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Abstract

Text-to-SQL systems offers natural language interfaces to databases, which can automatically
generates SQL queries given natural language questions. On the WikiSQL benchmark, state-of-
the-art text-to-SQL systems typically take a slot-filling approach by building several specialized
models for each type of slot. Despite being effective, such modularized systems are complex and
also fall short in jointly learning for different slots. To solve these problems, this paper proposes
a novel approach that formulates the task as a question answering problem, where different slots
are predicted by a unified machine reading comprehension (MRC) model. For this purpose, we
use a BERT-based MRC model, which can also benefit from intermediate training on other MRC
datasets. The proposed method can achieve competitive results on WikiSQL, suggesting it being
a promising direction for text-to-SQL.

1 Introduction

Text-to-SQL systems generate SQL queries according to given natural language (NL) queries, as shown
in example (1), where the headers in the table schema are {PLAYER, COUNTRY, YEAR(S) WON, TOTAL,
TO PAR, FINISH}. Text-to-SQL technology is very useful as it can empower humans to naturally interact
with relational databases, which serve as foundations for the digital world today. As a subarea of semantic
parsing (Berant et al., 2013), text-to-SQL is known to be difficult due to the flexibility in natural language.

(1) a. NL Query: Who is the player from the United States with a total less than 293?
b. SQL Query: SELECT Player FROM T WHERE Country = ‘United States’ AND Total < 293

Recently, by the development of deep learning, significant advances have been made in text-to-SQL. On
the WikiSQL (Zhong et al., 2018) benchmark for multi-domain, single table text-to-SQL task, state-of-
the-art systems (Hwang et al., 2019; He et al., 2019) can predict more than 80% of entire SQL queries
correctly. Most of such systems take a slot-filling approach (Xu et al., 2018) that builds several (e.g. 6)
specialized models, each of which is dedicated to predicting a particular type of slots, such as the column
in SELECT, or the filter value in WHERE. For practical applications, however, such methods have two
drawbacks: First, it is complex and delicate in architecture to rely on many dedicated modules working
together to generate SQLs, which poses challenges in (joint) training, deployment and maintenance.
Second, since most slot types are modeled with no or only limited dependencies on other slots, it is
difficult for such models to leverage inter-dependencies of SQL slots. To deal with such problems, this
paper formulates text-to-SQL as a question answering task (Section 3). In this formulation, we use a
unified BERT-based (Devlin et al., 2019) machine reading comprehension (MRC) model to predict each
type of SQL slots by answering template-generated questions. Then the SQL query is synthesized in the
way as in slot-filling approaches. For instance, the SQL query for the example (1) can be re-constructed
by answering questions, some of which are shown in Table 1.

∗Equal contributions.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.



351

Context: Query: Who is the player from the United States with a total less than 293? Header: Player,
Country, Year(s) won, Total, To par, Finish, AGG: empty maximum minimum count sum average.
Question Answer Set
What is the select column? {Player}
What is the aggregation function? {empty}
What are the values? {United States, 293}
What is the filter column for “United States”? {Country}
What is the filter column for “293”? {Total}

Table 1: Context, questions and answers in the MRC formulation for the example (1).

In the QA formulation, as all slot types are predicted by the same MRC model in the same manner, we
arrive at a much simpler architecture with the benefits of easier training, deployment and maintenance.
Moreover, with well-designed question generation strategy, important prior information for slot predic-
tions can be added into the questions to leverage the power of BERT even more. Besides, our MRC-based
model can naturally benefit from supplementary training on intermediate-labeled tasks (STILTs) (Phang
et al., 2018).

The main contribution of this paper is an MRC approach to text-to-SQL. To the best of our knowledge,
this is the first work that casts sketch-based text-to-SQL into question answering. We show that the
proposed method can achieve competitive results on the WikiSQL dataset.

2 Related Work

Text-to-SQL is a sub-area of semantic parsing (Berant et al., 2013), which maps natural language ut-
terances to machine-interpretable representations, such as logic forms (Dong and Lapata, 2016), program
codes (Yin and Neubig, 2017), and SQLs. For single-table, simple query text-to-SQL task of WikiSQL,
many earlier work (Dong and Lapata, 2016; Krishnamurthy et al., 2017; Sun et al., 2018; Wang et al.,
2018) follow a neural sequence-to-sequence architecture (Sutskever et al., 2014) with attention mecha-
nism (Bahdanau et al., 2014). This approach often suffers the “ordering issue” when the WHERE-clause
has more than one conditions. Xu et al. (2018) introduces a sketch based method, which treats text-to-
SQL as slot-filling, by decomposing the SQL synthesis into several independent classification sub-tasks.
Specifically, the aggregation function, the column in SELECT-clause, number of conditions, and each
element in <column, operator, cell value> triplets in WHERE-clause are predicted separately. Recent
advances (Yu et al., 2018a; Dong and Lapata, 2018; Hwang et al., 2019; He et al., 2019) mostly fol-
low this approach and achieve competitive results on WikiSQL. However, sketch-based models, most
of which are based on SQLNet (Xu et al., 2018), usually consist of six or more sub-modules and thus
complex. By contrast, our question answering-based approach uses a unified MRC model to make pre-
dictions for all the SQL slots, thus enjoys a much simpler architecture and provides a natural way to
jointly modeling different slots types.

Many recent work (Krishnamurthy et al., 2017; Guo et al., 2019; Wang et al., 2020; Choi et al.,
2020) focused on multi-table and complex queries setting of text-to-SQL, as in the Spider task (Yu et
al., 2018b). State-of-the art methods on Spider typically fall into two categories: grammar-based ap-
proach (Guo et al., 2019; Wang et al., 2020), and sketch-based approach, such as RYANSQL (Choi
et al., 2020).Sketch-based methods also have slot prediction modules similar to SQLNet for the Wik-
iSQL, while recursion modules are developed to handle the generation of complex SQL sketches, a
characteristic in Spider but absent in WikiSQL. At a high level, our method is along the same line of
SQLNet-RYANSQL, yet differs with them, as our method recognize slots in a unified way rather than
using dedicated modules to predict each slot type. We can extend our method to the Spider task by
following existing sketch construction methods as in RYANSQL, while replacing their slot classification
modules with our MRC-based methods.

Machine reading comprehension MRC models (Seo et al., 2017; Wang et al., 2016; Xiong et al.,
2018) are typically trained to answer questions by extracting a text span from the given context passage.



352

Thus it is often reduced to predicting the start and end position of the answer in the context passage.
Recently, there is a trend to cast non-QA NLP tasks, such as information extraction (Levy et al., 2017;
Li et al., 2019; Li et al., 2020), text classification and more (McCann et al., 2018; Keskar et al., 2019)
into MRC, which can achieve comparable or improved results on the original task, thanks to the flexible
and unified modeling of MRC formulation. Our work is inspired by these previous work, but tackles a
new and sophisticated scenario of semantic parsing.

3 Method

Task formulation and dataset conversion Given a question Q = q1q2..qL, and a context passage
C = c1c2...cM , were |Q| = L and |C| = M are their token numbers. The task is to find the start token
Cstart and end token Cend in the context passage for the given question. Some example questions and
their context are shown in Table 1. To fit such task formulation and apply MRC models, we first convert
standard text-to-SQL annotations, in the form of NL query-SQL query pairs as shown in example (1),
together with table headers, into a set of <question, answer, context> triples, similar to the SQuAD
dataset (Rajpurkar et al., 2016). For each type of slot y ∈ Y that we would like to predict, we use
template to generate a question Q. For all the generated questions associated with the same SQL, we
provide a context C, which consists of the original NL query, the table headers and the textual description
of the aggregation functions. The context is constructed in such a way that the answer for Q, i.e. the
SQL slot to be predicted, is represented by a textual span in the context, we can denote as Cstart-Cend.
As in the standard MRC setting, all the predictions are reduced to predicting the start and end index of
the textual span in the context passage.

Since there are multiple filters in one SQL in WikiSQL dataset, the MRC method transforms into a
multi-turn procedure. In each turn of this procedure, one type of slot will be asked according to results
from previous turns. For example in Table 1, the question about select column will be answered and
then the aggregation function without needing previous results. A multi-span extraction is conducted to
answer the question about values in the data. Once the values are extracted by the MRC model, the filter
column corresponding to each value is asked using the extracted value. For example, the question What
is the filter column for “United States”? is asked only after the value “United States” is extracted in
the previous step. Note that the questions are fed into MRC model follows the above order only in the
prediction phase, where all predicted elements of SQL query are constructed one by one in SQL query
format of WikiSQL. In the training phase, however, triples of different samples are shuffled into batches
to feed into the MRC model while the questions about values are constructed with standard results in the
dataset.

3.1 BERT-based MRC model
Given the question Q, we need to extract the text span from context C using an MRC model. For
this purpose, we use BERT (Devlin et al., 2019). In particular, we resort to the standard question-answer
usage of BERT, i.e. feeding the token sequence in the form of [CLS], q1, q2, .., qL,[SEP], c1, c2, ..., cM
as the input to the BERT model, where the special SEP token is inserted between the question Q and
the context C to distinguish them. BERT then outputs a contextualized representation matrix H ∈
R(L+M+2)×d, where d is the vector dimension of the last layer of BERT. Following the MRC setup as in
(Devlin et al., 2019), we use two additional trainable parameter vectors vstart and vend, both of which are
of dim d, to compute the probability of each token position being the start and end position of the answer
span, respectively. The computation is simply by applying the softmax function over the multiplication
of the BERT representation for each token Hi with the two vectors vstart and vend, as shown in (1).

HQ;HC = BERT([Q;C])

pstart(i) = softmax(HC
i vstart)

pend(i) = softmax(HC
i vend)

(1)

The MRC model described above fits scenarios of extraction only one pair of start position vector pstart
and end position vector pend from the context for the given question, such as the prediction of only
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one SELECT column and aggregation function in the WikiSQL format, as well as the filter column
prediction when the value is given. However, such model is not suitable for value predictions, as there
can be multiple filter conditions, each of which has a corresponding value slot, i.e. multiple value spans
in the query to be extracted simultaneously as answers. To overcome this limitation, we adopt sequence
labeling to predict values using BIO tag-set. Specifically, The BERT representation for each token in the
context part. i.e. HC , is fed to a conditional random field (CRF) (Lafferty et al., 2001) layer to yield the
output labels, which is shown in (2).

T = CRF(WLHC), |T | = |C| (2)

Output T has the same length of the context C while each token in C is assigned a BIO label in T to
show if it is a beginning(B) token of a value , or a continuation(I) token of a value, or even outside(O) of
a value of value prediction. The results of value predictions can be extracted from such label sequence by
combining one B-label and following I-labels with ignoring O-labels. Then the predictions of other SQL
elements follow the MRC framework. Such treatment is similar to MRC-based entity-relation extraction
work (Li et al., 2019), As future work, techniques in Hu et al. (2019) will be experimented to further
unify value predictions into the MRC framework.

STILTs and AGG prediction enhancement STILTs (Phang et al., 2018) refers to the procedure that
first fine-tunes a pre-trained language model on an intermediate task, before fine-tuning on the final
task. The procedure is known to be effective on improving MRC models by intermediate fine-tuning on
other QA datasets (Keskar et al., 2019). Thus we take advantage of STILTs to boost the performance of
our BERT-based MRC model. An additional improvement focuses on the aggregation function (AGG)
prediction. Analysis of preliminary results suggests that AGG prediction is a bottleneck for our system,
which is partly attributed to the findings by Hwang et al. (2019) that AGG annotations in WikiSQL have
up to 10% of errors. Since our unified MRC model has to take care of other types of questions, these
extra constraints make it more challenging for our model to fit flawed data, compared with a dedicated
AGG classifier, as in most SOTA methods. In such case, we improve the AGG results over the original
MRC predictions, using only simple association signals in the training data. To this end, we adopt
transformation-based learning algorithm (Brill, 1995) to update the AGG predictions based on simple
association rules in the form of “change AGG from x to x′, given certain word tuple occurrences.” Such
rules are mined and ranked from the training data by the algorithm.

4 Experiment

4.1 Dataset, Metric and Implementation Details
We use the largest human-annotated text-to-SQL dataset, WikiSQL (Zhong et al., 2018), which consists
of 80,654 pairs of questions and human-verified SQL queries. Tables appeared either in train or dev set
will never appear in the testset. As in previous work, the following two metrics are used for evaluating
SQL query synthesis accuracy: (1) Logical Form Accuracy, denoted as LF , where LF = SQL with
correct logic form / total # of SQL; and (2) Execution Accuracy, denoted as EX . where EX = SQL
with correct execution / total # of SQL. Execution guidance decoding (Wang et al., 2018) is not evaluated.

The word embeddings are randomly initialized by BERT, and fine-tuned during the training. Adam is
used (Kingma and Ba, 2014) to optimize the model with default hyper-parameters. We choose uncased
BERT-base pre-trained model with default settings due to resource limitations. Codes are implemented
in Pytorch 1.3 and will be made publicly available1.

4.2 Results
We compare our method with notable published work that has reported results on WikiSQL, includ-
ing Seq2SQL (Zhong et al., 2018), SQLNet (Xu et al., 2018), TypeSQL (Yu et al., 2018a), Coarse-to-
Fine (Dong and Lapata, 2018), SQLova (Hwang et al., 2019), X-SQL (He et al., 2019) in Table 2. On the
test set, our final model with BERT-base outperforms SQLova, the BERT-large based strong baseline,

1https://github.com/nl2sql/QA-SQL
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and rivals the SOTA X-SQL with MT-DNN. For STILTs, we fine-tuned BERT on SQuAD 1.1 dataset
for 3 epochs with hyper-parameters similar to Devlin et al. (2019), before fine-tuning on WikiSQL. As
shown in Table 2 and 3, STILTS training can benefit our MRC-based model, especially the LF accuracy.
We expect further improvement from chained STILTs as in Keskar et al. (2019) with more QA datasets.

Model Dev Test
LF EX LF EX

Seq2SQL 49.5 60.8 48.3 59.4
SQLNet 63.2 69.8 61.3 68.0
TypeSQL 68.0 74.5 66.7 73.5
Coarse2Fine 72.5 79.0 71.7 78.5
SQLova 81.6 87.2 80.7 86.2
X-SQL 83.8 89.5 83.3 88.7
ours 79.4 85.9 79.3 85.9
ours + ST 80.2 86.2 79.5 86.0
ours + ST + AE 81.9 87.8 81.8 87.4

Table 2: Accuracy of previous and this work. ST: STILTs training, AE: AGG enhancement.

Analysis Table 3 shows slot type-wise results, implying aggregation function accuracy Sagg is the bot-
tleneck to the pure MRC model (ours), which is probably due to that our unified model meets more
obstacles in fitting partially erroneous data, for which the AGG enhancement method (AE) is very ef-
fective. Our error analysis on 100 randomly sampled errors shows that while 47% of the errors can be
attributed to the model, 53% can be best described as data flaws or errors, the majority of which involves
AGG. For example, “What year has a bronze of Valentin Novikov”, “What year has a silver for Matthias
Merz”, and ”What is the year of the Film Klondike Annie” are of same (WH-word + SELCT column)
patterns, but gold AGGs are AVG, MIN and SUM, respectively. We further make an automatic analysis,
finding that 8.91% of the data are cases where queries of the same pattern are annotated with at least 3
distinct AGG. Such inconsistency suggests that even higher accuracy means fitting both signal and noise.

Model Scol Sagg Wno. Wcol Wop Wval

SQLova 96.8 90.6 98.5 94.3 97.3 95.4
X-SQL 97.2 91.1 98.6 95.4 97.6 96.6
ours 96.7 90.0 98.3 95.4 98.7 96.8
ours+ST 96.8 90.7 98.3 95.4 98.7 96.8
ours+ST+AE 96.8 92.8 98.3 95.4 98.7 96.8

Table 3: Test accuracy for each slot type. ST: STILTs training, AE: AGG prediction enhancement.

5 Conclusion

This paper proposes a question answering approach to text-to-SQL, where a BERT-based MRC model
is trained to predict all the slots that are needed for SQL generation. Our approach enjoys advantages
of easier deployment and maintenance in practice, as well as the potentials in leveraging other MRC
datasets via the STILTs supplementary training. Capable of jointly learning slots with a simple, unified
model, the proposed method proves to be a promising direction for text-to-SQL. As future work, We plan
to extend our model to cope with multi-table text-to-SQL task, Spider.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473.



355

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on Freebase from question-
answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pages 1533–1544, Seattle, Washington, USA, October. Association for Computational Linguistics.

Eric Brill. 1995. Transformation-based error-driven learning and natural language processing: A case study in
part-of-speech tagging. Computational linguistics, 21(4):543–565.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim, and Dong Ryeol Shin. 2020. RYANSQL: Recur-
sively applying sketch-based slot fillings for complex text-to-sql in cross-domain databases. arXiv preprint
arXiv:2004.03125.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logical form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 33–43,
Berlin, Germany, August. Association for Computational Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine decoding for neural semantic parsing. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
731–742, Melbourne, Australia, July. Association for Computational Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dongmei Zhang. 2019. Towards
complex text-to-SQL in cross-domain database with intermediate representation. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 4524–4535, Florence, Italy, July. As-
sociation for Computational Linguistics.

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and Weizhu Chen. 2019. X-sql: reinforce schema representation
with context. arXiv preprint arXiv:1908.08113.

Minghao Hu, Yuxing Peng, Zhen Huang, and Dongsheng Li. 2019. A multi-type multi-span network for reading
comprehension that requires discrete reasoning. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1596–1606, Hong Kong, China, November. Association for Computational Linguis-
tics.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and Minjoon Seo. 2019. A Comprehensive Exploration on
WikiSQL with Table-Aware Word Contextualization. ArXiv, abs/1902.01069.

Nitish Shirish Keskar, Bryan McCann, Caiming Xiong, and Richard Socher. 2019. Unifying question answering,
text classification, and regression via span extraction. arXiv: Computation and Language.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner. 2017. Neural semantic parsing with type constraints
for semi-structured tables. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 1516–1526, Copenhagen, Denmark, September. Association for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando C Pereira. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of ICML.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. 2017. Zero-shot relation extraction via reading
comprehension. pages 333–342, August.

Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna Yuan, Duo Chai, Mingxin Zhou, and Jiwei Li. 2019. Entity-
relation extraction as multi-turn question answering. In Proceedings of ACL, pages 1340–1350, Florence, Italy,
July. Association for Computational Linguistics.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong Han, Fei Wu, and Jiwei Li. 2020. A unified MRC framework
for named entity recognition. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, Online, July. Association for Computational Linguistics.

B. McCann, N. Keskar, Caiming Xiong, and R. Socher. 2018. The natural language decathlon: Multitask learning
as question answering. ArXiv, abs/1806.08730.



356

Jason Phang, Thibault Févry, and Samuel R. Bowman. 2018. Sentence encoders on stilts: Supplementary training
on intermediate labeled-data tasks. ArXiv, abs/1811.01088.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 2383–2392, Austin, Texas, November. Association for Computational Linguistics.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2017. Bidirectional attention flow for
machine comprehension. ArXiv, abs/1611.01603.

Yibo Sun, Duyu Tang, Nan Duan, Jianshu Ji, Guihong Cao, Xiaocheng Feng, Bing Qin, Ting Liu, and Ming Zhou.
2018. Semantic parsing with syntax- and table-aware SQL generation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, July.
Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In
NIPS.

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Florian. 2016. Multi-perspective context matching for machine
comprehension. ArXiv, abs/1612.04211.

Chenglong Wang, Po-Sen Huang, Alex Polozov, Marc Brockschmidt, and Rishabh Singh. 2018. Execution-guided
neural program decoding. ArXiv, abs/1807.03100.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-to-SQL parsers. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pages 7567–7578, Online, July. Association for Compu-
tational Linguistics.

Caiming Xiong, Victor Zhong, and Richard Socher. 2018. Dcn+: Mixed objective and deep residual coattention
for question answering. ArXiv, abs/1711.00106.

Xiaojun Xu, Chang Liu, and Dawn Xiaodong Song. 2018. SQLNet: Generating structured queries from natural
language without reinforcement learning. ArXiv, abs/1711.04436.

Pengcheng Yin and Graham Neubig. 2017. A syntactic neural model for general-purpose code generation. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 440–450, Vancouver, Canada, July. Association for Computational Linguistics.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. 2018a. TypeSQL: Knowledge-based type-aware
neural text-to-SQL generation. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), New
Orleans, Louisiana, June. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao,
Shanelle Roman, Zilin Zhang, and Dragomir Radev. 2018b. Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-to-SQL task. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 3911–3921, Brussels, Belgium, October-November.
Association for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher. 2018. Seq2sql: Generating structured queries from natural
language using reinforcement learning. ArXiv, abs/1709.00103.


