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Abstract

The ability to change a person’s mind on a given issue depends both on the arguments they are
presented with and on their underlying perspectives and biases on that issue. Predicting stance
changes requires characterizing both aspects and the interaction between them, especially in
realistic settings in which stance changes are very rare.

In this paper, we suggest a modular learning approach, which decomposes the task into multiple
modules, focusing on different aspects of the interaction between users, their beliefs, and the
arguments they are exposed to. Our experiments show that our modular approach archives sig-
nificantly better results compared to the end-to-end approach using BERT over the same inputs.

1 Introduction

One of the main drivers of social interaction is convincing people to adopt new ideas and perspectives.
Understanding how to make compelling arguments that would achieve this goal has been studied exten-
sively in psychology and the social sciences (Fogg and B.J., 2003; Popkin, 1991), and more recently by
the NLP community. Most of these works focus on analyzing argumentative text in isolation (Habernal
and Gurevych, 2016a; Potash and Rumshisky, 2017; Persing and Ng, 2017; Gleize et al., 2019). While
the quality of arguments can potentially be judged in isolation based on their merits, their effectiveness,
when it comes to convincing readers, has to be considered in conjunction with the subjective perspectives
and biases of these users. For example, social psychology studies have shown that ideological stances
are highly correlated with different moral arguments preferences (Haidt and Graham, 2007; Graham et
al., 2009; Graham et al., 2012; Johnson and Goldwasser, 2018), while Lukin et al., (2017) studied the re-
lation between personality type and factual vs. emotional arguments. Durmus and Cardie (2018) studied
linguistic properties of convincing arguments, conditioned on users’ political and religious convictions.

This work aims to study the effectiveness of debate arguments, with respect to the biases of users read-
ing them. Our goal is to mimic a realistic setting, in which only partial information about these users and
their behaviors is available. To accommodate this setting, we use data from the website debate.org,
used in several previous studies (Durmus and Cardie, 2018; Durmus and Cardie, 2019; Luu et al., 2019;
Pacheco and Goldwasser, 2020), and formulate a new classification task, ChangeMyStance, (CMS)1, pre-
dicting whether a specific user would change their stance after being exposed to two conflicting texts:
one that does not support the voting user’s views and another one that does. As people do not easily
change their minds when exposed to other perspectives, this formulation results in a highly challenging
task with only about 6% of users persuaded by the arguments. This formulation is different than the one
proposed by Durmus and Cardie (2018), which also studied users’ bias, as explained in Section 4.

Our main intuition is that successfully approaching the CMS task hinges on modeling the interactions
between the arguments made by each side and the biases of the user exposed to them. For example, when
debating self-driving cars, a computer scientist might focus on technical challenges while an economist
would be more attuned to arguments discussing the implications on the job market. Similar to Durmus

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

1Named after the Reddit sub-community /r/ChangeMyView studied by Tan et al. (2016)
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Figure 1: Example debate

Task Class 0 Class 1 Class 2
AGREEMENT 24310 64122 -
ARGUMENTS 21259 7981 37442
BEFORE 13947 33655 19080
AFTER 13866 35989 16827
CHANGEMYSTANCE 93633 5851 -

Table 1: Data statistics (votes) for each task.

and Cardie (2018), we rely on users’ self-reported information, which is often incomplete as users do
not report their views in a consistent way and omit details. Instead, we follow the observation that users’
bias can also be reflected by their behavior, and take a representation-learning approach, mapping the
observed users’ information to a latent space based on their agreement patterns.

We exploit the fact that the CMS task naturally decomposes into sub-tasks, each capturing a different
aspect of the problem. Instead of an end-to-end formulation, we use modular learning, in which the
different aspects are captured by different modules, combined later to support the final CMS decision.
We take a hierarchical task decomposition approach, starting with elementary modules that shape users’
representations based on their agreement patterns (AGREEMENT task). We characterize the interaction
between users and textual content by defining three auxiliary tasks: characterizing the users’ initial bias
on the issue, their final stance, and argument preferences (BEFORE, AFTER, and ARGUMENTS, resp.).

We consider several ways of using these modules to support the CMS task. The first is the traditional
multi-task learning approach (Collobert et al., 2011) in which the input representation is shaped by both
the auxiliary and final tasks. However, the dependency between the CMS task and its modules can also
build on the output of the modules. For example, CMS can be approximated by combining the modules for
predicting the user’s initial bias on the topic and their argument preference (i.e., BEFORE + ARGUMENTS).
If the user finds the arguments of the side that conflicts with their original perspective more appealing,
they are more likely to be persuaded. We design several hierarchical modular networks, and compare
them to a strong end-to-end baseline based on BERT (Devlin et al., 2018). Our results demonstrate the
importance of characterizing the user bias using the modules leading to significant improvements.

2 Related Work

Understanding the properties of persuasive arguments and identifying them in text have been widely
studied in the NLP community (Tan et al., 2016; Habernal and Gurevych, 2016b; Wei et al., 2016;
Persing and Ng, 2017; Stab and Gurevych, 2017; Hidey et al., 2017; Lukin et al., 2017; El Baff et al.,
2018; Durmus and Cardie, 2018; Gleize et al., 2019; Yang et al., 2019; Xiao and Khazaei, 2019).

Most relevant to our work is the ChangeMyView (CMV) task, introduced by Tan et al. (2016),
predicting stance changes in Reddit forums. Similar to our work, Durmus and Cardie (2018) highlight
the importance of modeling the user’s belief when analyzing persuasive language. In their work, Xiao et
al. (2019) approach the CMV problem using features that characterize the users’ psychological attributes.

We suggest a modular approach, adapting the modular architecture suggested by (Zhang and Gold-
wasser, 2019) for sequence tagging to detecting user-specific persuasive text. Closest to our settings is Jo
et al. (2018), which follows the CMV line of research and proposed an end to end neural network with
a modular attention mechanism. It consists on two modules, one that models the malleable parts of the
original poster’s arguments, and another that focuses the difference in content between both authors.

3 The Dataset and Preprocessing

The ChangeMyStance task is defined over two texts with opposing perspectives on an issue, and a user
indicating if their stance on the issue changed after reading the arguments in the texts. The debates,
collected from www.debate.org, are between two contenders: the initiator (IN) proposing the debate
question and the challenger (CH), offering the opposing view. Debates consist of a series of rounds, in
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which contenders respond to the arguments made by the other contender in the previous round. At the end
of the debate, users can express their preferences by voting, (as depicted in Fig. 1) by casting a 0 (vote
for IN), 2 (voter for CH) or 1 (tied) in the following categories: Ubefore (voter’s preference before the
debate), Uafter (voter’s preference after the debate.), Uarguments (Which side made better arguments?),
Uconduct (Which side had better conduct?), Uwriting (Which side had better writing skills?).

Users can share information on their profile page, including attributes such as age, political ideology
and education. They can also provide their stances over 48 “big”-issues (e.g., abortion, healthcare, etc.),
and provide an open-ended textual summary. We refer to the first two (big issues stances and profile
attributes) as Uprofile and use Usummary to refer to the textual summaries, represented by applying a pre-
trained BERT encoder on that text.

Preprocessing We filter debates containing arguments by only one side, or low engagement (less than
3 votes). After filtering we are left with 12901 debates and 4380 different voters participating in them.

We represent the debate text by fine-tuning the BERT (Devlin et al., 2018) model on our data, treating
each round as a sentence capped to a size of 510 tokens. In order to represent the text of the posts we use
a fixed BERT encoding of the first 510 tokens of the debate (same for Usummary).

4 Problem Definition and Decomposition

In this section we will define the ChangeMyStance task, its supporting sub-problems, and explain how
it differs from similar persuasion-detection tasks.
ChangeMyStance is a binary classification problem, each instance is a 4-tuple < U, T1, T2, y >, where

U is a user representation, T1 and T2 are two pieces of text with opposing views. As a convention, we
assume that T2 is the text expressing U’s initial stance on the topic. The label y ∈ {0, 1} captures the
stance change, i.e., y = 1 if T1 made the user change their mind, i.e., when Ubefore 6= Uafter. When the
user is initially undecided, i.e., Ubefore = 1, we allow both sides to change the user stance. Changes to
an undecided view are also considered as stance changes.
Comparison with Durmus and Cardie (2018) The interaction between users’ bias and the type of
arguments they find convincing over the debate.org dataset was previously studied (Durmus and
Cardie, 2018). They defined controlled studies in which the users were known to change their mind,
or required models for predicting the stance preference rather than stance change. However, our task
formulation is very different. We focus on modeling the realistic setting of persuasion detection, in which
only a small fraction of users will be convinced to change their mind. In our view, this is a more natural
setting. For example, when launching a campaign on social media promoting better health choices,
policy makers have to consider which arguments will be convincing based on limited information. We
specifically focused on these challenging settings, as a way to evaluate different strategies to represent
user’s beliefs and its interaction with argumentative content.

4.1 Decomposing ChangeMyStance

Our main technical insight is that the CMS task can be decomposed into several sub-tasks, which char-
acterize the users’ biases and preferences. These subtasks are conceptually simpler to learn, and help
structure the learning process for the downstream CMS by providing intermediate representations for it.
We begin by describing these tasks and their intended contribution, and then describe the modular archi-
tecture we used in Sec. 5. The data statistics of each task can be found in Tab. 1.

Sub-task: ARGUMENTS This task is designed to characterize which argument the user finds more ap-
pealing. Note that it is different than CMS, as users are primed to pick arguments that support their existing
views. The problem is defined over the same representation as CMS, 〈U, T1, T2, y〉, with y = Uarguments.

Sub-task: BEFORE This task is designed to characterize users’ initial biases, by predicting which
argument (T1 or T2) aligns with the voter initial beliefs, i.e., Ubefore. It takes similar inputs as CMS. While
CMS instances already capture this information in their argument order (T2 captures their initial bias), this
task allows the model to tune the user representation to capture this initial bias.
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Sub-task: AFTER This is a multi-class classification problem, in which the label corresponds to
the voter beliefs after attending the debate. The problem has same sample representation as CMS

〈U, T1, T2, y〉, but y = Uafter, thus y ∈ 0, 1, 2.

Sub-task: AGREEMENT This task is designed to shape the users’ representation, by increasing the
similarity between users with similar beliefs (i.e., before votes). This task is particularly useful as it
helps the model overcome the problem of sparse user information. An agreement instance, 〈U1, U2, y〉,
has a positive value (y = 1) if the users have the same BEFORE vote, and a negative value otherwise.

5 Models

In the previous section we introduced the CMS task, and four related sub-tasks, designed to support it. We
use the term module to refer to the neural architecture trained for each one of these tasks, and view it in a
dual way - as a classifier, by providing a probability distribution over the output labels for a given input,
and as a representation extractor, providing an embedding of the inputs, capturing the specific aspect of
the sub-task (e.g., embedding the user’s initial bias on a topic), using the module’s final hidden layer.

Our main technical challenge is to design a learning and reasoning framework that can combine the
supporting tasks and the final CMS prediction. We explore three approaches for this purpose:

1. Multitask Learning: similar to Collobert et al. (2011), we jointly train all the modules, while sharing
the input representation parameters.

2. Ensemble-based: constrain the modules’ outputs to be consistent with the CMS prediction, by defin-
ing an ensemble of multiple modules predicting the same output.

3. Modular-Architecture: most of our efforts focus on exploring modular architectures, which combine
pre-trained modules into a hierarchical neural architecture. In this way, the modules provide a
supporting structure, using their final layer activation as a representation for the parent module.

Intuitively, both the ensemble-based and the modular approaches exploit the sub-tasks modules. The
first looks at the modules’ outputs, while the second uses the modules as representation extractors, in-
corporated into downstream tasks representations, and adapted during the training process.

In the rest of this section we explain the different choices. We begin with the basic modules for each
task, trained in an end-to-end fashion (Sec. 5.1). Then, in Sec. 5.2, we explain our hierarchical modular
approach. Finally, we explain the multi-task (Sec. 5.3) and ensemble-based (Sec. 5.4) approaches.

5.1 Atomic Modules

Our model connects multiple modules hierarchically, building on atomic (leaf) modules, defined over the
raw inputs, to create higher level modules. We begin by describing the architecture of atomic modules.

User Representation and AGREEMENT Module Characterizing the users and their biases is at the
heart of our work. Past work looked at personality types (Lukin et al., 2017), and broad stances on
issues (Durmus and Cardie, 2018) as a way to do that. In this work we take a representation learning
approach, and learn a user representation based on both the user’s profile information and their behavior,
used to shape a latent user representation using the AGREEMENT module. The basic user representation
consists of three elements: Uprofile (profile attributes and big issues stances), Usummary ( BERT encoding
of the user summary) and Uemb (randomly initialized user embedding).

The module associated with the AGREEMENT task is designed to shape this representation, to capture
the similarity in perspectives and biases of voters who have the same initial views on topics. Since many
users only provide partial information in their profile, this module implicitly captures the relationship
between user properties and initial biases, and helps complete missing information.

The architecture of this module, depicted in Fig. 2, first encodes the user summary Usummary using two
feed-forward layers. Then it concatenates it together with the Uemb and the profile features Uprofile. All
this information is then passed through a user encoder of two more hidden layers. We use the embedding
hinge loss objective to quantify the similarity error. To reduce noise, we ignore “tie” votes.
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Figure 2: Module types.

Modules for User and Text Interaction The other four tasks (CMS, ARGUMENTS, BEFORE, AFTER) defined
in Sec. 4 aim to characterize the interaction between a user and text. As a result, all tasks take the same
inputs, and use the same architecture (instantiated with different parameters for each module). We refer
to the atomic version of these modules as basic modules. Fig. 2 describes the architecture:

• A post layer that transforms T1 and T2 BERT encoding separately to a reduced representation.
• Two core layers that take as input the concatenation of the T1 hidden representation, T2 hidden repre-

sentation and the User representation.

We use the Cross Entropy as loss function for these multi-class classification problems.

5.2 Hierarchical Models
The atomic modules can be used as building blocks for more complex architectures. We leverage the
modules’ role as representation extractors and use their final core layer as their representation. We
pre-train the modules to obtain this representation.

The architecture of the hierarchical modules are defined recursively. It extends the architecture of
the basic module defined above, by adding an additional input hM, which represents the embedding of
all modules2. Given a hierarchical module h, we define the set of supporting modules as M(h), each
m ∈ M(h) corresponds to the output layer of m. We define a hidden representation for each module,
which adapts during the training process: em = f(W 0

m m + bm), where W 0
m, bm are the weight matrix

and bias term associated with the module instance m, and f is a non-linear activation function. Now we
can define M(h), the additional input representing the supporting modules–

M(h) = f

( ∑
m∈M(h)

W 1
m em + bem

)

This architecture is described in Fig. 2. Note that each sub-module m ∈ M(h) can be hierarchical as
well. We will use the following nomenclature to describe the recursive structure: M[SubM1, ..., SubMn] ,
where M is the name of the topmost hierarchical module, and SubMi are sub modules. This structure can
be recursive. E.g, CMS[CMS[Aft[Ag], Bef[Ag]], CMS[Bef[Ag], Args]] corresponds to a hierarchical CMS
module that has two CMS sub-modules: the left one has After(Aft) and Before(Bef) sub-modules,
while the right one has Bef and Arguments(Args) sub-modules. The sub-modules are also hierarchical
and they use Agreement(Ag) as a sub-module.

User Representation In the architecture the user representation is used in two ways, it is concatenated
to the output of the post layer, and it is also added as an additional sub-module to M(h). The motivation
behind it is that the user representation can balance the importance of each module. For example, when
trying to predict CMS using Before and Arguments as supporting modules, an specific user may give
more value to a sound argument than to their previous beliefs.

2We add the input user representation as another sub-module to all hierarchical modules, omitted from the notation to help
clarity. See Fig. 2 and user representation discussion.
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5.3 Multitask Learning

We also experimented with a joint model where all tasks are learned at the same time. First, we have a
shared debate encoder that: (1) takes the raw inputs and passes them through a feed-forward layer (like
the Basic Model), then (2) they are concatenated and passed trough two feed-forward layers. Separately,
for each task we have two feed forward layers plus one last Softmax layer that are fed from the shared
debate encoder. We use the sum of the Cross Entropy Losses from each task as the learning objective.

5.4 Ensemble based Prediction

The sub-tasks we introduced provide an alternative representation for the CMS task. In the modular-
architecture approach, this representation is captured by the neural information flow. In this section we
look at a different way to use the modules, by forcing consistency over the outputs of these modules.
Given an instance x, we can define the task over the outputs of the modules as follows–

(1) ARGUMENTS 6= BEFORE =⇒ ChangeMyStance
(2) AFTER 6= BEFORE =⇒ ChangeMyStance
(3) End2End CMS =⇒ ChangeMyStance

The rules are defined over the outputs of the corresponding modules, and capture the conditions in
which different output assignments to the modules indicate a change in stance. Rule 1 states that if the
side with better arguments is not the same side as the initial bias, a stance change happens. It is captured
by the output of the module CMS[Before[Agree], Args]. Rule 2, looks at the difference between the view
before and after the debate, inconsistent values reflect and a stance change. This rule is captured by the
output of the module CMS[Before[Agree], After[Before[Agree], Args]]. Finally, rule 3, uses the prediction of
the end-to-end CMS module. We combine the prediction of the modules using an ensemble approach,
where each “expert” contributes a prediction and a confidence score, normalized into a probability. We
sum the scores associated with each label and predict the highest scoring output over all three predictions.
We tune the relative weights of these predictions using the validation data.

6 Experimental Design

We run each setting using a 10-fold cross validation. For each fold the data was separated by debates, i.e.
all votes of the same debate are associated with the same fold. In each run, one fold was used for testing
and the rest for validation and training. We randomly chose 15% (20% for Arguments) of the training as
validation data keeping votes of the same debates together. We use the Adam optimizer with a 256 batch
size and the Sigmoid activation function. Due to the high class imbalance, we balance the weight of
the classes in the objective function. For the ARGUMENTS, AFTER, BEFORE and CHANGEMYSTANCE

modules we use a learning rate of 0.0001. Training stops if there is no improvement after 25 epochs
or 200 epochs have passed. Agreement uses a learning rate of 0.001 and stops after 50 epochs of no
improvement.
Raw Inputs The representation of each debate stance is the BERT encoding of the first 510 characters
(9216 features). This representation decision helped limit the computational burden, however it can
potentially lead to information loss, as in some cases the combined arguments of each stance can be
longer, which was the case in 50% of the debates. We ran two experiments to validate this design
decision, comparing the E2E CMS model trained over the truncated text to two systems trained over
the full text. The first was a bag of words of the top 20,000 frequent unigrams, resulting in a 6% in
+F1 score drop. The second model used a separate BERT encoding of each debate round, and the full
stance representation was created by averaging these vectors. This representation imposed a higher
computational cost, however it did not lead to a statistically significant result difference compared to the
truncated version.

The user profile Uprofile has 158 features by putting together demographic information and big is-
sues. The randomly generated user embedding Uemb is 100D (50D for Arguments). The user summary
Usummary was used only as part of the Agreement module and it has the same number of features as the
BERT encoding.
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Task
Text + Uprofile + Uemb
Avg. F1 Avg. F1 Avg. F1

ARGUMENTS 0.4913 0.494 0.507*
BEFORE 0.4264 0.464* 0.517*
AFTER 0.4389 0.475* 0.534*

+F1 +F1 +F1
CMS 0.170 0.197* 0.272*

Table 2: Evaluating Different User Representa-
tions. Avg. F1-score and +F1 (positive class F1)
for the E2E model using different user representa-
tions. All numbers are truncated to the 3rd decimal.
We test statistical significance ”*” with p−value <
0.01 over the closest simplified version. For Exam-
ple: ”+ Uemb” is tested against ”+ Uprofile”.

Figure 3: Percentage of training samples
used vs. CMS’s positive class (+F1) when
using the E2E CMS and the best Hierarchi-
cal version.

Neural Architectures:
(1) Hierarchical and Basic: all modules’ architectures include two core layers, a post Layer and an extra
layer (shown in Fig. 2). The post layer is 100D, the extra layer is the same dimensionality as its input
(varies depending on the number of supporting modules). Core layers consist of two 50D FF layers, i.e.,
each sub-module contributes 50 features to their parent module.
(2) Agreement: uses a different sample structure (two users) and outputs their embedding. When used as
a sub-module it returns only the first user embedding. It consists of two 100D core layers and two 50D
summary layers, described in Fig. 2.
(3) Multitask: we compare the multitask approach to the hierarchical model, that uses the same sub-
modules. The multitask architecture resembles the Basic Module (Fig. 2) structure. The post layer is
shared by all the tasks, while each task individually manages their own core layers. As before, we sum
the tasks’ objectives. Samples from all tasks are shuffled and an epoch processes a batch 256.
(3) Ensemble: In order to choose the weights between rules we tested all combinations with a 10%
weight difference over the validation set and chose the one with the best performance.

7 Results

7.1 The importance of user representation

Our first set of experiments demonstrate the importance of creating rich user representations. We com-
pared several different representations when learning the CMS task, using the basic module. First we
started from no user representation (Text), followed by including the Uprofile and finally adding the
randomly initialized user embedding (Uemb).

Our results can be found in Table 2. They show that in all tasks increasing the complexity of the
user’s representation improves performance. Although most profiles only have little information, the
Uemb + Uprofile setting shows they are enough to produce a 4 and 3.5 points increase in the BEFORE

and AFTER task respectively. Moreover, it manages to increase the F1-score for the positive CMS task
by almost 3 points and its average F1-score by 4 points. Also, we can see that the increase is bigger in
tasks where the users beliefs are key (BEFORE and AFTER). As expected, the ARGUMENTS task is less
sensitive to the user representation, and depends more on the text.

The user representation can be fine-tuned using the AGREEMENT module, that takes the representation
of two users that expressed the same prior belief and aligns their representations. Our hypothesis is that
this module helps characterize users that have sparse profile information and have only contributed a few
votes. It aligns the representations of highly engaged users who vote frequently with the low engagement
users, based on their initial bias on the debate issue, resulting with a highly tuned representation. As can
be seen in Table 5, the AGREEMENT module produces statistically significant results when used as part
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Models Val. Test
Baselines +F1 +F1
Random CMS - 0.108
E2E CMS (Text + Uprofile) 0.203 0.197
(1) E2E CMS (Text + Uprofile + Uemb) 0.282 0.272
Traditional Approaches +F1 +F1
(2) Multitask[CMS, BEFORE, 0.283 0.278

AFTER, ARGS]
(3) Ensemble 0.283 0.279∗

Hierarchical Models +F1 +F1
(4)CMS[BEFORE, AFTER, ARGS] 0.297 0.288.

(5) CMS[AFTER, BEFORE, 0.296 0.286∗

ARGS, AGREE] ,
(6) CMS[ 0.293 0.284∗

CMS[BEFORE[AGREE],
AFTER[BEFORE[AGREE],

ARGS]],
CMS[BEFORE[AGREE], ARGS]]

(7) CMS[ 0.299 0.292+−

AFTER[BEFORE[AGREE], ARGS],
BEFORE[AGREE], ARGS, AGREE]

Table 3: Results of using different strategies when
shaping the modules interaction to predict CMS. We
use the +F1 (the F1-score of the positive CMS class)
metrics to characterize the models. We test for sta-
tistical significance with p − value < 0.05: (1)
”∗” w.r.t E2E CMS (Text + Uprofile + Uemb), (2) ”.”
w.r.t Multitask, (3) ”+” w.r.t Ensemble, and (4) ”−” w.r.t
CMS[AFTER, BEFORE, ARGS, AGREE].

Ideology Metric
Voter Writer %+ +F1 Avg. F1
Liberal Liberal 7.8 0.279 0.600
Liberal Conserv. 3.7 0.289 0.602
Conserv. Liberal 6.6 0.293 0.607
Conserv. Conserv. 15.9 0.405 0.647

Table 4: Predicting change of stance based on
ideology agreement of Conservatives and Lib-
erals. The study uses as metrics the percentage
of the positive class (%+), the F1-score of the
positive class (+F1) and the Avg. F1-score.

Models Val. Test
Avg. F1 Avg. F1

E2E AGREEMENT 0.528 0.520
Random ARGUMENTS - 0.398
E2E ARGUMENTS 0.534 0.507*
Random BEFORE - 0.415
E2E BEFORE 0.531 0.517*
M.Bef: BEFORE[AGREE] 0.544 0.533*
Random AFTER - 0.410
E2E AFTER 0.548 0.534*
M.Aft: AFTER[ARGS, 0.562 0.550*

BEFORE[AGREE]]

Table 5: Avg. F1 scores of the end-to-end
(E2E) and Hierarchical models for the support-
ing tasks. If p − value < 0.01 then * when
comparing basic and hierarchical. We use
AGREE and ARGS as short names for AGREE-
MENT and ARGUMENTS respectively.

of the BEFORE module, and it is used by our top performing model on the CMS task, as shown Table 3.
We provide additional analysis based on users’ ideology in Table 4. We compare our model’s per-

formance over different data splits based on the ideology values of the debating user and voting user.
Interestingly, the task is significantly easier when both users has a conservative ideology.

7.2 Evaluating Hierarchical Modules on CMS

Can the selected sub-tasks help predict CMS? First we want to show that using the BEFORE, AFTER,
ARGUMENTS and AGREEMENT modules is relevant for the CMS task. We compare the end-to-end version
basic module, with several hierarchical systems. First, we compare it with the simplest hierarchical
model, CMS[Bef, Aft, Args, Agree] (model 5). As can be seen in Table 3, our two level hierarchy model
(5) performs statistically significantly better than the end to end CMS model (1).
What is the right modular structure? Constructing hierarchical structures allows us to encode domain
knowledge into the representation. Based on our experiments we suggest several modules hierarchies.

• BEFORE should use AGREEMENT as sub-module as understanding which users have similar beliefs
is critical for predicting biases. As shown in Fig. 5, the modular version of the BEFORE module
(M.BEF) is significantly better by 1.5 points.

• The beliefs AFTER the debate are a consequence of how strong the voter’s bias is, and the ARGU-
MENTS used to persuade the user. Fig. 5 shows that M.AFT is significantly better than its end to end
version AFTER.

• As the problem is defined, if AFTER is different than BEFORE it means the user changed their stance.
Therefore, BEFORE and AFTER should always support CMS. As can be seen in Table 3 all the CMS

models that build on these two sub-tasks significantly outperform the end to end model.
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Model Accuracy
Majority Vote TASK1 0.5
Durmus Model TASK1 0.657
E2E TASK1 0.642
E2E TASK1[BEFORE, AFTER, ARGUMENTS] 0.659*

Table 6: Results obtained using the modular approach on Task 1 (debates in all categories) of Durmus el
al. (Durmus and Cardie, 2018) paper. This version has 4392 samples split evenly. (*) indicates statistical
significance (p−value < 0.05) when comparing E2E TASK1 and the corresponding hierarchical version.

Building on domain knowledge as a heuristic to shape the representation, we evaluate several modular
hierarchies. One option is to put all modules at the same level and let them share information (model (5)
in Table 3). Another option is to use a deeper hierarchy to support the CMS problem (model (7) of Table
3), which works significantly better. In other words, building hierarchies based on improved sub-modules
can improve the overall performance.

We also evaluate model-7 when less supervision is available. These settings aims to evaluate whether
the modules can act as scaffolding, allowing the model to leverage the limited supervision in a better
way. We evaluate these settings by training the AGREEMENT, BEFORE, AFTER, ARGUMENTS modules
using all the data, and increase the amount of CMS supervision to form a learning curve. The results
summarized in Fig. 3 show the modular approach consistently outperforms the E2E one.
Modular Learning vs. other information sharing approaches As shown in Figure 3, both the mul-
titask model (2) and the ensemble model (3) achieve a limited improvement over the E2E model and
perform worse than the simplest hierarchical model (4) that uses the same tasks (model (6), ensemble).

7.3 Predicting Stance Change Direction

The CMS task assumes knowledge about the initial stance of the user (encoded by the order of the two
input texts), and predicts whether it changed. In Durmus and Cardie (2018), a different task was studied.
They assumed that the stance change is known, but the direction of change is not, i.e., whether the voting
user was convinced by the PRO debater or CON debater.

We build their task and evaluated our hierarchical module on it. Unfortunately, we were not able to
directly compare our work with theirs since the original debates splits were not available. Table 6 shows
the results of reproducing their setting (Task-1, all the categories) using our models and experimental
design settings. Our modular approach improves the E2E model by 2%, similar to our CMS problem.
We included the results achieved by Durmus et al. (Durmus and Cardie, 2018) for reference, but they are
not comparable as their dataset evolved and the splits are not the same.

8 Conclusions and Future Work

In this paper we study the problem of identifying whether debate arguments will convince their reader to
change their minds. We focus on a highly challenging version of this task in which only 6% of the users
actually change their mind, requiring models that can capture the interaction between users, their biases
and relevant arguments for them. These settings, while challenging, are natural - we often would like
to predict the impact of different arguments on different demographics, allowing policy makers to adapt
their arguments and help people make better choices.

We propose a hierarchical modular learning approach, which relies on decomposing the stance-change
task into different aspects, such as characterizing the users biases and the quality of the arguments made.
We describe a general formulation for composing these modules recursively. Our approach can be con-
sidered as a form of scaffolded learning, in which we construct increasingly complex task representations
in a hierarchical way, by using the previously learned modules to construct a higher level representation,
or scaffolding, supporting the new learning task. Our experiments show the strength of this approach,
raising directions for future research on leveraging modular architectures on a larger scale, to capture
different forms of users’ behaviors and characterize the arguments in more nuanced ways.
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