
Proceedings of the 28th International Conference on Computational Linguistics, pages 3225–3234
Barcelona, Spain (Online), December 8-13, 2020

3225

LadaBERT: Lightweight Adaptation of BERT
through Hybrid Model Compression

Yihuan Mao1,∗, Yujing Wang2,3,†, Chufan Wu1, Chen Zhang2, Yang Wang2

Quanlu Zhang2, Yaming Yang2, Yunhai Tong3, Jing Bai2

1Tsinghua University 2Microsoft Research Asia
3Key Laboratory of Machine Perception, MOE, School of EECS, Peking University

maoyh20@mails.tsinghua.edu.cn, {yujwang,yhtong}@pku.edu.cn, chufanwu15@gmail.com

{yujwang,zhac,t-yangwa,yayaming,quzha,jbai}@microsoft.com

Abstract

BERT is a cutting-edge language representation model pre-trained by a large corpus, which
achieves superior performances on various natural language understanding tasks. However, a
major blocking issue of applying BERT to online services is that it is memory-intensive and
leads to unsatisfactory latency of user requests. Existing solutions leverage knowledge distilla-
tion frameworks to learn smaller models that imitate the behaviors of BERT. However, the train-
ing procedure of knowledge distillation is expensive itself as it requires sufficient training data
to imitate the teacher model. In this paper, we address this issue by proposing a hybrid solution
named LadaBERT (Lightweight adaptation of BERT through hybrid model compression), which
combines the advantages of different model compression methods, including weight pruning,
matrix factorization and knowledge distillation. LadaBERT achieves state-of-the-art accuracy on
various public datasets while the training overheads can be reduced by an order of magnitude.

1 Introduction

The pre-trained language model, BERT (Devlin et al., 2018) has led to a big breakthrough in various
kinds of natural language understanding tasks. Ideally, people can start from a pre-trained BERT check-
point and fine-tune it on a specific downstream task. However, the original BERT models are memory-
exhaustive and latency-prohibitive to be served in embedded devices or CPU-based online environments.
As the memory and latency constraints vary in different scenarios, the pre-trained BERT model should be
adaptive to different requirements with accuracy retained to the largest extent. Existing BERT-oriented
model compression solutions largely depend on knowledge distillation (Hinton et al., 2015), which is
inefficient and resource-consuming because a large training corpus is required to learn the behaviors of
a teacher. For example, DistilBERT (Sanh et al., 2019) is re-trained on the same corpus as pre-training
a vanilla BERT from scratch; and TinyBERT (Jiao et al., 2019) utilizes expensive data augmentation
to fit the distillation target. The costs of these model compression methods are as large as pre-training,
which are unaffordable for low-resource settings. Therefore, it is straight-forward to ask, can we design a
lightweight method to generate adaptive models with comparable accuracy using significantly less time
and resource consumption?

In this paper, we propose LadaBERT (Lightweight adaptation of BERT through hybrid model com-
pression) to tackle this problem. Specifically, LadaBERT is based on an iterative hybrid model com-
pression framework consisting of weighting pruning, matrix factorization and knowledge distillation.
Initially, the architecture and weights of student model are inherited from the BERT teacher. In each
iteration, the student model is first compressed by a small ratio based on weight pruning and matrix
factorization, and is then fine-tuned under the guidance of teacher model through knowledge distillation.
Because weight pruning and matrix factorization help to generate better initial and intermediate status
for knowledge distillation, both accuracy and efficiency can be greatly improved.

∗The work was done when the author visited Microsoft Research Asia.
†Corresponding Author

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

3226

We conduct extensive experiments on five public datasets of natural language understanding. As an
example, the performance comparison of LadaBERT and state-of-the-art models on MNLI-m dataset is
illustrated in Figure 1.

Figure 1: Accuracy comparison on MNLI-m dataset

We can see that LadaBERT outperforms other
BERT-oriented model compression baselines
at various model compression ratios. Espe-
cially, LadaBERT outperforms BERT-PKD sig-
nificantly under 2.5× compression ratio and out-
performs TinyBERT under 7.5× compression
ratio while the training speed is accelerated by
an order of magnitude.

The rest of this paper is organized as follows.
First, we summarize the related works of model
compression and their applications to BERT in
Section 2. Then, the methodology of LadaBERT
is introduced in Section 3, and experimental re-
sults are presented in Section 4. At last, we con-
clude this work and discuss future works in Sec-
tion 5.

2 Related Work

Deep Neural Networks (DNNs) have achieved great success in many areas in recent years, but the mem-
ory consumption and computational cost expand greatly with the growing complexity of models. Thus,
model compression has become an indispensable technique in practice, especially for low-resource sce-
narios. Here we review the current progresses of model compression techniques briefly, and present their
application to pre-trained BERT models.

2.1 Model compression algorithms

Existing model compression algorithms can be divided into four categories, namely weight pruning,
matrix factorization, weight quantization and knowledge distillation.

Numerous researches have shown that removing a large portion of connections or neurons does not
cause significant performance drop in deep neural networks. For example, Han et al. (2015) proposed
a method to reduce the storage and computation of neural networks by removing unimportant connec-
tions, resulting in sparse networks without affecting the model accuracy. Li et al. (2016) presented an
acceleration method for convolution neural network by pruning whole filters together with their connect-
ing filter maps. This approach does not generate sparse connectivity patterns and brings a much larger
acceleration ratio with existing BLAS libraries for dense matrix multiplications.

Matrix factorization was also widely studied in the deep learning domain, the goal of which is to
decompose a matrix into the product of two matrices in lower dimensions. Sainath et al (2013) explored
a low-rank matrix factorization method of DNN layers for acoustic modeling. Xu et al. (2013; 2014)
applied singular value decomposition to deep neural network acoustic models and achieved comparable
performances with state-of-the-art models through much fewer parameters. GroupReduce (Chen et al.,
2018) focused on the compression of neural language models and applied low-rank matrix approximation
to vocabulary-partition. Winata et al. (2019) carried out experiments for low-rank matrix factorization
on different NLP tasks and demonstrated that it was more effective in general than weight pruning.

Weight quantization is another common technique for compressing deep neural networks, which aims
to reduce the number of bits to represent every weight in the model. With weight quantization, the
weights can be reduced to at most 1-bit binary value from 32-bits floating point numbers. Zhou et
al. (2016) showed that quantizing weights to 8-bits does not hurt the performance; Binarized Neural
Networks (Hubara et al., 2016) contained binary weights and activations of only one bit; and Incremental
Network Quantization (Zhou et al., 2017) converted a pre-trained full-precision neural network into low-

3227

precision counterpart through three interdependent operations: weight partition, groupwise quantization
and re-training.

Knowledge distillation (Hinton et al., 2015) trains a compact and smaller model to approximate the
function learned by a large and complex model. A preliminary step of knowledge distillation is to
train a deep network (the teacher model) that automatically generates soft labels for training instances.
This “synthetic” label is then used to train a smaller network (the student model), which assimilates the
function learned by the teacher model. Chen et al. (2017) successfully applied knowledge distillation to
object detection tasks by introducing several modifications, including a weighted cross-entropy loss, a
teacher bounded loss, and adaptation layers to model intermediate teacher distributions. Li et al. (2017)
developed a framework to learn from noisy labels, where the knowledge learned from a clean dataset and
semantic knowledge graph were leveraged to correct the wrong labels.

To improve the performance of model compression, there are also numerous attempts to develop hy-
brid model compression methods that combine more than one category of algorithms. Han et al. (2016)
combined quantization, hamming coding and weight pruning to conduct model compression on image
classification tasks. Yu et al. (2017) proposed a unified framework for low-rank and sparse decomposi-
tion of weight matrices with feature map reconstructions. Polino et al. (2018) advocated a combination of
distillation and quantization techniques and proposed two hybrid models, i.e., quantified distillation and
differentiable quantization. Li et al., (2018) compressed DNN-based acoustic models through knowledge
distillation and pruning.

2.2 BERT model compression

In the natural language processing community, there is a growing interest recently to study BERT-
oriented model compression for shipping its performance gain into latency-critical or low-resource sce-
narios. Most existing works focus on knowledge distillation. For instance, BERT-PKD (Sun et al., 2019)
is a patient knowledge distillation approach that compresses the original BERT model into a lightweight
shallow network. Different from traditional knowledge distillation methods, BERT-PKD enables an
exploitation of rich information in the teacher’s hidden layers by utilizing a layer-wise distillation con-
straint. DistillBERT (Sanh et al., 2019) pre-trains a smaller general-purpose language model on the
same corpus as vanilla BERT. Distilled BiLSTM (Tang et al., 2019) adopts a single-layer BiLSTM as
the student model and achieves comparable results with ELMo (Peters et al., 2018) through much fewer
parameters and less inference time. TinyBERT (Jiao et al., 2019) exploits a novel attention-based distil-
lation schema that encourages the linguistic knowledge in teacher to be well transferred into the student
model. It adopts a two-stage learning framework, including general distillation (pre-training from scratch
via distillation loss) and task-specific distillation with data augmentation. Both procedures require huge
resources and long training times (from several days to weeks), which is cumbersome for industrial
applications. Therefore, we are aiming to explore more lightweight solutions in this paper.

3 Lightweight Adaptation of BERT

3.1 Overview

The overall pipeline of LadaBERT (Lightweight Adaptation of BERT) is illustrated in Figure 2. As
shown in the figure, the pre-trained BERT model (e.g., BERT-Base) is served as the teacher as well as the
initial status of the student model. Then, the student model is compressed towards smaller parameter size
iteratively through a hybrid model compression approach until the target size is reached. Concretely, in
each iteration, the parameter size of student model is first reduced by 1−∆ based on weight pruning and
matrix factorization, and then the parameters are fine-tuned by the loss function of knowledge distillation.
The motivation behind is that matrix factorization and weight pruning are complementary to each other.
Matrix factorization calculates the optimal approximation under a certain rank, while weight pruning
introduces additional sparsity to the decomposed matrices. Moreover, both weight pruning and matrix
factorization generate better initial and intermediate status of the student model, which improve the
efficiency and effectiveness of knowledge distillation. In the following subsections, we will introduce
the algorithms in detail.

3228

Figure 2: Overview of LadaBERT framework

3.2 Matrix factorization
We use Singular Value Decomposition (SVD) for matrix factorization. All parameter matrices, includ-
ing the embedding ones, are compressed by SVD. Without loss of generality, we assume a matrix of
parameters W ∈ Rm×n, the singular value decomposition of which can be written as:

W = UΣVT (1)

where U ∈ Rm×p and V ∈ Rp×n. Σ = diag(σ1, σ2, . . . , σp) is a diagonal matrix composed of singular
values and p is the full rank of W satisfying p ≤ min(m,n).

To compress this weight matrix, we select a lower rank r < p. The diagonal matrix Σ is truncated by
selecting the top r singular values. i.e., Σr = diag(σ1, σ2, . . . , σr), while U and V are also truncated
by selecting the top r columns and rows respectively, resulting in Ur ∈ Rm×r and Vr ∈ Rr×n.

Then, low-rank matrix approximation of W can be formulated as:

Ŵ = UrΣrV
T
r = (Ur

√
Σr)(Vr

√
Σr)

T = ABT (2)

In this way, the original weight matrix W is decomposed to two smaller matrices, where A =
Ur

√
Σr ∈ Rn×r and B = Vr

√
Σr ∈ Rm×r. These two matrices are initialized by SVD and will

be further fine-tuned during training.
Given a rank r ≤ min(m,n), the compression ratio of matrix factorization is defined as:

Psvd =
(m+ n)r

mn
(3)

Therefore, for a target model compression ratio Psvd, the desired rank r can be calculated by:

r =
mn

m+ n
Psvd (4)

3.3 Weight pruning
Weight pruning (Han et al., 2015) is an unstructured compression method that induces desirable sparsity
for a neural network model. For a neural network f(x;θ) with parameters θ, weight pruning finds a
binary mask M ∈ {0, 1}|θ| subject to a given sparsity ratio, Pweight. The neural network after pruning
will be f(x; M · θ), where the non-zero parameter size is ||M||1 = Pweight · |θ|, where |θ| is the number
of parameters in θ. For example, when Pm = 0.3, there are 70% zeros and 30% ones in the mask m. In
our implementation, we adopt a simple pruning strategy (Frankle and Carbin, 2018): the binary mask is
generated by setting the smallest weights to zeros.

To combine the benefits of weight pruning and matrix factorization, we leverage a hybrid approach
that applies weight pruning on the basis of decomposed matrices generated by SVD. Following Equation

3229

(2), SVD-based matrix factorization for any weight matrix W can be written as: Wsvd = Am×rB
T
n×r.

Then, weight pruning is applied on the decomposed matrices A ∈ Rm×r and B ∈ Rn×r separately. The
weight matrix after hybrid compression is formulated as:

Whybrid = (MA ·A)(MB ·B)T (5)

where MA and MB are binary masks derived by the weight pruning algorithm with compression ratio
Pweight. The compression ratio after hybrid compression can be calculated by:

Phybrid = Psvd · Pweight =
(m+ n)r

mn
Pweight (6)

In LadaBERT, the hybrid compression produce is applied to each layer of the pre-trained BERT model.
Given an overall model compression target P , the following constraint should be satisfied:

P · |θ| = Pembd · |θembd|+ Phybrid|θencd|+ |θcls| (7)

where |θ| is the total number of model parameters and P is the target compression ratio; |θembd| denotes
the parameter number of embedding layer, which has a relative compression ratio of Pembd, and |θencd|
denotes the number of parameters of all layers in BERT encoder, which have a compression ratio of
Phybrid. The classification layers (MLP layers with Softmax activation) have a relative small number of
parameters (|θcls|), so they are not modified in model compression. In general, we have three flexible
hyper-parameters for fine-grained compression: Pembed, Psvd and Pweight, which can be optimized by
random search on the validation data.

3.4 Knowledge distillation
Knowledge distillation (KD) has been widely used to transfer knowledge from a large teacher model to
a smaller student model. In other words, the student model mimics the behavior of the teacher model
by minimizing the knowledge distillation loss functions. Various types of knowledge distillation can
be employed at different sub-layers. Generally, all types of knowledge distillation can be modeled as
minimizing the following loss function:

LKD =
∑
x∈X

L
(
f (s)(x), f (t)(x)

)
(8)

Where X denotes the training set and x is a sample input in the set. f (s)(x) and f (t)(x) represent
intermediate outputs or weight matrices for the student model and teacher model respectively. L(·) rep-
resents for a loss function which can be carefully designed for different types of knowledge distillation.
We partly follow the recent technique proposed by TinyBERT (Jiao et al., 2019), which applies knowl-
edge distillation constraints upon embedding, self-attention, hidden representation and prediction levels.
Concretely, there are four types of knowledge distillation constraints as follows:

• Embedding-layer distillation is performed upon the embedding layer. f(x) ∈ Rn×d represents
for the word embedding output for input x, where n is the input word length and d is the dimension
of word embedding. Mean Squared Error (MSE) is adopted as the loss function L(·).

• Attention-layer distillation is performed upon the self-attention sub-layer. f(x) = {aij} ∈ Rn×n

represents the attention output for each self-attention sub-layer, andL(·) denotes MSE loss function.

• Hidden-layer distillation is performed at each fully-connected sub-layer in the Transformer ar-
chitectures. f(x) denotes the output representation of the corresponding sub-layer, and L(·) also
adopts MSE loss function.

• Prediction-layer distillation makes the student model to learns the predictions from a teacher
model directly. It is identical to a vanilla form of knowledge distillation (Hinton et al., 2015).
It takes soft cross-entropy loss function, which can be formulated as:

Lpred = −σ(f t(x)) · log (σ(fs(x)/t)) (9)

3230

where σ(·) denotes Softmax function, f t(x) and fs(x) are the predictive logits of teacher and
student models respectively. t is a temperature value, which generally works well at t = 1 (Jiao et
al., 2019).

4 Experiments

4.1 Datasets & Baselines

We compare LadaBERT with state-of-the-art model compression approaches on five public datasets of
different tasks of natural language understanding, including sentiment classification (SST-2), natural lan-
guage inference (MNLI-m, MNLI-mm, QNLI) and pairwise semantic equivalence (QQP). The statistics
of these datasets are described in Table 1.

Task #Train #Dev. #Test #Class
SST-2 67,350 873 1,822 2
QQP 363,871 40,432 390,965 2

MNLI-m 392,703 9,816 9,797 3
MNLI-mm 392,703 9,833 9,848 3

QNLI 104,744 5,464 5,464 2

Table 1: Dataset Statistics

The baseline approaches are summarized below.

• Weight pruning and Matrix factorization are two simple baselines described in Section 3.3. We
evaluate both pruning methods in an iterative manner until the target compression ratio is reached.

• Hybrid pruning is a combination of matrix factorization and weight pruning, which conducts it-
erative weight pruning on the basis of SVD-based matrix factorization. It is performed iteratively
until the desired compression ratio is achieved.

• BERT-FT, BERT-KD and BERT-PKD are reported in (Sun et al., 2019), where BERT-FT directly
fine-tunes the model via supervision labels, BERT-KD is the vanilla knowledge distillation algo-
rithm (Hinton et al., 2015), and BERT-PKD stands for Patient Knowledge Distillation proposed in
(Sun et al., 2019). The student model is composed of 3 Transformer layers, resulting in a 2.5×
compression ratio. Each layer has the same hidden size as the pre-trained teacher, so the initial
parameters of student model can be inherited from the corresponding teacher.

• TinyBERT (Jiao et al., 2019) instantiates a tiny student model, which has totally 14.5M parameters
(7.5× compression ratio) composed of 4 layers, 312 hidden units, 1200 intermediate size and 12
heads. For a fair comparison, we reproduce the TinyBERT pipeline1 without general distillation
and data augmentation, which is time-exhaustive and resource-consuming.

• BERT-Small has the same model architecture as TinyBERT, but is directly pre-trained by the offi-
cial BERT pipeline. The performance values are copied from (Jiao et al., 2019) for reference.

• Distilled-BiLSTM (Tang et al., 2019) leverages a single-layer bidirectional-LSTM as the student
model, where the hidden units and intermediate size are set to be 300 and 400 respectively, resulting
in a 10.8× compression ratio. This model requires an expensive training process similar to vanilla
BERT.

4.2 Setup

We leverage the pre-trained checkpoint of base-bert-uncased2 as the initial model for compression,
which contains 12 layers, 12 heads, 110M parameters, and 768 hidden units per layer. Hyper-parameter

1https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
2https://storage.googleapis.com/bert models/2018 10 18/uncased L12 H768 A12.zip

3231

selection is conducted on the validation data for each dataset. After training, the prediction results are
submitted to the GLUE-benchmark evaluation platform3 to get the evaluation performance on test data.

For a comprehensive evaluation, we experiment with four settings of LadaBERT, namely LadaBERT-
1, -2, -3 and -4, which reduce the model parameters of BERT-Base by 2.5, 5.0, 7.5 and 10.0 times
respectively. In our experiment, we set the batch size as 32 and learning rate as 2e-5. The optimizer is
BertAdam with the default setting (Devlin et al., 2018). Fine-grained compression ratios are optimized
by random search on SST dataset and transferred to other datasets (shown in Table 2). Following (Jiao et
al., 2019), the temperature value in distillation loss function is set as 1 in all experiments without tuning.

Table 2: Fine-grained compression ratios
Model Overall Embedding layer Matrix factorization Weight pruning

LadaBERT-1 ×2.5 ×1.43 ×2.0 ×1.56
LadaBERT-2 ×5.0 ×2.05 ×2.0 ×3.41
LadaBERT-3 ×7.5 ×5.0 ×2.0 ×4.33
LadaBERT-4 ×10.0 ×5.0 ×2.5 ×5.45

4.3 Performance Comparison

Table 3: Performance comparison on various model sizes
Algorithm MNLI-m MNLI-mm SST-2 QQP QNLI #Params Ratio

BERT-Base 84.6 83.4 93.5 71.2/- 90.5 110M ×1.0

LadaBERT-1 83.5 82.5 92.8 70.7/88.9 89.6 44M ×2.5
BERT-FT 74.8 74.3 86.4 65.8/86.9 84.3 44M ×2.5
BERT-KD 75.4 74.8 86.9 67.3/87.6 84.0 44M ×2.5
BERT-PKD 76.7 76.3 87.5 68.1/87.8 84.7 44M ×2.5
Weight pruning 82.8 81.6 92.3 70.1/88.5 88.9 44M ×2.5
matrix factorization 77.7 77.4 87.6 65.7/87.2 84.3 44M ×2.5
Hybrid pruning 81.2 80.0 90.0 68.0/87.5 83.3 44M ×2.5

LadaBERT-2 83.1 82.2 91.8 69.9/87.9 88.2 22M ×5.0
Weight pruning 75.9 75.6 84.8 60.3/83.5 81.7 22M ×5.0
matrix factorization 71.8 71.8 82.8 60.3/83.5 75.4 22M ×5.0
Hybrid pruning 76.1 75.3 85.4 64.9/85.8 80.6 22M ×5.0

LadaBERT-3 82.1 81.8 89.9 69.4/87.8 84.5 15M ×7.5
TinyBERT 80.9 79.5 89.5 65.4/87.5 77.9 15M ×7.5
BERT-Small 75.4 74.9 87.6 66.5/- 84.8 15M ×7.5
Weight pruning 69.1 68.8 81.8 59.7/82.9 76.4 15M ×7.5
matrix factorization 60.2 60.0 81.3 58.5/82.0 62.2 15M ×7.5
Hybrid pruning 71.9 71.0 83.5 62.3/84.7 73.8 15M ×7.5

LadaBERT-4 75.8 76.1 84.0 67.4/86.6 75.1 11M ×10.0
Distilled-BiLSTM 73.0 72.6 90.7 68.2/88.1 - 10M ×10.8
Weight pruning 64.9 65.1 80.4 56.9/80.5 62.7 11M ×10.0
matrix factorization 59.9 59.6 79.2 57.8/81.9 62.2 11M ×10.0
Hybrid pruning 68.4 67.9 81.5 58.6/83.5 63.2 11M ×10.0

The evaluation results of LadaBERT and state-of-the-art approaches are listed in Table 3, where the
models are ranked by parameter sizes for feasible comparison. As shown in the table, LadaBERT con-
sistently outperforms the strongest baselines under similar model sizes. In addition, the performance
of LadaBERT demonstrates the superiority of a combination of SVD-based matrix factorization, weight
pruning and knowledge distillation.

3https://gluebenchmark.com/

3232

Figure 3: Learning curve on MNLI-m dataset. Figure 4: Learning curve on QQP dataset.

With model size of 2.5× reduction, LadaBERT-1 performs significantly better than BERT-PKD, boost-
ing the performance by relative 8.9, 8.1, 6.1, 3.8 and 5.8 percentages on MNLI-m, MNLI-mm, SST-2,
QQP and QNLI datasets respectively. Recall that BERT-PKD initializes the student model by selecting
3 of 12 layers in the pre-trained BERT-Base model. It turns out that the discarded layers have a huge
impact on the model performance, which is hard to be recovered by knowledge distillation. On the other
hand, LadaBERT generates the student model by iterative pruning on the pre-trained teacher. In this
way, the original knowledge in the teacher model can be preserved to the largest extent, and the benefit
is complementary to knowledge distillation.

LadaBERT-3 has a comparable size as TinyBERT with a 7.5× compression ratio. As shown in the
results, TinyBERT does not work well without expensive data augmentation and general distillation,
hindering its application to low-resource settings. The reason is that the student model of TinyBERT
is distilled from scratch, so it requires much more data to mimic the teacher’s behaviors. Instead, Lad-
aBERT has better initial and intermediate status calculated by hybrid model compression, which is much
more light-weighted and achieves competitive performances with much faster learning speed (learning
curve comparison is shown in Section 4.4). Moreover, LadaBERT-3 outperforms BERT-Small on most
of the datasets, which is pre-trained from scratch by the official BERT pipeline. This means that Lad-
aBERT can quickly adapt to smaller model sizes and achieve competitive performance without expansive
re-training on a large corpus.

Moreover, Distilled-BiLSTM performs well on SST-2 dataset with more than 10× compression ratio,
owing to good generalization ability of LSTM model on small datasets. Nevertheless, the performance of
LadaBERT-4 is competitive on larger datasets such as MNLI and QQP. This is impressive as LadaBERT
is much more efficient without exhaustive re-training on a large corpus. In addition, the inference speed
of BiLSTM is slower than transformer-based models with similar parameter sizes.

4.4 Learning curve comparison

To further demonstrate the efficiency of LadaBERT, we visualize the learning curves on MNLI-m and
QQP datasets in Figure 3 and 4, where LadaBERT-3 is compared to the strongest baseline, TinyBERT,
under 7.5× compression ratio. As shown in the figures, LadaBERT-3 achieves good performances much
faster and results in a better convergence point. After training 2×104 steps (batches) on MNLI-m dataset,
the performance of LadaBERT-3 is already comparable to TinyBERT after convergence (approximately
2× 105 steps), achieving nearly 10 times acceleration. And on QQP dataset, both performance improve-
ment and training speed acceleration are very significant. This clearly shows the superiority of combining
matrix factorization, weight pruning and knowledge distillation in a collaborative manner. On the other
hand, TinyBERT is based on pure knowledge distillation, so the learning speed is much slower.

3233

4.5 Effect of low-rank + sparsity

In this paper, we demonstrate that a combination of matrix factorization and weight pruning is better
than single solutions for BERT-oriented model compression. Similar phenomena has been reported in
computer vision, showing that low-rank and sparsity are complementary to each other (Yu et al., 2017).
Here we provide another explanation to support our observation.

Figure 5: Distribution of pruning errors

In Figure 5, we visualize the distribution of
element biases for a weight matrix in the neu-
ral network after pruning to 20% of its orig-
inal parameter size. For illustration, we con-
sider the matrix initialized by real pretrained
BERT weights, and the pruning process is done
at once. We define the biases to be calculated
by Biasij = M̂ij −Mij , where M̂ denotes the
weight matrix after pruning.

The yellow line in Figure 5 shows the distribu-
tion of biases generated by pure weight pruning,
which has a sudden drop at the pruning thresh-
old. The orange line represents for pure SVD
pruning, which turns out to be smoother and is
aligned with Gaussian distribution. The blue

line shows the result of hybrid pruning, which conducts weight pruning on the decomposed matrices.
First, we apply SVD-based matrix factorization to reduce 60% of total parameters. Then, weight pruning
is applied on the decomposed matrices by 50%, resulting in 20% parameters while the bias distribution
changes slightly. As visualized in Figure 5, it has smaller mean and deviation of bias distribution than
that of pure matrix factorization. In addition, it seems that a smoother weight distribution is more feasi-
ble for the fine-tuning procedure. Therefore, it is reasonable that a hybrid model compression approach
is advantageous than pure weight pruning.

5 Conclusion

Model compression is a common way to deal with latency-critical or memory-intensive scenarios. Exist-
ing model compression methods for BERT are expansive as they require re-training on a large corpus to
reserve the original performance. In this paper, we propose LadaBERT, a lightweight model compression
pipeline that generates an adaptive BERT model efficiently based on a given task and specific constraint.
It is based on a hybrid solution, which conducts matrix factorization, weight pruning and knowledge
distillation in a collaborative fashion. The experimental results demonstrate that LadaBERT is able to
achieve comparable performance with other state-of-the-art solutions using much less training data and
computation budget. Therefore, LadaBERT can be easily plugged into various applications to achieve
competitive performances with little training overheads. In the future, we would like to apply LadaBERT
to large-scale industrial applications, such as search relevance and query recommendation.

References
Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chandraker. 2017. Learning efficient object

detection models with knowledge distillation. In Advances in Neural Information Processing Systems, pages
742–751.

Patrick Chen, Si Si, Yang Li, Ciprian Chelba, and Cho-Jui Hsieh. 2018. Groupreduce: Block-wise low-rank
approximation for neural language model shrinking. In Advances in Neural Information Processing Systems,
pages 10988–10998.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

3234

Jonathan Frankle and Michael Carbin. 2018. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

Song Han, Jeff Pool, John Tran, and William J Dally. 2015. Learning both weights and connections for efficient
neural networks. pages 1135–1143.

Song Han, Huizi Mao, and William J Dally. 2016. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized neural
networks. In Advances in neural information processing systems, pages 4107–4115.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. 2019. Tinybert:
Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016. Pruning filters for efficient
convnets. arXiv: Computer Vision and Pattern Recognition.

Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao, Jiebo Luo, and Li-Jia Li. 2017. Learning from noisy
labels with distillation. In Proceedings of the IEEE International Conference on Computer Vision, pages 1910–
1918.

Chenxing Li, Lei Zhu, Shuang Xu, Peng Gao, and Bo Xu. 2018. Compression of acoustic model via knowledge
distillation and pruning. In 2018 24th International Conference on Pattern Recognition (ICPR), pages 2785–
2790. IEEE.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression via distillation and quantization.
arXiv preprint arXiv:1802.05668.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. 2013. Low-rank
matrix factorization for deep neural network training with high-dimensional output targets. In 2013 IEEE
international conference on acoustics, speech and signal processing, pages 6655–6659. IEEE.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. Patient knowledge distillation for bert model compression.
arXiv preprint arXiv:1908.09355.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. 2019. Distilling task-specific
knowledge from bert into simple neural networks. arXiv preprint arXiv:1903.12136.

Genta Indra Winata, Andrea Madotto, Jamin Shin, Elham J Barezi, and Pascale Fung. 2019. On the effectiveness
of low-rank matrix factorization for lstm model compression. arXiv preprint arXiv:1908.09982.

Jian Xue, Jinyu Li, and Yifan Gong. 2013. Restructuring of deep neural network acoustic models with singular
value decomposition. In Interspeech, pages 2365–2369.

Jian Xue, Jinyu Li, Dong Yu, Mike Seltzer, and Yifan Gong. 2014. Singular value decomposition based low-
footprint speaker adaptation and personalization for deep neural network. In 2014 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pages 6359–6363. IEEE.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. 2017. On compressing deep models by low rank and
sparse decomposition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 7370–7379.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. 2016. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. 2017. Incremental network quantization:
Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044.

