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Abstract

Math word problems solving remains a challenging task where potential semantic and mathe-
matical logic need to be mined from natural language. Although previous researches employ
the Seq2Seq technique to transform text descriptions into equation expressions, most of them
achieve inferior performance due to insufficient consideration in the design of encoder and de-
coder. Specifically, these models only consider input/output objects as sequences, ignoring the
important structural information contained in text descriptions and equation expressions. To
overcome those defects, a model with multi-encoders and multi-decoders is proposed in this
paper, which combines sequence-based encoder and graph-based encoder to enhance the repre-
sentation of text descriptions, and generates different equation expressions via sequence-based
decoder and tree-based decoder. Experimental results on the dataset Math23K show that our
model outperforms existing state-of-the-art methods.

1 Introduction

Math word problems (MWPs) solving, a task that transforms text descriptions into solvable equation
expressions, is considered a crucial step towards general AI (Wang et al., 2018b). Since semantic under-
standing and mathematical logic reasoning both contribute to correct answers, MWPs solving remains a
challenging topic in NLP. Table 1 shows a typical example of MWPs.

Problem: A slow car drives 58(n1) km/h, and a fast car drives
85(n2) km/h. The two cars drive at the same time in
inverse direction, and they meet after 5(n3) hours.
How many kilometers does the fast car drive more
than the slow car when they meet?

AST:

Equation: (n2 − n1)× n3

×

−

�� ��

��

Prefix: ×− n2n1n3
Suffix: n2n1 − n3×

Answer: 135

Table 1: A typical example of MWPs.

Researches on MWPs solving has a long history. Early researches focused on rule-based meth-
ods (Fletcher, 1985; Bakman, 2007; Yuhui et al., 2010) and statistical machine learning methods (Kush-
man et al., 2014; Hosseini et al., 2014; Mitra and Baral, 2016) that map problems into predefined tem-
plates. The main drawbacks of these methods lie in their heavy dependency on manual features and
incapacity to generate new templates for new problems. Consequently, they can only achieve satisfac-
tory results on small-scale datasets (Zhang et al., 2018).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Recently, more researchers have been introducing Seq2Seq models, which are capable of generating
new equation expressions that do not exist in the training set (Wang et al., 2017; Wang et al., 2018a; Wang
et al., 2019; Li et al., 2019). However, these models may generate invalid expressions since the sequence-
based decoder cannot control the generation process. Based on the fact that each equation expression
could be transformed into an abstract syntax tree (AST), some studies (Liu et al., 2019; Xie and Sun,
2019) changed the pattern of sequence generation from left to right and followed the top-down decoding
process. Such tree-based decoders match the prefix order of AST. Although these models considered
the structural information of equation expressions, they ignored that text descriptions also contain rich
structural information, such as dependency parse tree and numerical comparison information.

The dependency parse tree represents various grammatical relationships between pairs of text words,
for example, nouns are usually matched with verbs, and numerals are usually matched with quantifiers.
In Table 1, n1 can be subtracted from n2 because n1 and n2 have the same quantifiers. Therefore, con-
sidering the dependency parse tree can reduce the situation of unreasonable operators between number
pairs. In addition, most of MWPs solving replace numbers with special tokens (i.e. n1, n2), which loses
important numerical comparison information contained in text descriptions. For example, in Table 1,
the underlined words ‘slow car’ and ‘fast car’ imply the fact that ‘n1 < n2’. Similarly, we incline to
ask ‘How many kilometers does the fast car drive more than the slow car?’ rather than ‘How many
kilometers does the slow car drive more than the fast car?’. In other words, text descriptions match the
numerical comparison information. Provided that a model knows numerical comparison information in
advance, the model can better understand potential semantic without wasting a lot of time in mining
these established facts from a large number of corpus.

Now back to the design of decoder, existing methods only adopt one decoder, which limits the gen-
eration ability of the model. (Wang et al., 2018a) provided an ensemble model that selects the result
according to various models’ generation probability. However, there is still one decoder for a single
model. (Meng and Rumshisky, 2019) integrated two decoders in one model, but both are sequence-based
decoders. The same type of decoder cannot significantly improve generalization performance.

With the aim of solving aforementioned challenges, we propose a novel model with multi-encoders
and multi-decoders, which combines sequence-based encoder and graph-based encoder to enhance the
representation of text descriptions, and obtains different equation expressions via sequence-based de-
coder and tree-based decoder. Specifically, we leverage a sequence-based encoder to get the context
representation of text descriptions, and integrate the dependency parse tree and numerical comparison
information via a graph-based encoder. In the decoding stage, a sequence-based decoder is used to gen-
erate the suffix order of AST, and a tree-based decoder is used to generate the prefix order. The final
result is selected according to the generation probability of different decoders. The main contributions
of this paper are summarized as follows:

• We integrate the dependency parse tree and numerical comparison information in the model, which
enhances the representation of text descriptions.

• We use two types of decoders to generate different equation expressions, which strengthens the
generation ability of the model.

• We evaluate our model on a large-scale dataset Math23K. The experimental results show that our
model outperforms all existing state-of-the-art methods.

2 Related Work

MWPs solving may date back to the 1960s and continues attracting current NLP researchers. Here we
will introduce recent studies based on the Seq2Seq framework. The work presented in (Zhang et al.,
2018) reviews more early approaches.

(Wang et al., 2017) made the first attempt to directly generate equation expressions by using the
Seq2Seq model and published a high-quality Chinese dataset Math23K. (Wang et al., 2018a) found that
using the suffix order of AST can eliminate brackets in the original expressions, and proposed an equation
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normalization method to reduce the number of duplicated equations. (Wang et al., 2019) proposed a two-
stage model that first used a Seq2Seq model to generate expressions without operators, and then used
a recursive neural network to predict the operator between numbers. (Chiang and Chen, 2019) adopted
a stack to track the semantic meanings of numbers. (Li et al., 2019) added different functional multi-
head attentions to the Seq2Seq framework. (Meng and Rumshisky, 2019) applied double sequence-
based decoders in one model. However, these Seq2Seq models only consider input/output objects as
sequences, ignoring the important structural information of equation expressions. Consequently, they
cannot guarantee the generation of valid equation expressions.

The idea of the tree-based decoder was proposed in (Liu et al., 2019; Xie and Sun, 2019). They
changed the pattern of sequence generation from left to right and followed the top-down decoding pro-
cess. However, these methods ignored rich structural information contained in text descriptions.

(Li et al., 2020; Zhang et al., 2020) proposed the graph-based encoder. (Li et al., 2020) integrated
the dependency parse tree and constituency tree of text descriptions. (Zhang et al., 2020) constructed
the quantity cell graph and quantity comparison graph. Since these methods considered the structure
information of text descriptions, they have been current state-of-the-art models.

The encoders and decoders designed by these Seq2Seq models are summarized in Table 2. As we can
see, our model is the first model to adopt multi-encoders and multi-decoders.

Model Seq-Encoder Graph-Encoder Seq-Decoder Tree-Decoder
DNS (Wang et al., 2017) X X
Math-EN (Wang et al., 2018a) X X
T-RNN(Wang et al., 2019) X X
S-Aligned (Chiang and Chen, 2019) X X
Group-ATT (Li et al., 2019) X X
D-Decoder (Meng and Rumshisky, 2019) X X
AST-Dec (Liu et al., 2019) X X
GTS (Xie and Sun, 2019) X X
Graph2Tree (Li et al., 2020) X X X
Graph2Tree (Zhang et al., 2020) X X X
Ours X X X X

Table 2: The encoders and decoders designed by various Seq2Seq models.

3 Methodology

The framework of our model is shown in Figure 1, which consists of four components: the sequence-
based encoder obtains the context representation of text descriptions; the graph-based encoder integrates
the dependency parse tree and numerical comparison information; the sequence-based decoder generates
the suffix order of AST, and the tree-based decoder generates the prefix order. The final generation result
is selected according to the generation probability of different decoders.

3.1 Sequence-Based Encoder
The goal of sequence-based encoder is to get the context representation of text descriptions. Without loss
of generality, we use a BiGRU to encode text words. Formally, given the text words P = {x1, · · · , xn},
we first embed each word token xi to a word embedding vector ei

1, and then feed these embedding
vectors into a BiGRU to produce hidden state sequences H = {h1, · · · ,hn}.

3.2 Graph-Based Encoder
3.2.1 Dependency Parse Tree
As is discussed in Section 1, the dependency parse tree represents various grammatical relationships
between pairs of text words, which is helpful to find reasonable operators between number pairs. We can

1For each word token, we also embed its POS tagging.
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Figure 1: The framework of our model. We first exploit a sequence-based encoder to obtain the context
representation of text descriptions. Later, a graph-based encoder is used to integrate the dependency
parse tree and numerical comparison information. In the decoding process, the sequence-based decoder
and tree-based decoder generate different equation expressions.

easily obtain the graph-based structure of the dependency parse tree by using dependency relationships
in the parse tree. Hence, we consider the following parse graph.

• Parse Graph (G): For two words xi, xj ∈ P , there is an edge eij = (xi, yj) ∈ G if the pair has
dependency relationship in the dependency parse tree, referring to the table in Figure 1.

Note that the parse graph is an undirected graph. After building the graph-based structure of the
dependency parse tree, we need to find an effective way to learn the graph representation. Here we
introduce GraphSAGE (Hamilton et al., 2017), which is a flexible graph neural network. Specifically,
we first use the sequence H = {h1, · · · ,hn} obtained by the sequence-based encoder as the initial
embedding of each node. Then each node updates its embedding vector from neighborhood nodes,
which can be expressed as

P k
N = GCN(P k−1,G) = ReLU(D̃− 1

2 ÃD̃− 1
2P k−1W ) (1)

P k = ReLU([P k−1;P k
N ] ·WP ) (2)

where P k
N denotes the aggregating information from neighborhood nodes, P k denotes the updated em-

bedding of each node and P 0 = H . D̃ = D +L, Ã = A+L, D represents the degree matrix and A
represents the adjacency matrix of the parse graph. k ∈ {1, · · · ,K} is the iteration index and {W ,WP }
are parameter matrices.

3.2.2 Numerical Comparison Information
Numerical comparison information also plays an important role in enhancing text descriptions. We also
use a graph-based structure to represent the numerical comparison information. We denote the numbers
in the text words as Vn = {n1, · · · , nl} and consider the following two types of numerical graphs.

• Greater Graph (Gg): For two numbers ni, nj ∈ Vn, there is an edge eij = (ni, nj) ∈ Gg if ni > nj ,
referring to the red solid lines in Figure 1.



2928

• Lower Graph (Gl): For two numbers ni, nj ∈ Vn, there is an edge eij = (ni, nj) ∈ Gl if ni ≤ nj ,
referring to the red dashed lines in Figure 1.

Unlike the parse graph, there are two types of numerical graphs and they are directed graphs. Hence
we extend GraphSAGE to fit the integration of numerical comparison information. The updating rule of
each number can be expressed as

Qk
Ng

= GCN(Qk−1,Gg) = ReLU(D̃−1
g ÃgQ

k−1Wg) (3)

Qk
Nl

= GCN(Qk−1,Gl) = ReLU(D̃−1
l ÃlQ

k−1Wl) (4)

Qk
N = Ma ∗Qk

Ng
+ (1−Ma) ∗Qk

Nl
(5)

Ma = σ([Qk
Ng

;Qk
Nl
;Qk

Ng
+Qk

Nl
;Qk

Ng
−Qk

Nl
] ·Wa) (6)

Qk = ReLU([Qk−1;Qk
N ] ·WQ) (7)

where {Qk
Ng
,Qk

Nl
} represent the aggregating information from neighborhood nodes in two graphs, Qk

represents the updated embedding of each node and Q0 = PK . Ma controls the weight of two graphs,
‘∗’ denotes element-wise multiplication and ‘σ’ denotes the ‘Sigmoid’ function. k ∈ {1, · · · ,K} is the
iteration index and {Wg,Wl,Wa,WQ} are parameter matrices.

The final encoder vectors of text descriptions incorporate the node embedding vectors in the parse
graph and numerical graphs, which can be calculated as

Z = PK +QK (8)

g = MaxPool(Z) (9)

where Z = {z1, · · · , zn} denotes the final encoder vectors of each word, and g represents the global
vector of text descriptions for further decoding.

3.3 Sequence-Based Decoder

The sequence-based decoder is used to generate the suffix order of AST. We use a GRU with attention
layer to generate the sequence, which can be expressed as

si = GRU(ŷi−1, si−1, ci) (10)

ci =

n∑
j=1

αijzj (11)

αij =
exp(score(si−1, zj))∑n
j=1 exp(score(si−1, zj))

(12)

score(si−1, zj) = vT
s · tanh(Ws · [si−1; zj ]) (13)

where si denotes the hidden state vector of the decoder, ci denotes the context vector. αij controls the
attention weight of every encoder vector. ŷi is the output and {vs,Ws} are parameter matrices.

3.4 Tree-Based Decoder

The tree-based decoder is used to generate the prefix order of AST. We follow the Goal-driven Tree
Structure (GTS) proposed in (Xie and Sun, 2019), which not only realized the top-down decoding process
but also used the bottom-up subtree embedding manners. Here we simply introduce the decoding process,
which can be expressed as
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• Step 1 (Root Goal Generation): GTS followed the pre-order traversal manner, so the primary goal
is to generate the root node. We use g as the initial goal vector of the root node, and apply the same
attention mechanism in the sequence-based decoder to get the context vector c̃1.

c̃1 = Attention(g,Z) (14)

ŷ1 = Predict(g, c̃1) (15)

Note that the algorithm terminates directly if ŷ1 is a number; otherwise, we will go to step 2.

• Step 2 (Left Goal Generation): The left goal gl is generated according to the goal vector and the
predicted token of its parent node, which can be expressed as

gl = Left(ŷp, gp, c̃p) (16)

ŷl = Predict(gl, c̃l) (17)

where ŷp, gp and c̃p stand for the predicted token, goal vector and content vector of the parent node
respectively. The process of generating the left goal continues until ŷl is a number, referring to the
red dashed lines in Figure 1. Later, we will go to step 3.

• Step 3 (Right Goal Generation): When the right goal node is being generated, its left sibling
node has been completed. Therefore, GTS considered the subtree embedding of its sibling node to
generate the right goal gr, which can be expressed as

gr = Right(ŷp, gp, c̃p, tl) (18)

tl = SubTree(ŷl, gl) (19)

ŷr = Predict(gr, c̃r) (20)

Here, tl is the tree embedding of the left goal, as illustrated by the blue solid lines in Figure 1.
Similarly, we will go back to step 2 if ŷr is an operator. The algorithm backtracks to check whether
there are right goals in the tree that need to be generated if ŷr is a number. When the model cannot
find any generation goal, the algorithm terminates; otherwise, we will continue step 3.

3.5 Model Training
Since our model integrates two types of decoders, we combine the loss functions of the sequence-based
decoder and tree-based decoder. For each sample of problem-expression (P, T ), the optimization objec-
tive of our model is defined as

L = − 1

m

m∑
i=1

(log p(yi|si, ci, Ts) + log p(yi|gi, c̃i, Tt)) (21)

where
p(yi|si, ci, Ts) = softmax(W1 · tanh(W2 · [si; ci])) (22)

p(yi|gi, c̃i, Tt) = softmax(W3 · tanh(W4 · [gi; c̃i])) (23)

where m denotes the number of tokens in the equation expression. Ts represents the suffix order and Tt
represents the prefix order. {W1,W2,W3,W4} are parameter matrices.

Finally, we use the log probability scores to perform a beam search. After obtaining the top equation
expression from double decoders respectively, we select the one with a higher score as the final result.

4 Experiments

In this section, we evaluate our model on a large-scale dataset Math23K. We compare our model with
several state-of-the-art methods and demonstrate the effectiveness of our model via a series of controlled
experiments. Our code can be downloaded at https://github.com/YibinShen/MultiMath.
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4.1 Experimental Setup

4.1.1 Dataset

Math23K (Wang et al., 2017): Math23K is a large-scale Chinese dataset that contains 23,162 elementary
school level MWPs and corresponding equation expressions and answers. Although there are other
large-scale datasets, such as Dolphin18K (Huang et al., 2016) (with 18,460 MWPs) and AQuA (Ling
et al., 2017) (with 100,000 MWPs), they contain either some unlabeled problems or informal equation
expressions (mixed with texts). Therefore, Math23K is still the most ideal large-scale and high-quality
publish dataset.

4.1.2 Hyperparameters

In the sequence-based encoder, we use a two-layer BiGRU with 512 hidden units as the encoder, and the
dimension of word embedding is set as 128. In the graph-based encoder, we set the number of iteration
steps asK = 2. We also use a two-layer GRU with 512 hidden units as the decoder in the sequence-based
decoder. The hyper-parameters of the tree-based decoder are consistent with GTS. As to the optimizer,
we use Adam with an initial learning rate at 0.001, and the learning rate will be halved every 20 epochs.
The number of epochs, batch size and dropout rate are set 80, 64 and 0.5 respectively. At last, we use
a beam search with beam size 5 in the sequence-based decoder and tree-based decoder. Our model is
implemented in PyTorch 1.4.0 and runs on a server with one NVIDIA Tesla V100. We use pyltp 0.2.1 to
preform dependency parsing and POS tagging.

4.1.3 Metric

Since a math word problem can be solved by multiple equation expressions, we use the answer accuracy
as the evaluation metric. For Math23K, some of the previous studies were evaluated on the publish test
set, while others used the 5-fold cross-validation. We evaluate our model on the two situations.

4.1.4 Baselines

We compare our model with some state-of-the-art methods, including: DNS (Wang et al., 2017) made
the first attempt to solve MWPs by using a Seq2Seq model. Math-EN (Wang et al., 2018a) proposed
an equation normalization method to reduce the number of duplicated equations. T-RNN (Wang et al.,
2019) used a two-stage model to generate expressions. S-Aligned (Chiang and Chen, 2019) adopted a
stack to track the semantic meanings of numbers. Group-ATT (Li et al., 2019) added different func-
tional multi-head attentions to the Seq2Seq framework. AST-Dec (Liu et al., 2019) used TreeLSTM
to realize top-down decoding process. GTS (Xie and Sun, 2019) followed goal-driven tree structure.
Graph2Tree (Zhang et al., 2020) integrated the quantity cell graph and quantity comparison graph.

4.2 Experimental Results

Type Model Math23K(%) Math23K∗(%)

Seq2Seq

DNS - 58.1
Math-EN 66.7 -
T-RNN 66.9 -
S-Aligned - 65.8
Group-ATT 69.5 66.9

Seq2Tree
AST-Dec 69.0 -
GTS 75.6 74.3

Graph2Tree Graph2Tree 77.4 75.5
Multi-E/D Ours 78.4 76.9

Table 3: Performance comparison on Math23K. Note that Math23K denotes results on public test set and
Math23K∗ denotes the 5-fold cross-validation.
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Table 3 depicts the performance comparison of different models on Math23K. As we can see, Seq2Seq
models cannot exceed 70% accuracy because they ignored the structural information of text descrip-
tions and equation expressions. Seq2Tree models made full use of tree-based structure expressions and
followed the top-down decoding process, which outperforms most of Seq2Seq models. In particular,
GTS also realized bottom-up subtree embedding manners and have a good performance on Math23K.
Graph2Tree considered the structure information of text descriptions, integrating the quantity cell graph
and quantity comparison graph, so it achieves sub-optimal performance in all models. As to our model,
our model not only uses multi-encoders to integrate the structural information of the dependency parse
tree and numerical comparison graphs, but also enhances the generation ability of the model via multi-
decoders, which outperforms aforementioned models.

4.3 Experimental Analysis

In Table 4, we show the accuracy of the top-5 most frequent expressions on Math23K∗. Intuitively, our
model achieves more than 90% accuracy in all situations and outperforms the other two models in most
cases. Note that our model has a significant improvement over GTS under expressions with ‘÷’ or ‘−’.
This is because the division and subtraction operators do not meet the commutative law, which requires
the model to learn the correct arithmetic order. Since GTS doesn’t integrate the numerical comparison
information in the model, it cannot deal with these expressions well.

Expression (prefix) Pro(%) GTS(%) Graph2Tree(%) Ours(%)

×n1n2 4.77 89.05 89.05 90.23
÷n1n2 4.40 88.61 90.37 91.85
÷n2n1 3.43 86.40 88.16 90.81
×n1 − 1n2 2.31 89.55 90.67 91.23
÷× n1n2n3 2.27 90.49 92.40 92.21

Table 4: Accuracy of the top-5 most frequent expressions on Math23K∗.

Figure 2: Accuracy of different expres-
sion lengths on Math23K∗.

Figure 2 depicts the accuracy of different expression
lengths. The gray line represents the proportion of differ-
ent expression lengths. Results show that our model out-
performs GTS and Graph2Tree in all situations. However,
the performance of our model has a rapid drop when the
expression becomes longer. There are two reasons for this
phenomenon: (1) longer expressions contain more opera-
tors, and the neural network cannot save the results of inter-
mediate variables well; (2) longer expressions only account
for a small part of the dataset (e.g. each expression longer
than 9 can be matched to 1.67 problems on average), and
the model lacks samples for training. In future work, we
will consider question generation technology to generate
more MWPs, which may solve this problem.

4.4 Case Study

To demonstrate the effectiveness of our model, we conduct a case study in Table 5. Test 1 exchanges the
order of text descriptions and Test 2 changes the form of question description. These two simple tests are
used to investigate whether the model can mine the correct mathematical logic from natural language.

In the original problem, GTS obtains a negative answer, which conflicts with the problem. It is funny
that GTS obtains the correct answer when we change the order of text description. Note that GTS gen-
erates the same expression in Test 1, which implies that GTS only remembers the order of the numbers
instead of the real mathematical logic within the problem.
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Problem: A slow car drives 58(n1) km/h, and a fast car drives 85(n2) km/h. The two cars drive at
the same time in inverse direction, and they meet after 5(n3) hours. How many kilometers
does the fast car drive more than the slow car when they meet?

Result: GTS: ×− n1n2n3 = −135 (error) Ours: ×− n2n1n3 = 135 (correct)
Test 1: A fast car drives 85(n1) km/h, and a slow car drives 58(n2) km/h. The two cars

drive at the same time in inverse direction, and they meet after 5(n3) hours. How many
kilometers does the fast car drive more than the slow car when they meet?

Result: GTS: ×− n1n2n3 = 135 (correct) Ours: ×− n1n2n3 = 135 (correct)
Test 2: A slow car drives 58(n1) km/h, and a fast car drives 85(n2) km/h. The two cars drive at

the same time in inverse direction, and they meet after 5(n3) hours. How many kilome-
ters does the slow car drive less than the fast car when they meet?

Result: GTS: ×− n1n2n3 = −135 (error) Ours: ×− n2n1n3 = 135 (correct)

Table 5: Case study of MWPs solving, where Test 1 and Test 2 are generative cases.

In Test 2, we change the form of question description, GTS and our model obtain the same expressions
that generated in the original problem. This is because we use the attention mechanism in the model,
changing the form of question description has no impact on generating correct expressions.

Since Graph2Tree also considered the quantity comparison graph in the model, the same results are
obtained in this case as our model.

4.5 Ablation Study

Last but not least, we conduct an ablation study to better understand the effect of encoders and decoders
in the model, as is shown in Table 6. When we use a fully connected layer to replace the sequence-
based encoder, the performance of our model observably drops. This is because other encoders and
decoders depend on the context representation obtained by the sequence-based encoder. We find that the
performance has a drop if we discard any type of graph-based structure, which proves the importance
of considering the structure information in text descriptions. When the model has only one decoder, the
generation ability is limited, which indicates the necessity of designing multi-decoders.

Model Math23K (%)

Full Model 78.4
- Sequence-Based Encoder 69.7
- Graph-Based Encoder (Parse Graph) 76.4
- Graph-Based Encoder (Numerical Graphs) 76.1
- Sequence-Based Decoder 76.6
- Tree-Based Decoder 71.3

Table 6: Effect of encoders and decoders in the model.

5 Conclusion and Future Work

Inspired by the fact that text descriptions and equation expressions have structural information, a model
with multi-encoders and multi-decoders is proposed in this paper. To be specific, we use the sequence-
based encoder to obtain the context representation, and the graph-based encoder is used to integrate the
structure information of text descriptions. Two types of decoders generate different expressions, which
strengthens the generation ability of the model. Experimental results on Math23K proves the advantages
of our model over existing state-of-the-art methods. The Experiment analysis shows that the effectiveness
of mathematical logic mining from the problem. In future work, we will explore the question generation
technique to increase samples of the dataset and solve the problems with complex expressions.
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