contain all factual information present on the web. Furthermore,
when working on a specific domain, knowledge graphs in its entirety contribute towards extra-
neous information and noise. In this work, we study several subgraph construction methods
and compare their performance across the recommendation task. We incorporate pre-trained
embeddings from the subgraphs along with positional embeddings in our models. Extensive ex-
periments show that our method has a relative improvement of at least 5.62% compared to the
state-of-the-art on multiple metrics on the recommendation task.

1 Introduction

Conversational Recommender Systems (CRSs) are goal-oriented dialogue systems focusing on recom-
mending products to users through multi-turn dialogues. In these dialogues, the user and the recom-
mender system take turns to interact with each other. CRSs hold enormous potential in the e-commerce
industry wherein users can be recommended products based directly on the understanding of their re-
quirements. However, users are not always entirely aware of their preferences while purchasing products.
A CRS enables the user to make an informed decision while purchasing a product by taking into con-
sideration the information about different products and matching them to their needs. This is extremely
useful in situations of high-involvement products. By understanding the context and learning the user’s
preference, CRS can suggest products to the users which in turn will lead to higher consumer satisfaction
and low buyer’s remorse.
The three central components of CRSs are the dialogue manager, the user modelling system, and the
recommendation engine (Jannach et al., 2020). The dialogue manager focuses on managing the dia-
logue states along with user intents and decides on the next actions to take. The user modelling system
models the user profile using the dialogue content. The recommendation engine generates an appropriate
recommendation to users by considering the dialogue states and user profiles into account.
More recently, works on leveraging information from Knowledge Graphs (KGs) have been gaining
ground. KGs contain factual information about real-world entities in a structured format. Such ex-
ternal knowledge helps in adapting to a specific domain as they contain rich information about products
and their features. This knowledge helps the recommendation engine to utilise additional knowledge
about products which in turn leads to better suggestions. Leveraging such graphs helps in making a
better recommendation as additional information is made available to the system apart from the dialogue
content and user behaviour. Therefore, we focus on improving recommendations provided to users by
incorporating KGs in dialogue systems for movie recommendation. However, to leverage the benefits of
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KGs, there is a need for constructing appropriate subgraphs for the targeted domain, thereby reducing
the amount of redundant information made available to the system. Subgraphs that are rich in domain
information containing a low amount of noise are desirable. We, therefore, study the benefits of sub-
graphs created using N -hop and PageRank (Page et al., 1999) approaches. Furthermore, we analyse
which subgraphs are best suited for the task at hand.
In this work, we build upon the work of Knowledge-Based Recommendation Dialog (KBRD) (Chen et
al., 2019). The authors extract movie entities from dialogues and utilise information from a KG to suggest
movies to users. We incorporate pre-trained entity embeddings and make use of positional embeddings
to improve the performance of the system. The main contributions of our work are as follows:

• We conduct extensive experiments on different subgraph extracted from DBpedia(Auer et al., 2007)
to show that the entire information contained in this resource is not beneficial and that there is a
need for optimal subgraph creation technique.

• We show that using pre-trained entity embeddings supplemented with positional embeddings allows
the model to learn better entity representation for recommendation.

2 Related Works

Rich (1979) suggested the use of natural language to suggest books to users by asking them questions in
natural language and learning their personalities and choices. Recently, there has been a shift from the
traditional collaborative system techniques for the recommendation (Sarwar et al., 2001; Zhang et al.,
2016) to CRSs (Christakopoulou et al., 2018). Recommendation systems have made a shift towards deep
neural networks as shown in the work of Zhang et al. (2019). CRSs have also moved towards the use of
neural networks (Li et al., 2018; Chen et al., 2019). Christakopoulou et al. (2018) use recurrent neural
network-based models to recommend videos to users. Zhang et al. (2016) explore the use of knowledge
bases in recommendation tasks. They leverage heterogeneous information from the knowledge base to
improve the performance of the recommendation system. Sun et al. (2018) propose an embedding based
approach to learn semantic representations of entities and paths in a KG to characterise user preferences
towards items. Wang et al. (2019) improve the performance of the recommender system by learning
the embeddings for entities in the KG using TransR (Lin et al., 2015) and refining and discriminating
the node embeddings by using attention over the neighbouring nodes of a given node. Wang et al.
(2018) and Li et al. (2020) focus on solving the task of goal-oriented conversation recommendation
for cold-start users. Wang et al. (2018) simulate the propagation of user preferences over the set of
knowledge entities by automatically and iteratively extending a user’s potential interests along with links
in a graph. While learning the entity representations, prior works have used pre-trained embeddings for
a node and fine-tuned those embeddings using the node’s neighbourhood. Instead of fine-tuning the pre-
trained embeddings, we extract subgraphs well suited for the domain, and learn entity embeddings on
them, thereby allowing the model to capture information apart from the node’s neighbourhood, in turn
improving the performance of the system.

CRSs have been used to solve the goal-oriented recommendation dialogue task for specific domains.
Li et al. (2020) generate new venues for recommendation using graph convolution networks and encode
the dialogue contents using hierarchical recurrent encoder-decoder (HRED) (Sordoni et al., 2015) and
thereby recommend locations to users. Li et al. (2018) paved the way for the use of deep learning in
CRSs. They released the ReDial dataset wherein users are recommended movies based on the conver-
sation they have with the recommender. They use a hierarchical recurrent encoder-decoder (Sordoni et
al., 2015) to develop the conversational recommender model trained on the ReDial dataset. Chen et al.
(2019) extend the work of Li et al. (2018) by incorporating the use of KG to recommend movies to users.
They also show that dialogue and recommendation in CRSs are complementary tasks and benefit one
another. However, they do not take into account the sequential nature of items. Instead of creating a ses-
sions graph to learn the user-representation, we infuse positional embeddings into the entity embeddings
to preserve the temporal preference of the user over the movie entities.



4181

Figure 1: Overview of our model. A subgraph is constructed from the KG. The entity embeddings
are learnt on the extracted subgraph. Entity embeddings belonging to a particular user is enriched with
positional embeddings (

⊕
represents elements wise addition) and then passed through a soft-attention

layer to represent the user. The score of each entity is calculated by taking a dot-product (
⊙

represents
the dot-product of two vectors) of its embedding with the user representation. Finally, the probability of
each entity is calculated by passing the scores of all entities through a softmax layer.

3 Dataset

For this work, we use the ReDial dataset (Li et al., 2018), which is an annotated set of dialogues where a
recommender suggests movies to a recommendee. The dataset consists of 10,006 dialogues with a total
of 182,150 utterances. We split the dataset into 80% for training and 10% each for validation and testing.

For the task of leveraging a KG, we use DBpedia as the KG for this task. It is an open KG that stores
structured content from Wikimedia projects. As DBpedia is served as open linked data, as suggested
by the KBRD task, entities (movies, actors, directors, etc.) present in the conversations are linked to
DBpedia entities using the method put forward by Daiber et al. (2013), where the authors perform entity
linking using the generative probabilistic model. Entities are furthermore split into two categories: movie
entities and mentioned entities. Movie entities are those entities, which are annotated movies present in
the ReDial dataset. Mentioned entities are the entities that are linked to DBpedia as suggested in Chen
et al. (2019). Entities related to actors, producers, and directors are examples of mentioned entities. The
dataset consists of 6,924 movies and 4,765 mentioned entities. Among the movie entities, 824 movies
from the dataset could not be linked to DBpedia. Similarly, 121 mentioned entities could not be linked
to DBpedia. We introduce the unlinked entities as isolated nodes in the graph. Since the total number
of nodes and edges present in the DBpedia KG has a magnitude of 106 and 107 respectively, we need
to extract a relevant subgraph for this task. We build the initial set of subgraphs by considering N -
hop neighbours of the movie nodes present in our dataset. When constructing a graph using the N -hop
technique, the subgraph grows exponentially which induces noise in the subgraph. To counteract this
issue, we use the PageRank algorithm (Page et al., 1999) to extract subgraphs for the task.

4 Methodology

To address the recommendation task, we begin with constructing a subgraph from the DBpedia KG. We
then learn entity embeddings on the subgraphs thus constructed using the method described by Balažević
et al. (2019). The learned embeddings are used for user representation. Finally, we compute the similarity
of the user with the movie entities. Overview of our model is shown in Figure 1.

4.1 Subgraph creation

To construct the subgraphs for analysing the information contributed by different kinds of subgraphs, we
use the N -hop neighbours and the PageRank algorithm. In all of the cases, the initial set of seed nodes
are the set of all the movie entities present in the ReDial dataset. During this process, we do preserve
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Table 1: Properties of subgraphs constructed for the movie domain from DBpedia. As the number of hops
increases, the number of nodes and edges increase while the density decreases. Subgraphs constructed
using PageRank show a slight difference in their properties as result of different personalisation values.

Subgraph #Nodes #Relations #Edges Density

2-hops 64,368 214 153,852 7.42e-05
3-hops 101,158 410 265,910 5.19e-05
5-hops 217,334 497 642,633 2.72e-05
PageRank 80,181 399 187,491 5.83e-05
PPR(αper = 0.9) 68,004 321 162,322 7.02e-05
PPR(αper = 0.7) 69,012 333 165,124 6.93e-05

Table 2: Distribution (in %) of the distance of target nodes from the source nodes in different subgraphs.
All the subgraphs show similar distributions with probability of a target node being unreachable close to
0.18.

Subgraph 0 1 2 3 4 5 ≥ 6 Unreachable

2-hops 9.82 4.64 21.11 14.68 29.94 1.15 0.47 18.16
3-hops 9.77 4.62 21.04 15.27 29.45 1.39 0.43 18.01
5-hops 9.70 4.58 20.92 15.52 29.38 1.67 0.28 17.92
PageRank 9.83 4.66 21.18 14.35 28.44 2.30 0.77 18.44
PPR(αper = 0.9) 9.82 4.64 21.12 14.71 29.63 1.47 0.37 18.20
PPR(αper = 0.7) 9.82 4.64 21.12 14.71 29.86 1.23 0.39 18.19

the relational information in the subgraphs. When constructing the subgraph using the N -hop method,
we include all the edges and nodes reachable from the seed set by paths of length N . We consider cases
when N=2, 3 and 5 starting from the initial set of seed nodes.

On the other hand, the construction of subgraphs using PageRank is a two-step process. An initial
subgraph is constructed by considering 3-hop neighbours of the seed set. PageRank scores of the sub-
graph nodes are computed and the top-k nodes with the highest PageRank scores are considered for the
second step. To construct the final subgraph, we consider the top-k nodes with respect to the PageRank
values along with the movie nodes. We take the set of nodes thus constructed and their 1-hop neighbours
to present the final subgraph. Since the random walk in PageRank can start from any random node, we
use the Personalised PageRank (PPR) (Bahmani et al., 2010) to make the subgraphs more movie-centric.
We distribute high personalisation scores to the movie entities so that the random walk starts with high
probability from the movie nodes. In our experiments, we distribute αper between the set of movie nodes
and 1− αper among the rest of the nodes in the subgraph extracted after the first step. To construct such
movie-centric graphs, we choose αper = 0.7, 0.9. Table 1 shows the graph properties of different sub-
graphs constructed. The 5-hop subgraph contains the highest number of nodes and edges while having
the lowest density. We learn entity embeddings for these subgraphs constructed for use in the model.

4.2 Entity Embeddings

To incorporate information from the relational graph into our model, we need to represent the entities as
a d-dimensional vector. More specifically, each entity is represented as a Rd vector. In this paper, the
embedding of an entity i is represented by ei ∈ Rd. Balažević et al. (2019) learn entity embeddings
by solving link-prediction tasks in relational graphs. Since those embeddings are well suited for the
task of link-prediction, they contain relevant information for predicting new relations in an incomplete
graph. Connectionist models such as demonstrated by Schlichtkrull et al. (2018), leverage the local
neighbourhood of nodes to learn nodal embeddings. Although relational graph neural networks help in
learning better entity representation for relational graphs, KGs do not contain all factual relations. As
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shown in Table 2, for all of the subgraphs, at least 18% of the target nodes are unreachable from the
previously mentioned entities. Therefore, we choose the above-mentioned method for learning entity
embeddings.

4.2.1 TuckER Embeddings
Graph Neural Networks (Wu et al., 2020) allow the information to flow through a graph using connection-
ist models. However, such models do not allow information flow between nodes that are not connected
through paths of any length. The nature of the learned embeddings is such that it helps in link prediction
between two entities. Since, in our case, many target entities are not connected to source nodes, we use
embeddings learned through Tucker decomposition (Tucker, 1966) for better entity prediction.

Tucker decomposition decomposes a tensor into a smaller core tensor and several smaller matrices.
Balažević et al. (2019) show that Tucker decomposition can be used to learn entity embeddings from re-
lational graphs. They also showed that embeddings learned using this technique outperforms techniques
such as TransE (Bordes et al., 2013) or DistMult (Yang et al., 2015) on link prediction task over multiple
datasets. Tucker decomposition for a tensor X ∈ RI×J×K, gives tensor Z ∈ RP×Q×R and matrices
A ∈ RI×P,B ∈ RJ×Q, and C ∈ RK×R as outputs.

X ≈ Z×1 A×2 B×3 C (1)

φ(es, r, eo) = Z×1 es ×2 wr ×3 eo (2)

For link prediction tasks, X is the adjacency tensor, consisting of the adjacency matrices for each
relation in the KG, with 1 at index (s, r, o) if a relationship exists between es and eo on relation r, else
0. We set A = C , to obtain the same entity embeddings in both the source and object positions. The
core tensor Z is the set of parameters that is linearly proportional to de and dr, the entity embedding size
and the relation embedding size respectively and Z ∈ Rde×dr×de space. Our method learns the entity
embedding matrix A ∈ Rne×de , relation embedding matrix B ∈ Rnr×dr space as shown in Equation 2,
where es, eo ∈ Rne×de are the corresponding rows of A and wr is the corresponding row of B. The
model is trained to minimise the Bernoulli negative log-likelihood loss function which maximises the
estimated probability of a relation φ(es, r, eo) over known relations.

4.2.2 Positional Embeddings
During the dialogue flow, entities are mentioned sequentially. By virtue of this, entities mentioned later
have a larger effect on future recommendations. Wu et al. (2019) constructed a session graph to represent
the sequential nature of items belonging to a user. By leveraging the properties of such graphs, they
learned latent item embeddings using graph neural networks. To avoid the construction of session graph
and increasing the complexity of the model, we use positional embeddings as described in Devlin et
al. (2019), which allow us to infuse sequence information into the entity embeddings. The pattern of
embeddings induced by Equation 3 and 4 encodes positional information of entities in the model.

POS(pos,2i+1) = cos(pos/100002i/dmodel) (3)

POS(pos,2i) = sin(pos/100002i/dmodel) (4)

The subscript pos in Equation 3 and Equation 4 refers to the index position of the entity in the dialogue,
while dmodel refers to the dimensionality of the entity embeddings. The subscript i refers to the index in
the vector representing the positional embedding. The final entity representation of the entity ei seen at
position pos, given the scaling factor β, is given by:

ei,pos = ei +POSpos/β (5)
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4.3 User representation

A user is represented by a set of entities already encountered in the dialogue. If a user has interacted
with n entities, the user representation is represented by the matrix U ∈ Rnxd. We then map the matrix
U to a vector in Rd space to find the similarity of the user with different entities. We borrow a part of
the soft-attention used by Wu et al. (2019) to construct a representation of the user in the Rd space. We
can represent the user by choosing the embedding of the last-seen item. We use soft-attention to better
represent the user.

αi = q>σ(W1Un +W2Ui + c) (6)

u =
n∑

i=1

αiUi (7)

Here, Un, Ui are the representation of the user when n, i entities have been encountered respectively.
q ∈ Rd and W1,W2 ∈ Rdxd are trainable parameters.

4.4 Similarity score of use with products

The final similarity scores of users with the movie entities is calculated by computing the dot product of
the user representation with the movie entity representations passed through a softmax layer.

Prec = softmax(u
⊙

ET) (8)

We optimise our model by using the cross-entropy loss on the set of recommended movies.

5 Experimental settings

This section presents the parameters to train our system and the evaluation metrics used to evaluate
our approach. Furthermore, we describe previous approaches, against which we compare our proposed
approach1.

5.1 Model settings

For learning the entity embeddings using Tucker decomposition, we set the learning rate = 0.0001, batch
size = 1,536 and epochs = 512 for all of the subgraphs. We set the dropout values of all the layers to be
0.1 for every layer. For the recommendation engine, we set the batch size to be 32, and the learning rate
to be 0.001 to avoid overfitting of the model. Similar to Chen et al. (2019), we use the Adam optimiser
(Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.999 and ε = 10−8 to optimise our model. We set the value
of the scaling factor β to 1,000. We train the entity recommendation model for 1,000 epochs with a
validation patience of 5.

5.2 Evaluation Metrics

As our system focuses on improving the performance of the recommendation engine, we select the
information retrieval metrics Mean Reciprocal Rank (MRR) and Recall@k as our metrics. MRR is
calculated as the mean of the reciprocal of the rank of the target entities as predicted by the model.
Recall@k measures if the target movie is present in the top-k recommended products.

1The codes and the models are available at https://github.com/rajbsk/KG-conv-rec

https://github.com/rajbsk/KG-conv-rec
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Table 3: Performance of models on recall@1, recall@10, recall@50 and MRR. The confidence intervals
were calculated by conducting Student’s t-test on 24 runs of each of the models (p�0.001).

Model R@1 R@10 R@50 MRR

Li et al. (2018) 2.23±0.24 13.14±0.63 29.22±0.77 0.060±0.0018
Chen et al. (2019) 3.00±0.20 16.30±0.30 33.80±0.70 0.066±0.0019
2-hops 3.26±0.13 17.15±0.52 34.35±0.58 0.078±0.0014
3-hops 3.39±0.15 18.00±0.40 35.33±0.35 0.082±0.0018
5-hops 3.36±0.14 18.05±0.45 35.70±0.37 0.082±0.0016
PageRank 3.28±0.13 17.53±0.46 35.20±0.39 0.080±0.0019
PPR(αper = 0.9) 3.29±0.16 17.35±0.33 35.20±0.30 0.079±0.0011
PPR(αper = 0.7) 3.31±0.17 17.21±0.43 34.28±0.48 0.079±0.0017

5.3 Comparison to previous approaches

We consider KBRD (Chen et al., 2019) as the baseline for our work. The KBRD system extracts dif-
ferent movie entities and mentioned entities from the dialogues and links the entities to DBpedia using
the entity linking technique described by Daiber et al. (2013). The system then extracts a subgraph by
considering 2-hop neighbours of movie entities. The entity embeddings are learned by using Relational
Graph Convolutional Network (Schlichtkrull et al., 2018). The entity embeddings belonging to a partic-
ular user are then passed to a self-attention layer to learn the user-representation. The dot-product of the
user representation is computed with the entity embeddings and the scores are passed through a softmax
layer to get the recommendation probabilities.

We also compare the performance of our model with ReDial (Li et al., 2018). ReDial is a CRS with
a dialogue generation component built using HRED (Sordoni et al., 2015). The recommendation system
makes use of an autoencoder model and sentiment analysis model to suggest movies to users.

6 Results and Discussions

First, we perform a quantitative evaluation of the models. We then analyse the effect of different sub-
graphs on the performance. Thereafter, we proceed towards studying the performance while recommend-
ing disconnected entities and the effect of session sequence length. Finally, we analyse two examples,
where the model results are not consistent with the gold-standard, to get insights for future work.

6.1 Quantitative Evaluation

In this work, we put forward the hypothesis that the use of pre-trained embeddings of entities sup-
plemented with positional information improves the performance of the recommendation engine. The
results present in Table 3 show the performance of different models. To compute the performance of each
model, we did 24 runs of our models to obtain the distribution of the performance scores on a different
metric. We compute the confidence interval for the performance of each model on a different metric by
using the Student’s-t distribution (Student, 1908). Two sample t-test showed that our results are statis-
tically significant results over the previous models (p �0.001). We achieve a performance of 3.36%,
18.05%, 35.70%, and 0.082 on the recall@1, recall@10, recall@50, and MRR metrics respectively with
5-hops subgraph. We improve upon the previous baseline by (Chen et al., 2019) by 12.00%, 10.73%,
5.32%, and 24.24% on the four metrics respectively. These results show the efficacy of our choice of
using subgraphs and pre-trained embeddings.

6.2 Performance Analysis

This section presents the performance of our model in different settings of the problem. It also presents
an error analysis to understand the performance of the model.
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Table 4: Evaluation on disconnected entities. We report the performance values on different metrics for
the instances when the target entity is disconnected from the already seen set of entities in the subgraphs.

Subgraph Recall@1 Recall@10 Recall@50 MRR

Chen et al. (2019) 1.41 12.01 34.28 0.051
2-hops 2.23 12.84 36.75 0.060

Figure 2: Performance of different models on Recall@50 with the number of items. As the number of
items increase, our models have better performance compared to the baseline. Also, as the number of
nodes and edges increase in N -hop, the performance improves. PageRank subgraph models perform
similar when the number of items increase.
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6.2.1 Effect of different subgraphs
Graphs with a higher number of nodes and edges contain more information. However, in the recom-
mendation scenario, it is desirable to have subgraphs from KGs containing the maximum amount of
information with a minimal amount of noise. Table 3 shows that for models with subgraphs constructed
using the N -hop method, as the value of N increases, the performance of the model improves. However,
the model performance when N=5 is not significantly better than the case when N=3. This points us to-
wards the direction of analysing the performance of the models when using subgraphs constructed using
PageRank. The results show that even though subgraphs constructed using PageRank or personalised
PageRank contain a lower number of nodes and edges (Table 1), they perform at par withN -hop models.
Since PageRank identifies important nodes in a graph, PageRank graphs are subgraphs of 5-hops graphs
containing a lower number of nodes and edges as well as a lesser amount of noise. Table 3 further shows
that giving more importance to movie nodes while constructing PageRank subgraphs gives better perfor-
mance. When giving more importance to movie nodes, the PageRank algorithm constructs a subgraph
focusing on the movie nodes. This method can be used to adapt easily to different domains. When pre-
training entity embeddings using the method described by Balažević et al. (2019), the runtime is directly
proportional to the number of entities and relations. With smaller and richer subgraph, the pre-training
is faster while giving us comparable performance.

6.2.2 Recommending Disconnected Entities
Disconnected target entities are those entities that are not connected through a path of any length in the
KG to entities that have already interacted with the user. We compare 2-hop model against KBRD. The
two models make use of the same DBpedia subgraph and thereby have the same set of disconnected enti-
ties. We do not compare KBRD against our best performing model since the subgraph would change for
5-hop model. Similarly, we do not compare against ReDial as it uses auxiliary information such as sen-
timent information which neither KBRD nor our model uses. While ReDial uses auxiliary information,
neither KBRD nor our model leverages such information apart from the information through KGs, our
models can be adapted into the domain more quickly as compared to ReDial. Since the ReDial model
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Table 5: Examples where our model produces inconsistent results. We take 3 cases from the test set to
study the errors. The recommended movie in Dialogue 1 occurs in the fourth position and not in the first.
For Dialogue 2 and 3, our model gives out the same set of recommendation for the first four movies even
though the context is different.

Dialogue 1

Rec: Hello there!
User: Hi.
Rec: Tell me what kind of movies

would you like to watch?
User: I like all types of movies.

Especially comedy and family
Rec: I can recommend you Get Out

Dialogue 2

User: I would like to watch any movie.
User: Tell me any movie.
User: Like Avengers: Infinity War.
Rec: Have you seen Scary Movie?

Dialogue 3

Rec: Tell me what would you like to watch?
Rec: I just watched Avengers: Infinity War
Rec: Have you seen it?
Rec: or do you like Scary movies?
Rec: have you ever seen Click?
User: I like a lot of different movies.

Thinking about some comedies
something like Billy Madison

Rec: have you ever seen You Don’t Mess
with the Zohan?

Target Movie 1st 2nd 3rd 4th

Get Out Black Panther Jumanji It Get Out
Scary Movie Avengers: Infinity War Black Panther Thor: Ragnarok Wonder Woman
You don’t mess with the Zohan Avengers: Infinity War Black Panther Thor: Ragnarok Wonder Woman

does not make use of KGs, there is no scenario of disconnected entities.
Table 4 shows the comparison of our model against KBRD. Our model performs better than KBRD in

all four metrics. The results show the correctness of our assumption that using pre-trained embeddings
are more helpful in improving the performance of recommendation models using KGs.

6.2.3 Effect of Session Sequence Length
We consider the session sequence length as the number of entities encountered by the user. We analyse
the performance of our model on different subgraphs against the baseline. We compare the performance
of different models on Recall@50 and is shown in Figure 2. The figures show that as the number of
mentioned items increases, the performance of the model improves. This is attributed to the fact that
when the number of mentioned items increases, the model has more information about the user and
thereby represents the user better. Figure 2 also shows that our model on different subgraphs outperforms
the baseline. In addition to that, embeddings learned using graphs with a higher number of entities and
relationships demonstrate better performance. This can be attributed to the fact that a higher number of
entities and relations help in learning more information and thereby better entity representations.

6.2.4 Error Analysis
Table 5 displays three dialogues where our model does not perform correctly. In the case of Dialogue 1,
the correct target movie is Get Out. However, our model assigns it the fourth highest probability. This
can be explained by the fact that when no initial entities are mentioned in the dialogue, the model is
not able to infer the context of the conversation. As of result of this, the model gives the same output
irrespective of the context.

For Dialogues 2 and 3, the model gives the same result for both of the dialogues even although the
context and the mentioned entities are different. Both dialogues have the movie in common and the
results are biased towards that movie. The model does not discriminate the movies present in the user
utterance or the recommendation utterance.

7 Conclusion

In this work, we propose a new model to improve the performance of the recommendation engine in
CRSs. We introduce different subgraphs for the task to show the need for the construction of better
subgraphs from KGs to propagate information into recommendation models. We show that our model
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outperforms the current-state-of-the-art on multiple metrics by considering the use of pre-trained KG
embeddings and positional embeddings. Through multiple experiments, we demonstrate that our model
performs better in recommending disconnected entities in KG. Also, as the number of entities mentioned
in the text increases, the performance of our model improves.

In our future work, we plan towards incorporating the context of the dialogue text into the model. We
will be working towards understanding the differences between the movies mentioned by the user and
the recommender, resulting in a better understanding of the context which in turn can be used to produce
better recommendations. Exploration of the performance of different KGs for this task is left for future
work.
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