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Abstract 

Dialogue systems using deep learning have achieved generation of fluent response sentences to 

user utterances. Nevertheless, they tend to produce responses that are not diverse and which are 

less context-dependent. To address these shortcomings, we propose a new loss function, an In-

verse N-gram Frequency (INF) loss, which incorporates contextual fluency and diversity at the 

same time by a simple formula. Our INF loss can adjust its loss dynamically by a weight using 

the inverse frequency of the tokens’ n-gram applied to Softmax Cross-Entropy loss, so that rare 

tokens appear more likely while retaining the fluency of the generated sentences. We trained 

Transformer using English and Japanese Twitter replies as single-turn dialogues using different 

loss functions. Our INF loss model outperformed the baselines of SCE loss and ITF loss models 

in automatic evaluations such as DIST-N and ROUGE, and also achieved higher scores on our 

human evaluations of coherence and richness. 

1 Introduction 

Recently, many reports have described studies using deep learning for dialogue systems that have 

achieved good performance. They can generate fluent sentences based on a user’s utterances (Vinyals 

and Le, 2015; Shang et al., 2015; Serban et al., 2016). Nevertheless, such neural dialogue systems tend 

to generate phrases such as “Yes” and “I do not know” frequently in non-task-oriented dialog systems, 

referred to as the low diversity issue and the generic response issue. After training by a loss function of 

similarity with gold standard reference sentences, frequent phrases are more likely to be assigned a large 

occurrence probability than rare phrases are. 

Nakamura et al. (2018) proposed an Inverse Token Frequency (ITF) loss, which multiplies the Soft-

max Cross-Entropy (SCE) loss by weights based on the inverse of the frequency of tokens. This ITF loss 

incorporates the frequency distribution of token classes so that rare tokens become more likely to appear. 

However, sentence diversity is based not only on individual tokens, but also on the token sequence. 

We are able to compute weights for loss functions dynamically, depending on the context, while retaining 

the fluency of generated sentences. We propose such a loss function, Inverse N-gram Frequency (INF) 

loss, which uses the inverse of the frequency of the n-gram of the tokens, rather than the token frequency. 

We built a neural dialogue system trained by INF loss using huge amounts of dialogue data extracted 

from Twitter. After comparing models using the SCE loss, the ITF loss, and the INF loss, we evaluated 

their diversity and fluency. Results show that our proposed INF loss model outperformed the SCE loss 

and ITF loss models for most automatic assessment measures such as DIST-N (Li et al., 2016) and 

ROUGE (Lin, 2004). Our INF loss model also achieved higher scores on our human evaluations of 

coherence and richness. 

2 Related Work 

The diversity of neural dialogue generation has been studied actively. Li et al. (2016) first addressed this 

problem using Maximum Mutual Information (MMI) as the objective function of the neural model. 

Takayama and Arase (2019) used Positive Pointwise Mutual Information (PPMI) to identify keywords 
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in the dialogue corpus that were likely to appear both in response utterances and their input utterances. 

Xing et al. (2017) proposed a model that uses topic words extracted from conversations to simulate 

human prior knowledge, generating informative and interesting responses. In addition, Variational Au-

toEncoder (VAE) and Generative Adversarial Network (GAN), which were proposed originally for im-

age generation, have also been applied to text and dialogue generation (Kingma and Welling, 2014; 

Bowman et al., 2016;  Xu et al., 2018). Although GAN helps to reduce response text ambiguity, their 

primary purpose was not diversity. Zhang et al. (2018) proposed and demonstrated the effectiveness of 

Adversarial Information Maximization (AIM) as a new method for generating informative and diverse 

conversational responses. Their work also resolved instability that arose when training the GAN model. 

3 Loss Functions 

3.1 Softmax Cross-Entropy Loss 

The SCE loss, which is often used to train a sequence-to-sequence (Seq2Seq) model (Sutskever et al., 

2014), is expressed as 𝐿𝑆𝐶𝐸 = −𝑙𝑜𝑔{𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑐}  , where 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑐 =
𝑒𝑑𝑐

∑ 𝑒𝑑𝑘
|𝑉|
𝑘

  . Therein, 𝑉  represents 

the lexicon; 𝑑𝑘 denotes the 𝑘-th element of the output 𝑑 ∈ ℝ|𝑉|. 

3.2 Inverse Token Frequency Loss 

 Nakamura et al. (2018) defined Inverse Token Frequency (ITF) loss as shown below. 

𝐿𝐼𝑇𝐹 = 𝑤𝑐𝐿𝑆𝐶𝐸，𝑤𝑐 =
1

𝑓𝑟𝑒𝑞(𝑡𝑜𝑘𝑒𝑛𝐶)𝜆
    (1) 

Therein, where 𝑤𝑐 represents an element of the weight 𝑤 ∈ ℝ|𝑉| of the token class 𝑐, 𝑡𝑜𝑘𝑒𝑛𝐶 is a token 

of token class 𝑐, 𝑓𝑟𝑒𝑞(𝑡𝑜𝑘𝑒𝑛𝐶) stands for a function that counts 𝑡𝑜𝑘𝑒𝑛𝐶 in the training data, λ denotes 

a hyper-parameter that adjusts the frequency. The ITF loss at λ=0 is equivalent to SCE loss. 

3.3 Inverse N-gram Frequency Loss 

We propose our Inverse N-gram Frequency (INF) loss as a new loss function that replaces the ITF loss. 

Our INF loss is defined as presented below. 

𝐿𝐼𝑁𝐹 = 𝑤𝑐𝐿𝑆𝐶𝐸，𝑤𝑐 =
1

𝑓𝑟𝑒𝑞{𝑛𝑔𝑟𝑎𝑚𝐶(𝑛)}𝜆
    (2) 

Therein, 𝑛𝑔𝑟𝑎𝑚𝐶(𝑛) represents 𝑛 consecutive (𝑛 ∈ ℕ, 𝑛 ≧ 2) tokens in the training data, where 𝑐 is the 

first token of 𝑛𝑔𝑟𝑎𝑚𝐶(𝑛). Therefore, 𝑤𝑐 is expected to differ considerably depending on the context. 

Special symbols such as <BOS> (beginning of sentence) and <EOS> (end of sentence) are treated sim-

ilarly to other ordinary tokens. However, because <BOS> and <EOS> occur in every sentence, we set the 

weight of the loss function as very small value for these special characters. 

A special symbol, <NORM>, was added 𝑛‐ 1 times to the beginning of the sentence and to the end of 

the sentence respectively to represent padding. 

4 Experiments 

The SCE model and the ITF model were used as baseline models. Experiment settings are the same 

among these models and our proposed INF model, except for loss functions. 

4.1 Dataset 

Japanese and English Twitter conversations were extracted from Twitter replies, adjacent tweets as pairs 

of [utterance, response] to construct a single-turn dialogue dataset of one million dialogue pairs for each 

language. SentencePiece (Kudo and Richardson, 2018) was trained using a dataset with a vocabulary of 

32,000 for both Japanese and English data. We then used these SentencePiece models to tokenize the 

training set into subwords. Each of the verification set and the test set consists of 1024 pairs. 

4.2 Model Setting 

Both the encoder and decoder are six-layer Transformer (Vaswani et al., 2017), the number of heads of 

Multi-Head Attention is 8, the token embedding dimension is 512, and the ratio of Dropout is 0.1. Adam 
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(Kingma and Ba, 2015) was used as the optimization method for parameters during training. The learn-

ing rate of Adam was set to 0.001. Hyperparameters λ, which adjust the frequency of ITF model and 

INF model, were set as 0.2, 0.4, 0.6, or 0.8. The INF model uses bi-gram as its n-gram function. 

5 Results 

5.1 Metric-Based Evaluation 

Table 1 and Table 2 respectively present evaluation results for Japanese and English datasets in per-

plexity, BLEU (Papineni et al., 2002), DIST-N (Li et al., 2016), ROUGE (Lin, 2004), also showing 

length, which is an average number of tokens generated in a sentence. * in these tables indicate signifi-

cant differences between baseline models and INF model for each evaluation metric (p<0.05). BLEU 

and ROUGE were used to assess the quality of the generated sentences, whereas DIST-N was used to 

calculate the proportion of different n-grams among the n-grams included in the generated sentences, 

and therefore to assess the diversity of the generated sentences. 

Regarding the Japanese dataset, the best perplexity value was obtained using the INF model when λ 

= 0.8. Results show that INF and ITF performed better than SCE. In fact, ITF yielded the best scores for 

both unigram and bigram BLEU scores. INF with λ = 0.2 yielded the best scores for DIST-N and 

ROUGE. The length of the generated sentences was greater in the order INF > SCE > ITF. Overall, the 

INF model at λ = 0.2 is superior in the metric-based evaluation. The English dataset yielded similar 

results: the INF model was superior. 

5.2 Human Evaluation 

Table 3 shows our human evaluation results obtained us-

ing Japanese and English models. For each dataset, 100 

dialogue tweet pairs were presented to five human evalu-

ators. Responses for each pair include responses of four 

patterns: generated responses of our three models and the 

original tweet reply. Evaluators ranked the responses generated by the respective models in terms of 

coherence and richness, with scores of 1, 2, and 3. Richness was defined as whether evaluators would 

model λ perplexity BLEU-1 BLEU-2 DIST-1 DIST-2 ROUGE-1 ROUGE-2 length 

SCE - 60.572* 15.19  0.049  1.376* 7.949* 3.781  0.421  8.013* 

ITF 0.2 16.512* 15.32  0.016  1.303* 6.592* 3.775  0.357* 7.513* 

0.4 9.401* 15.78  0.033  0.524* 2.594* 2.916* 0.305* 7.737* 

0.6 7.511* 15.15  0.034  0.245* 1.309* 2.308* 0.181* 6.002* 

0.8 7.341* 13.71  0.082  0.155* 0.697* 1.873* 0.096* 6.350* 

INF 0.2 11.045  13.97  0.049  3.265  15.285  3.877  0.445  10.253  

0.4 5.936  12.35  0.049  1.401  5.661  2.482  0.295  10.521  

0.6 4.413  12.12  0.033  2.001  6.981  2.633  0.234  10.114  

0.8 3.890  12.32  0.033  2.039  6.681  1.348  0.085  9.998  

Table 1:  Metric-based evaluation results in Japanese data. (%) 

 

model λ perplexity BLEU-1 BLEU-2 DIST-1 DIST-2 ROUGE-1 ROUGE-2 length 

SCE - 107.582* 6.301  0.011  0.068* 0.576* 0.762* 0.156  49.335  

ITF 0.2 23.475* 6.141  0.012  0.117* 1.138* 2.006  0.141  55.884  

0.4 10.227* 6.583  0.005  0.097* 1.323* 1.443* 0.142  35.889  

0.6 35.383* 5.455  0.016  0.085* 1.344* 1.325* 0.085* 47.063  

0.8 34.909* 5.517  0.016  0.068* 1.296* 0.653* 0.061* 34.266  

INF 0.2 22.464  6.516  0.011  0.118  1.377  2.014  0.171  54.451  

0.4 6.686  6.357  0.005  0.169  1.473  1.439  0.128  40.339  

0.6 4.534  6.414  0.013  0.092  0.974  0.616  0.105  44.106  

0.8 3.796  6.508  0.011  0.118  0.871  0.954  0.041  45.716  

Table 2:  Metric-based evaluation results in English data. (%) 

 

model λ Coherence Richness 

SCE - 2.132/2.032 2.163/2.007 

ITF 0.4 2.071/2.101 2.002/2.094 

INF 0.2 1.794/1.866 1.835/1.899 

Table 3:  Human evaluation. 

(Japanese/English) 
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be willing to talk to that systems in the future. A smaller score denotes a better evaluation rank. We used 

a model setting with the best metric-based evaluation score for each loss function model, i.e. λ=0.4 for 

the ITF model and λ=0.2 for the INF model. Table 3 presents the average human evaluation rankings. 

These results demonstrate that INF was best in terms of both coherence and richness, followed by ITF 

and SCE. 

6 Discussion 

Results show that INF produced superior perplexity values compared to SCE and ITF. Therefore, INF 

produces more fluent sentences than the baselines. BLEU and ROUGE often showed good results in 

SCE and ITF. BLEU calculates n-gram precision between generated and target sentences, which does 

not incorporate recall. Therefore, SCE and ITF can obtain better performance because their generated 

sentence lengths were shorter. They are not directly comparable with the INF of the longer sentences.  

Also, INF presents excellent values for the diversity in both DIST-1 and DIST-2. Particularly, the INF 

of DIST-2 for the Japanese model and the Japanese dataset was 15.285, which is much higher than SCE 

and ITF. This result demonstrates that INF can generate responses that are more diverse, which also 

incorporate sequential information of tokens. 

Table 4 presents example dialogue pairs, where SRC is the input sentence to the model and TGT is 

the target sentence, i.e. an original reply tweet. The λ values of ITF and INF are the same as the model 

used for human evaluation. Regarding the example ID1J, INF generated a rich contextual response, 

whereas the responses generated by SCE and ITF were less context-dependent. In the ID2J dialogue, all 

three models generated responses that make sense as replies to the input, but they generated different 

tokens. In such cases, automatic evaluation using a single reference output might not be meaningful. In 

the ID1E dialogue, SCE generated a sentence that does not make sense. INF generated a meaningful 

sentence related to a song probably because “SUPERNOVA” was interpreted as a Korean dance group, 

although it differs from the human reference response. In the ID2E dialogue, responses that are more 

relevant are potentially available because its input sentence is ambiguous; SCE and ITF were unable to 

generate any meaningful conversation, although INF was able to generate them. 

Overall, all three models generated semantically relevant responses, but INF generates a wider variety 

of responses with longer sentences. 

7 Conclusion 

We proposed a weighted INF loss based on the inverse of the frequency of token n-grams, which can 

generate diverse responses while retaining fluency. Comparison to baseline methods revealed that our 

automatic and human evaluation scores obtained using our proposed method generated more diverse 

responses with improved contextual consistency. Future works are expected to include a tri-gram version 

of our INF model and the use of deep learning models other than Transformer. 

ID  Japanese ID  English 

1J 
 

SRC The theory that he’s more active 
than a star 5. 

1E SRC You can get Supernova free now! Who’s down-
loading? We’d love to see what you can create! 

TGT I think there is. You are especially 
welcome if you are a stray! 

TGT I would but You need to launch a web version ;) 
PC user here? 

SCE Seriously? SCE I’m not sure if I’m not going to get into it. I’m 
just saying, “I’m gonna be the next.” 

ITF Really ! lol ITF I’m going to rewatch soon. 
INF Well, I think this star 4 is stronger 

than star 5. 
INF I don’t like the songs, but I’ve listened to it. 

2J SRC I want to collect all the DVDs. 2E SRC Honestly it grew on me later but god he ruined it. 
TGT It’s in the Mozuku mansion. TGT nooo he didn’t ruin it its still a bop come on? 
SCE Are you buying <unk>4? SCE Is this the same guy that has to be in the same 

position? 
ITF It’s amazing how everything is 

<unk>. 
ITF I’m sorry sis but I’m gonna be honest. 

INF They were all 980 yen. INF I’m a big fan of his face, but I’ve never listened 
to the songs. 

Table 4:  Example responses generated from different models. 



4127

Acknowledgements 

This research is supported by KAKENHI (18K18504) and JST CREST (JPMJCR1684, JPMJCR19F4). 

Reference 

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz and Samy Bengio. 2016. Gen-

erating sentences from a continuous space. In Proceedings of the 20th SIGNLL Conference on Computational 

Natural Language Learning, pages 10–21. 

Diederik P. Kingma and Max Welling. 2014. Auto-encoding variational bayes. Computing Research Repository, 

arXiv: 1312.6114. Version 10. 

Diederik P. Kingma, and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In Proceedings of the 

Third International Conference on Learning Representations, pages 3351–3357. 

Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language independent subword tokenizer and 

detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Nat-

ural Language Processing: System Demonstrations, pages 66–71. 

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016. A diversity-promoting objective 

function for neural conversation models. In Proceedings of the 2016 Conference of the North American Chapter 

of the Association for Computational Linguistics: Human Language Technologies, pages 110–119. 

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Proceedings of the 42nd Annual 

Meeting of the Association for Computational Linguistics, pages 74–81. 

Ryo Nakamura, Katsuhito Sudoh, Koichiro Yoshino, and Satoshi Nakamura. 2018. Another diversity promoting 

objective function for neural dialogue generation. In Proceedings of the second AAAI Workshop on Reasoning 

and Learning for Human-Machine Dialogues. 

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a Method for Automatic Evaluation 

of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Lin-

guistics, pages 311–318. 

Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. 2016. Building end-to-

end dialogue systems using generative hierarchical neural network models. In Proceedings of the 30th AAAI 

Conference on Artificial Intelligence, pages 3776–3784. 

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural Responding Machine for Short-Text Conversation. In 

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, pages 1577–1586. 

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In 

Proceedings of the 28th Conference on Neural Information Processing Systems, pages 3104–3112. 

Junya Takayama and Yuki Arase. 2019. Relevant and Informative Response Generation using Pointwise Mutual 

Information. In Proceedings of the First Workshop on NLP for Conversational AI, pages 133–138. 

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and 

Illia Polosukhin. 2017. Attention is all you need. Advances in Neural Information Processing Systems, 30:5998–

6008. 

Oriol Vinyals and Quoc Le. 2015. A neural conversational model. In Proceedings of International Conference on 

Machine Learning, Deep Learning Workshop. 

Chen Xing, Wei Chung Wu, Yu Ping Wu, Jie Liu, Yalou Huang, Ming Zhou, and Wei-Ying Ma. 2017. Topic Aware 

Neural Response Generation. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, pages 

3351–3357. 

Jingjing Xu, Xuancheng Ren, Junyang Lin, and Xu Sun. 2018. Diversity-Promoting GAN: A Cross-Entropy Based 

Generative Adversarial Network for Diversified Text Generation. In Proceedings of the 2018 Conference on 

Empirical Methods in Natural Language Processing, pages 3940–3949. 

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xiujun Li, Chris Brockett, and Bill Dolan. 2018. Generating 

informative and diverse conversational responses via adversarial information maximization. Advances in Neural 

Information Processing Systems, 31:1810–1820.  

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1811.08100v2
https://arxiv.org/abs/1811.08100v2

