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Abstract

Traditional word vectors, such as word2vec and glove, have a well-known inclination to conflate
the semantic similarity with other semantic relations. A retrofitting procedure may be needed
to solve this issue. In this work, we propose a new retrofitting method called Heterogeneously
Retrofitted Spectral Word Embedding. It heterogeneously twists the similarity matrix of word
pairs with lexical constraints. A new set of word vectors is generated by a spectral decomposition
of the similarity matrix, which has a linear algebraic analytic form. Our method has a compet-
itive performance compared with the state-of-the-art retrofitting method such as AR (Mrkšić et
al., 2017). In addition, since our embedding has a clear linear algebraic relationship with the
similarity matrix, we carefully study the contribution of each component in our model. Last but
not least, our method is very efficient to execute1.

1 Introduction

Word embedding is one of the core research areas in natural language processing. Its usefulness has been
demonstrated in a wide variety of NLP tasks, e.g. dependency parsing, sentiment analysis, and machine
reading comprehension. Modern embedding methods are usually based on the distributional hypothesis,
namely, co-occurred words tend to purport similar semantic meanings. Although the distributional word
vectors perform well on lots of tasks, they have a well-known tendency to conflate the semantic similarity
information with the semantic relatedness (Hill et al., 2015). Therefore, the similarity between word
vectors cannot reflect the precise semantic relation between word pairs, but just a semantic association
(Yih et al., 2012). For instance, if two words are antonyms, their corresponding word vectors could be
very close geometrically, which makes it very hard to distinguish one word from the other.

One way to solve this problem is to inject some lexical constraints, such as antonym relationships into
the word vectors, the aim is to make antonyms far apart from each other. This process is often referred as
semantic specialization (Mrkšić et al., 2017). There are two kinds of semantic specialization methods:
(1) joint specialization methods, in which word vectors are trained from scratch by incorporating the
lexical knowledge into the learning objective of the distributional models. Pham et al. (2015) inject a
synonym/antonym margin loss into the skip-gram objective to enforce that antonym pairs have low simi-
larity while synonym pairs have high similarity; (2) retrofitting methods (also referred as post-processing
methods), in which pre-trained word vectors are fine-tuned by injecting the lexical information into vec-
tor spaces. Mrkšić et al. (2017) proposed the ATTRACT-REPEL(AR) algorithm which tries to push or
pull a pair of words by a margin compared with its corresponding negative samples. Another retrofitting
method is to inject lexical constraints into the word similarity matrix and obtain the tuned word vectors
via the matrix decomposition. The method proposed by Sedoc et al. (2017) is in this line of research.
Generally speaking, the retrofitting methods have a better performance (Mrkšic et al., 2016) while the
joint specialization methods can specialize all words.

In this paper, we want to address the following question: Can we design a retrofitting method that is
interpretable and has a competitive performance with the start-of-the-art methods? Thus, we propose a

1We release our code and relevant datasets at https://github.com/ryh95/HRSWE.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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novel model called HRSWE (Heterogeneously Retrofitted Spectral Word Embedding). The basic idea
is that if the difference between the similarity of an antonym pair and the minimum similarity of all
pairs is large (small), the weight of lexical constraint about this antonym pair will be high (low). Similar
ideas are applied for synonym pairs. Moreover, words i and k will tend to be synonyms if words i and
k have a common synonym(antonym) j. On the other hand, i and k will tend to be antonyms if (i, j)
are synonyms and (j, k) are antonyms or the other way around. This phenomenon is called contagion,
which will be modeled via the matrix multiplication of thesauri matrices. After the similarity matrix is
constructed, we do spectral decomposition on the similarity matrix to obtain the specialized embedding.
We also care about whether the performance of a specialization method still holds when the thesauri used
by the method is perturbed, which is called the robustness. In this paper, we explore a few perturbation
methods. Overall, HRSWE is slightly better than AR in terms of robustness given these perturbations.
The contributions of our method are as follows.

• Foremost, our method is more interpretable than AR in three folds. First, our embedding has a
clear algebraic relationship with the original word embedding, while ATTRACT-REPEL does not
have this property. In particular, our embedding can be formulated as an analytical form in terms of
the injected similarity matrix. Furthermore, the importance of synonym and antonym information
injected into the similarity matrix is quantified by experiments. Finally, the significance of the
contagion information is demonstrated by experiments as well.

• In terms of performance, on one hand, our novel method not only has a much better performance
compared with Word2Vec but also achieves a competitive performance with the state-of-the-art
method ATTRACT-REPEL on three tasks. Furthermore, our method has slightly better robustness
compared with ATTRACT-REPEL. On the other hand, our method is faster than ATTRACT-REPEL

by at least one order of magnitude in terms of running time. It makes our method appealing.

2 The Methodology

Let V = {v1, v2, ...vn} be the vocabulary set, S = {(vi, vj)|vi is a synonym of vj} be the synonym set,
and A = {(vi, vj)|vi is an antonym of vj} be the antonym set, where n is the number of words. The
original word vector set is {x1, ..., xn}, where ∀i, xi ∈ Rd. The word vectors matrix X = [x1|...|xn] ∈
Rd×n is obtained by stacking the d dimensional original word vectors one by one horizontally. Then, the
similarity matrix is defined as

W = XTX.

Next, the synonym and antonym thesauri information S0 and A0 are introduced, where

S0(vi, vj) =

{
1 if (vi, vj) ∈ S
0 otherwise

, A0(vi, vj) =

{
1 if (vi, vj) ∈ A
0 otherwise

.

After that, we consider the thesauri contagion information which is defined in Figure 1. Two same
types of relations sharing a common word produce a synonym relation. Otherwise, an antonym relation
will be induced. Let the original thesauri be

T0(vi, vj) =

{
a if (vi, vj) ∈ S
−b if (vi, vj) ∈ A

where a and b are two positive hyperparameters. Given the definition of the contagion, the similarity
between words j and k can be modeled as

T j,k
1 =

n∑
i=1

T j,i
0 T i,k

0

considering all words. This is indeed the matrix multiplication.

T1 = T0T0
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Figure 1: The definition of the thesauri contagion. Given words i, j, and k, black links are given
links while red ones are predicted contagion links. Synonym relations are presented in solid lines while
antonym relations are denoted as dashed lines.

Then, we extract the synonym and antonym contagion information as follows2,

S1(vi, vj) =

{
T1(vi, vj) if T1(vi, vj) > 0

0 otherwise
, A1(vi, vj) =

{
−T1(vi, vj) if T1(vi, vj) < 0

0 otherwise
.

Finally, we combine S0, A0, S1, and A1 with W to obtain the thesauri injected similarity matrix Ŵ ,

Ŵ = β0W + β1(Wmax −W )� S0 − β2(W −Wmin)�A0

+ β1(Wmax −W )� S1 − β2(W −Wmin)�A1 (1)

where � is the Hadamard product(elementwise multiplication). The Wmax and Wmin are the maximum
and minimum ofW and are used as the similarity baselines of synonym pairs and antonym pairs to guide
the thesauri injection. The β0, β1, and β2 are hyperparameters. Note that the weight of lexical constraints
information injected into one word pair depends on the similarity calculated by its original word vectors.
For instance, the weights injected for two synonym words with lower original similarity (implied by W )
would be larger compared with another synonym pair with higher original similarity. Thus, the weights
are heterogeneous.

Recall that our goal is to construct d dimensional specialized word vectors V̂ ∈ Rd×n. Given Ŵ , it
can be achieved as follows.

min
V̂

‖Ŵ − V̂ T V̂ ‖F

The problem is equivalent to find a matrix ŴSD such that

min
ŴSD

‖Ŵ − ŴSD‖F

s.t. ŴSD � 0, rank(ŴSD) ≤ d
(2)

where the notation ŴSD � 0 means that ŴSD is symmetric and positive semidefinite(SPSD).
Since Ŵ is a symmetric matrix, it has a truncated spectral decomposition

Ŵ ≈ QdΛdQ
T
d ,

2Values in T1 are clipped to [−1, 1] after the multiplication.
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Algorithm 1 HRSWE
Input: the original embeddings X , the synonym thesauri S0, the antonym thesauri A0, and the entire thesauri T0

Parameter: hyperparameters β0, β1, β2, a, b
Output: the specialized embeddings V̂

1: Denote W = XTX .
2: Let T1 = T0T0 and clip values in T1 to [−1, 1].
3: Extract S1 and A1 from T1.
4: Combine S0, A0, S1, A1, and W to obtain Ŵ according to equation (1).

5: Do a truncated spectral decomposition on Ŵ to obtain V̂ , V̂ = Λ
′ 1
2

d QT
d .

6: return V̂

where Λd is a diagonal matrix containing the largest d eigenvalues with respect to multiplicities, Qd is
the d eigenvectors corresponding to the largest eigenvalues of Ŵ . According to Dax (2014), there is an
analytic optimal solution to this nearest low-rank SPSD matrix problem

ŴSD = QdΛ′dQ
T
d ,

where Λ′d is obtained by replacing the negative values of Λd with 0. Thus, the V̂ is

V̂ = Λ
′ 1
2
d Q

T
d

The time complexity of this method is O(n2d) and the method is summarized in Algorithm 1. For
a large n, one can use matrix sparsification methods, Nyström methods, and GPUs to accelerate the
eigendecomposition.

3 Experiments

In this section, we evaluate the methods on four tasks: the word similarity, the synonymy/antonymy
classification, the lexical simplification, and the robustness test.
Basic Setup To evaluate the effectiveness of our method, Word2Vec (Mikolov et al., 2013) is our original
embedding. Specifically, we choose the 300-dimensional skip-gram vectors3 and denote this original
embedding as SGNS-GN. The synonym and antonym relationships in Vulić (2018) are adopted as the
lexical constraints. We call this set Ω. Throughout the paper, the main baseline of our method is AR.
Although the method proposed by Sedoc et al. (2017) is sensitive to thesauri according to our private
communication, we try their homogeneous graph construction method and do spectral decomposition on
this graph. This benchmark is called RSWE. All our experiments are carried out on a server with an
NVIDIA RTX 2080 Ti GPU and an Intel i9-7940x CPU with 32 GB of RAM.

3.1 Word Similarity
The word similarity task is a standard evaluation task for word embeddings. There are several datasets
containing pairs of words that their semantic similarities are labeled by humans. On the other hand, the
similarity of a pair of words can be predicted by our word embeddings, e.g. the cosine similarity between
the word vectors of the pair. By computing the Spearman’s ρ rank correlation between human’s scores
and our predictions, one can measure how well word embedding models the semantic similarities. We
evaluate our methods with two recent datasets: SimLex-999 (Hill et al., 2015) and SimVerb-3500 (Gerz
et al., 2016). In the following, we will describe how we validate and test those models.

For HRSWE, the vocabulary set V is composed of all the words in SimLex-999 and SimVerb-3500.
Meanwhile, the lexical constraint sets S and A are constructed in the following way: if vi, vj ∈ V ,
vi 6= vj and the pair (vi, vj) belongs to our constraint set Ω, (vi, vj) will be added to S or A correspond-
ingly. We don’t have to train these two models. The only thing to do is to choose the hyperparameters
β0, β1, β2, a, and b. To quantify how different information affects the quality of the specialized em-
bedding, we also evaluate two degenerate cases of HRSWE(called HRSWE-1/HRSWE-2, the complete

3Available at https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=
sharing
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model is HRSWE-3). They both make no use of the contagion information and HRSWE-1 just uses
one hyperparameter in which β0 = 1 and β1 = β2. RSWE-2 and RSWE-3 are similar with HRSWE-2
and HRSWE-3 except that Wmax −W and W −Wmin are replaced with W . For the state-of-the-art
retrofitting model ATTRACT-REPEL, it is trained on the same vocabulary V and lexical constraint sets S
and A as our method. This is quite different from its original implementation in Vulić (2018), where its
lexical constraint set is Ω. This makes our implementation more like a customization method, in which
only the set of words and constraints related to the task will be used. In terms of the hyperparameters
selection, all HRSWE hyperparameters take values from [0, 1] and the same ranges will be applied for
RSWE. The hyperparameters ranges of AR are [0, 1], [0, 1], {64, 128, 256}, {1, 2, ..., 20}, [10−9, 100] for
the synonym margin, antonym margin, mini-batch size, number of epochs, and regularization strength
respectively. Bayesian optimization with Gaussian Processes is employed to search hyperparameters for
all methods. All models are tuned on the validation set of the SimVerb-3500.

MODEL SimLex SimVerb-test Specializing Time(s)

SGNS-GN 44.2 35.8 /
ATTRACT-REPEL 77.6 74.3 38.5

HRSWE-1 73.5 71.9 0.7
(β0=1,β1 = β2,w/o T1)
HRSWE-2 73.7 73.1 0.8
(w/o T1)
RSWE-2 74.2 69.8 0.7
(w/o T1)
HRSWE-3 76.0 75.7 0.9
RSWE-3 75.5 71.2 0.9

Table 1: Word Similarity task. Results of different models on two word similarity datasets (Spearman’s
ρ).

The test results are summarized in Table 1. First, let’s focus on the quality of HRSWEs. The HRSWE-
3 has a comparable performance with AR. On the SimVerb, it outperforms AR by about 1 point while it is
slightly worse than AR by 1-2 points on the SimLex. Furthermore, our experiments demonstrate why our
method can compete with the state-of-the-art method in an ablation fashion. Very intuitively, the number
of hyperparameters is important. For instance, HRSWE-2 has three hyperparameters while HRSWE-1
has only one. Given the more flexibility to tune the weights of the original, synonym, and antonym in-
formation, HRSWE-2 yields a performance boost compared with HRSWE-1. The corresponding values
of hyperparameters are β0 = 0.70, β1 = 0.29, and β2 = 1.0. It shows that the performance boost
comes from decreasing the contribution of the original information and increasing the contribution of
the antonym information. Most importantly, the contagion information is a necessity under our setting.
With the aid of that, the performance of HRSWE-3 exceeds that of HRSWE-2 by about 2 points, which
makes our method even on a par with AR4. The performance of RSWE is much poorer than HRSWE
which demonstrates the advantages of the heterogeneous twisting. Next, we put our attention on the
efficiency of the methods. Given V , X , A, S, the search ranges of hyperparameters, and the number
of search rounds, the average computation time to generate the specialized embeddings is documented,
which is denoted as the specializing time. Our method is much more efficient than AR. The specializ-
ing time of HRSWE is about 0.8s which is nearly 50 times faster than that of AR. Note that in all our
implementations of ATTRACT-REPEL, the GPU is utilized.

3.2 Synonym/Antonym Classification

The synonym/antonym classification task is a binary classification task to decide whether pairs of words
are synonyms or antonyms. Given the word embeddings of a pair of words and a threshold γ, if the cosine
similarity of the pair is higher than the given threshold, this pair is regarded as synonyms; otherwise, they

4We also extract the synonym and antonym contagion pairs from HRSWE-3 to augment the training data for AR. However,
the performance of AR deteriorates under this setting.
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are antonyms. We evaluate our methods on a recent dataset proposed by Nguyen et al. (2017b). It has a
validation set and a test set. Both sets consist of noun pairs, verb pairs, and adjective pairs.

For HRSWE, the vocabulary set V consists of all words in the validation set and test set of Nguyen
et al. (2017b). The lexical constraints are constructed in the same way as that in the word similarity
task. For ATTRACT-REPEL, the vocabulary and the lexical constraints are the same as our methods.
Hyperparameters ranges of HRSWE are β0 ∈ [0, 1], β1 ∈ [10−1, 101], β2 ∈ [10−1, 101], a ∈ [0, 1], and
b ∈ [0, 1]. The same ranges will be applied for RSWE. The hyperparameters ranges of AR are the same
as those in the word similarity task.

MODEL A V N Specializing Time(s)

SGNS-GN 66.7 66.7 66.7 /
ATTRACT-REPEL 97.5 96.9 86.0 311.8

HRSWE-1 94.8 91.1 80.2 44.0
(β0=1,β1 = β2,w/o T1)
HRSWE-2 95.7 94.5 84.0 42.4
(w/o T1)
RSWE-2 93.2 91.1 82.8 44.7
(w/o T1)
HRSWE-3 97.0 97.0 86.0 42.7
RSWE-3 93.2 91.1 82.3 43.7

Table 2: Synonym/Antonym Classification task. Results (F1) of different models on Adjective, Verb
and Noun test pairs.

The test results are listed in Table 2. From the specialization quality perspective, HRSWE-3 is compet-
itive with AR. The F1 difference between the two models is quite small, which is within 1 point. In the
meantime, we analyze the components of HRSWE, answering why it specializes embeddings so well.
Similar to the word similarity tasks, more hyperparameters will enhance performance. For instance,
HRSWE-2 improves the performance on Verb and Noun by 3-4 points compared with HRSWE-1. The
corresponding βs are β0 = 0.0, β1 = 1.87, and β2 = 7.25. Surprisingly, β0 is 0.0 in this test. Note that
85% percent of the task tuples are covered by thesauri tuples. This might be one reason for that. Mean-
while, the contagion information is also crucial to this task. Without that, HRSWE-3 cannot surpass the
HRSWE-2 by 2 points. On the other hand, the F1 score of HRSWE is higher than RSWE by about 3
points which accentuates the need for the heterogeneous twisting. From the efficiency perspective, the
specializing time of HRSWE is significantly less than that of AR by around 7-8 times.

3.3 Lexical Simplification

We now evaluate HRSWE on a downstream task called Lexical Simplification. The goal of this task is to
replace the complex words that are used less frequently and known to fewer speakers with their simpler
and frequently used synonyms. For instance, given a sentence “the notorious pirate won the match”,
one may expect the word “notorious” to be replaced by some other simpler words like “infamous”. We
choose the dataset crowdsourced by Horn et al. (2014) as the task data. It contains 500 sentences and
each of the sentences has one target word. For each target word, it has a candidate set. Simplification
models are expected to replace the target words with words or phrases that in candidate sets. The 500
sentences are equally split into validation and testing sets. The LIGHT-LS model (Glavaš and Štajner,
2015) is adopted as the simplification model5.

For HRSWE, the vocabulary V is prepared as follows. First, we exclude phrases in all candidate sets.
Since the LIGHT-LS retrieves simpler words from the embedding space and lots of phrases are not in the
space, the phrases in candidate sets will not be retrieved and are removed from our vocabulary. Second,
we lemmatize all the target words and words in the rest of the candidate sets as the lemmatized words
will be found in constraints more easily. Finally, the lemmatized words and words in sentences will
be added to V . The lexical constraints are constructed in the same way as that in the word similarity

5Available at https://github.com/codogogo/lightls
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task. For ATTRACT-REPEL, the vocabulary and the lexical constraints are the same as our methods. The
hyperparameter range of HRSWE is the same as the synonym/antonym classification task. Hyperparam-
eters ranges of ATTRACT-REPEL are the same as the word similarity task except that the range of the
mini-batch size is {32, 64, 128, 256, 512, 1024} and the range of the number of epochs is [1, 15].

MODEL Accuracy Specializing
Time(s)

SGNS-GN 42.7 /
ATTRACT-REPEL 57.6 72.3

HRSWE-1 58.5 2.6
(β0=1,β1 = β2,w/o T1)
HRSWE-2 58.7 2.6
(w/o T1)
HRSWE-3 57.5 2.9

Table 3: Lexical Simplification task. Results of AR and HRSWE on the Horn’s Lexical Simplification
dataset.

The test results are listed in Table 3. From the specialization quality perspective, HRSWE-2 surpasses
AR by about 1 point. This might because fewer hyperparameters can be better tuned given the same
number of hyperparameter search rounds6. From the efficiency perspective, HRSWE is about 25 times
faster than AR. To summarize, the HRSWE has a competitive specialization quality compared with AR
while runs dramatically faster.

3.4 The Robustness Test

Can specialization methods still produce high-quality embeddings given the perturbation in the thesauri?
In this section, we evaluate the robustness of our method and AR on the word similarity task and the
synonym/antonym classification task given three types of perturbed thesauri. The perturbation methods
are described as follows.

Figure 2: Results(Spearman’s ρ) of HRSWE and AR on two word similarity datasets with respect to
three types of perturbations. The first and second rows represent results on the SimLex and SimVerb-test
datasets. The first, second, and third columns represent results with Syn-Adv, Ant-Adv, and Syn-Ant-
Adv perturbations respectively. The red lines are results of HRSWE. The x-axis is the proportion of the
subset in the intersection r.

6Note that our accuracies are much lower than those in Table 4 of Glavaš and Vulić (2018), we believe the reason is that
our “accuracy” is different from theirs. Our accuracy is the number of correct simplifications divided by the number of test
sentences while the denominator of the accuracy in Glavaš and Vulić (2018) is the number of “indicated complex words”.
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First, we extract word pairs from the validation and test sets in a particular task and create a union
set from both sets. Second, the union set is intersected with the synonym part of the thesauri. Finally, a
random subset of the intersection is moved into the antonym part of the thesauri. The proportion of the
subset in the intersection is denoted as r. This perturbation method is called Syn-Adv and one can also
put the antonym intersection into the synonym thesauri which is denoted as Ant-Adv. By combining the
Syn-Adv and Ant-Adv, we obtain the Syn-Ant-Adv perturbation.

We first evaluate the robustness of HRSWE and AR on word similarity tasks. The initial V , A, and
S are constructed in the same way as the previous word similarity task. The hyperparameter ranges
of HRSWE and AR are almost the same as the previous word similarity task except that the range of
the mini-batch size is {32, 64, 128, 256, 512, 1024}. The proportion r varies from 0.2 to 0.5. The test
results are presented in Figure 2. Interestingly, HRSWE achieves a better performance in most cases(5
cases out of 6) over 3 types of perturbation. Given the perturbation of Syn-Adv and Syn-Ant-Adv,
HRSWE outperforms AR by 0.6-12 points on SimLex and SimVerb-test. As the proportion increases,
the performance gap between the two methods increases. Nonetheless, AR wins the round on the SimLex
perturbed via Ant-Adv by around 2 points on average. This phenomenon might be related to the fact that
the set of antonym intersection takes only about 8% of SimLex word pairs, which is too low.

Figure 3: Results (F1) of HRSWE and AR on Adjective, Verb and Noun test pairs with respect to three
types of perturbations. Rows from top to bottom represent the results with Syn-Adv, Ant-Adv, and Syn-
Ant-Adv perturbations. Columns from left to right represent the results on Adjective, Noun, and Verb test
pairs. The red lines are results of HRSWE. The x-axis is the proportion of the subset in the intersection
r.

We then evaluate the robustness of HRSWE and AR on the synonym/antonym classification task. The
hyperparameter ranges of AR are the same as those in the word similarity perturbation tasks while the
ranges of HRSWE are almost the same as those in the previous synonym/antonym classification tasks
except replacing the β1 ∈ [10−1, 101] and β2 ∈ [10−1, 101] with β1 ∈ [0, 1] and β2 ∈ [0, 1] in the
Syn-Adv perturbation. The test results are demonstrated in Figure 3. Overall, HRSWE is slightly worse
than AR. On average, AR surpasses HRSWE by about 2.9 points on all the three datasets perturbed by
Syn-Adv while it falls behind our method by about 1.6 points on all the three datasets perturbed by Ant-
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Adv. For the Syn-Ant-Adv perturbation, the two methods are almost on par on Adjective pairs while AR
is slightly better than HRSWE on Noun and Verb pairs.

Summarization and Discussion In all, HRSWE beats AR on 9 robustness test cases out of 15 and
wins 92 points in total while loses 58 points. Among all rs in all test cases, the performance of HRSWE
is better than that of AR up to 12 points when r is 0.5 with the Syn-Adv perturbation on the SimVerb-
test dataset. On the other hand, AR exceeds HRSWE by up to 5 points in the Syn-Adv perturbation on
the Noun dataset when r is 0.5, which is the best scenario that AR outperforms HRSWE. From these
perspectives, we argue AR is slightly less robust than our method.

To reduce the impact of the perturbation, the thesauri contagion information should be fully exploited.
The usage of the contagion information in our method is explicit while in AR is implicit. Suppose we
have three words i, j, k, (i, j) and (j, k) are two pairs of synonyms, AR forces (i, j) to be closer than
(j, k) while also forces (j, k) to be closer than (i, j). Thus, the two words i and k will probably have a
high similarity in the final embedding as well. This explains why AR is resistant to the perturbations.

4 Related Works

Apart from intrinsic tasks, lots of extrinsic downstream applications would be influenced without the
semantic specialization. For sentiment analysis, if “good” and “bad” are similar to each other, it would
be hard to distinguish the sentiment polarity of a sentence. For spoken language understanding, it would
be annoying if a user wants a cheap restaurant while the virtual assistant recommends an expensive one.

Before AR, several important post-processing methods need to be mentioned. The first post-processing
method is Retrofitting (Faruqui et al., 2014) in which the word “retrofitting” is first used. After that, the
method PARAGRAM (Wieting et al., 2015) extends Retrofitting with a more sophisticated “ATTRACT”
term. Note that both Retrofitting and PARAGRAM do not consider antonymy, Counter-Fitting (Mrkšic
et al., 2016) models both synonym and antonym relations. The differences among these methods are
reviewed in Glavaś et al. (2019).

To make the retrofitting models able to specialize the entire vocabulary, Glavaš and Vulić (2018) try
to explicitly retrofit the word embeddings. The basic idea is to learn a global retrofitting function using
linguistic constraints as training examples. After that, Vulić et al. (2018) propose a post-specialization
model that tries to train a neural network that can mimic the specialization of AR. This method yields
considerable gains on a variety of tasks.

So far, the semantic similarity is a symmetric relation. Some salient asymmetric relations like hyper-
nym and meronym also need to be modeled in the word embeddings. HyperVec (Nguyen et al., 2017a)
model is a joint model that augments the skip-gram objective with the hypernym constraints and it can
also tell which word is the hypernym. Vulić and Mrkšić (2017) propose a retrofitting model that extends
the AR to the lexical entailment by adding the attract objective according to hypernym constraints and
the asymmetric norm-based objective.

5 Conclusion

In this paper, we propose a new retrofitting method called Heterogeneously Retrofitted Spectral Word
Embedding. This method shows comparable performance with the state-of-the-art retrofitting method
while it is quite efficient. Besides that, our method is slightly more robust than AR under several per-
turbations. One major advantage of our method is its interpretability. Our specialized embedding has a
clear linear algebraic relationship with original embeddings. Moreover, the impact of hyperparameters
and contagion information on HRSWE has been carefully analyzed. It demonstrates the enhancement
of the performance of embeddings in a step by step fashion. In the future, we would like to extend our
methods to other types of word relations such as hyponymy, meronymy, and so on.
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Goran Glavaš and Sanja Štajner. 2015. Simplifying lexical simplification: Do we need simplified corpora? In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 63–68.
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