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Abstract

Slot filling and intent detection are two major tasks for spoken language understanding. In most
existing work, these two tasks are built as joint models with multi-task learning with no consid-
eration of prior linguistic knowledge. In this paper, we propose a novel joint model that applies a
graph convolutional network over dependency trees to integrate the syntactic structure for learn-
ing slot filling and intent detection jointly. Experimental results show that our proposed model
achieves state-of-the-art performance on two public benchmark datasets and outperforms exist-
ing work. At last, we apply the BERT model to further improve the performance on both slot
filling and intent detection.

1 Introduction

Spoken Language Understanding (SLU) plays a vital role in a task-oriented dialogue system. Slot filling
and intent detection (Tur and De Mori, 2011) are two major tasks for SLU as shown in Figure 1(a). Slot
filling aims to obtain the semantic structure for the utterance. Meanwhile, intent detection annotates the
categorical intent of the utterance.

In typical pipeline methods, slot filling and intent detection are built separately. Slot filling is imple-
mented as a standard sequence labeling task (Yao et al., 2014) and intent detection is built as a classifi-
cation task (Lai et al., 2015), respectively. Essentially, slot filling and intent detection impact mutually.
Therefore, more prior work (Hakkani-Tür et al., 2016; Liu and Lane, 2016; Goo et al., 2018; Li et al.,
2018; Wang et al., 2018; Zhang et al., 2018a; E et al., 2019; Qin et al., 2019) implement two afore-
mentioned tasks jointly as multi-task learning and achieve more promising results than those pipeline
methods. However, most prior work utilize sequential model, such as recurrent neural network, to ac-
cumulate the contextual representation for each word to implement SLU with no consideration of prior
linguistic knowledge. Intuitively, slot filling and intent detection rely on indicative contextual words
for disambiguation and suffer from the degradation on wide contexts. Syntactic dependency parse tree
as shown in Figure 1(b), which provides linguistic dependency relation among words, has been shown
generally beneficial in various NLP tasks such as machine reading comprehension (Zhang et al., 2019),
neural machine translation (Chen et al., 2018) and relation extraction (Zhang et al., 2018b). The major
reasons are that the dependency parse tree can capture long-range relations between words and contain
implicit clues for disambiguation.

To access a better SLU, we emphasize that SLU model should utilize the dependency representation
as prior linguistic knowledge. In this paper, we propose a joint SLU model that applies a Graph Convo-
lutional Network (GCN) over dependency trees to integrate the syntactic structure for joint learning slot
filling and intent detection, where the GCN can pool information over arbitrary dependency structures
efficiently, which has been proven in (Zhang et al., 2018b). Concretely, our proposed model encode
the utterance and output a contextual word representation via a bi-directional LSTM (Hochreiter and
Schmidhuber, 1997), then a GCN over dependency tree take contextual word representation as input to
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(b) An example of dependency tree over the utterance
“What flights travel from las vegas to los angeles”.

Figure 1: An example of utterance in ATIS dataset.

obtain the syntactic structure representation for utterance. In addition, it is worth noting that existing de-
pendency parsers are impossible to parse all the sentences exactly. Thus, a multi-head attention is utilized
to fuse the syntactic representation with original contextual word representation against the errors caused
by incomplete dependency parser, where the multi-head attention can supplement the syntactic represen-
tation with contextual word representation as a self-adaption manner. At last, the fused representation is
applied to implement slot filling and intent detection jointly.

The experiments are conducted on two benchmarks SLU datasets: ATIS (Hemphill et al., 1990) and
Snips (Coucke et al., 2018). The experimental results demonstrate that our proposed model outperforms
the existing state-of-the-art approaches. At last, BERT model (Devlin et al., 2019), as a pre-trained
model, is used to our proposed framework. The experimental results also show that our proposed model
incorporated with BERT model can further improve the performance on both slot filling and intent de-
tection.

The main contributions of this work are therefore include as follows: 1)We introduce a model that uti-
lizes a GCN to integrate the syntactic structure for joint learning slot filling and intent detection, which to
the best of our knowledge is the first work that syntactic structure and GCN are used to implement above
two tasks jointly. 2) We utilize a multi-head attention to fuse the syntactic representation with contextual
word representation against the errors caused by incomplete dependency parser. 3) We conduct our ex-
periments on two public datasets, and our proposed model achieves new the state-of-the-art performance
in overall accuracy metric.

2 Methodology

In this section, we will describe our syntactic graph convolutional network for SLU tasks. The overall ar-
chitecture of our model is demonstrated in Fig 2. We first use a BiLSTM encoder to obtain the contextual
representation of an utterance. Then we perform multi-hop GCN propagation over the dependency tree
initialized by the hidden states of the BiLSTM encoder to capture syntactic representation. Subsequently,
we integrate the syntactic representation and the contextual hidden states via a feature aggregation layer.
Finally, we pass the fused representation to the output layer for final predictions. Both slot filling and
intent detection are optimized simultaneously via a joint learning scheme.

2.1 Notations

We now formally define the task of slot filling and intent detection. Let X = [x1, . . . , xn] denotes a
sentence, where n denotes the sequence length. We first use a syntactic parser to generate a dependency
tree where each word represents a node. After obtaining a tree with n nodes, we can represent the graph
structure with an n ∗ n adjacency matrix A where Aij = 1 if there is an edge going from word xi to
word xj . 1 Given the input sequence and the corresponding dependency tree, our goal is to predict the
slot labels oS =

(
oS1 , . . . , o

S
n

)
and the intent label oI .

1We treat the dependency tree as an undirected graph, i.e.∀i, j, Aij = Aji. We hypothesize that modeling edge directions
and types does not offer additional discriminative power to the network because the GCN can capture adequately informative
syntactic patterns for SLU. Besides, models with high complexity are prone to overfitting.



2730

what flights travel from las vegas to los angeleswhat flights travel from las vegas to los angeles

what flights travel from las vegas to los angeleswhat flights travel from las vegas to los angeles

GCN

Local Integration

what

flights

travel

from

las

vegas

to

los

angeles

Output Layer

O O O O B-fromloc I-fromloc O B-toloc I-tolocO O O O B-fromloc I-fromloc O B-toloc I-toloc atis-flight

h(l)

h(l-1)

Global Matching

Syntax-guided

Attention

(b)   the syntax-guided self-attention scores

(a)   the overall architecture of our proposed method (c)   syntactic graph convolutional network

Figure 2: Spoken language understanding with a syntactic graph convolutional network. Fig (a) shows the overall architecture
of our proposed method. Fig (b) displays the syntax-guided self-attention scores. Fig (c) shows one-layer detailed graph
convolution computation for the word ”vegas” and ”angeles” for clarity. For local integration, we only show the computation
of three timesteps. As we describe in the introduction, the syntactic structure lets a word focus more on its dependency
words, such as from ← vegas and to ← angeles. These syntactic constraints could enhance contextual representations to
distinguish the departure city from the arrival city.

2.2 Syntactic Graph Convolutional Networks over Dependency Trees

The graph convolutional network(GCN) (Kipf and Welling, 2017) has been proved useful for encoding
structural information in graphs. GCNs provide flexibility to represent diverse syntactic and semantic re-
lationships between words. Essentially, GCN operates on a graph structure and compute representations
for the nodes of the graph by looking at the neighborhood of the node. We can stack L layers of GCNs
to account for neighbors that are L-hops away from the current node. Formally, in an L-layer GCN as
Fig 2(c) shows, we denote the input vector as h(l−1)i and output vector as h(l)i where i represents the i-th
node and l represents the l-th layer. Hence, the one-hop graph convolution operation can be written as
h
(l)
i = σ

(∑n
j=1AijW

(l)h
(l−1)
j + b(l)

)
, where W (l) is a linear transformation, b(l) a bias term, and σ a

nonlinear function (e.g., ReLU).
To initialize the first layer input vector h(0), we first feed the input word vectors into a BiLSTM

network to generate contextualized representations. Note that our method is not limited to cooperate
with BiLSTM, but any contextual encoder like ELMo(Peters et al., 2018), BERT(Devlin et al., 2019).
We also conduct BERT based experiments for comparison. We will show empirically in Section 4.7 that
both encoders substantially improve the performance over the original baselines.

Then, we perform the aforementioned graph convolution operation on dependency trees by converting
each tree into its corresponding adjacency matrix A, where Aij = 1 if there is a dependency edge
between words i and j. Adopted from (Zhang et al., 2018b), we also normalize the activations in the
graph convolution before feeding it through the nonlinearity and adding self-loops to each node in the
graph as h(l)i = σ

(∑n
j=1 ÃijW

(l)h
(l−1)
j /di + b(l)

)
, where Ã = A + I with I being the n ∗ n identity

matrix and di =
∑n

j=1 Ãij is the degree of token i in the resulting graph.

2.3 Feature Aggregation Mechanism: From Local To Global

After applying L-layer GCNs over dependency trees, we obtain the syntactic knowledge vector h(L)i of
each token xi. To fuse syntactic representation and contextual representation, we propose the feature
aggregation mechanism comprising of the local integration layer and global matching layer. The former
builds strong interactions between syntactic vector and contextual vector of one word while the latter
models connections at the overall utterance-level. The aggregation mechanism aims to integrate syntactic
graph information and contextual representation and enable our model more robust to potential noise
from the dependency parser.

Local Integration Given the syntactic representation h(L)i and contextual representation h(0)i of word
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xi, local integration intends to control how much information in h(L)i and h(0)i should be passed down.
We employ a multi-head attention (Vaswani et al., 2017) to capture the relation between syntax and
semantics. For the i-th word, we project Hlocal

i = {h(L)i , h
(0)
i } into the distinct key, value, and query

representations, denotedKj ,Qj and Vj for each head j. Then we perform the scaled dot product attention

as Attention (Q,K, V ) = softmax
(
QKT
√
dk

)
V .

Then the outputs of all heads are concatenated and passed through a feed-forward layer followed by
GeLU activations (Hendrycks and Gimpel, 2017) and a layer normalization. And we perform average
pooling on the final outputs of local integration for each word, denoted as H′ = {h′1, . . . , h′n}, where
the syntactic representation and original contextual word representation are fused. Note that all the
parameters of the local integration layer are shared for all the words. In Fig 2(a), we only show three
network blocks for clarity.

Global Matching After local integration captures the relationship between syntax and semantics of
each word, we propose a global matching layer to model connections between fused representations at the
overall utterance-level. Similar to the local integration, we use another multi-head attention layer where
we project Hglobal = H′ = {h′1, . . . , h′n} into the the distinct key, value, and query representations.
The syntactic information from GCN will guide a word to other words of syntactic importance in a
sentence. To reduce the overall parameters and computational cost, we do not employ a stack of multiple
identical blocks but only one multi-head attention layer for both local integration and global matching.
The outputs of global matching will be forwarded into the final output layer.

2.4 Joint Optimization

Finally, we use the output hidden vectors of global matching to predict the slot types and intent. For
slot types, we directly perform softmax operation over the hidden vector at each timestep. For intent
prediction, we perform max pooling over all the words to obtain a fixed-length vector. Then the final
vector is fed to the multi-layer perceptron (MLP) classifier, with one hidden layer, tanh activation, and
softmax output layer. The entire model is trained by minimizing the sum of two cross-entropy losses in
an end-to-end manner. The overall objective is formulated as p

(
yS , yI |X

)
= p

(
yI |X

)∏n
t=1 p

(
ySt |X

)
,

where yS , yI are the softmax output probability of slots and intent respectively.

3 Experiments

3.1 Settings

To evaluate the proposed model, we conduct experiments on two public benchmark datasets, ATIS
(Hemphill et al., 1990) and Snips (Coucke et al., 2018). ATIS contains audio recordings of flight reser-
vations, and Snips is collected from the Snips personal voice assistant. For the syntactic parser, we adopt
the Stanford parser from (Chen and Manning, 2014). The parser is not updated with our SLU model. For
the SLU model, we use the glove embedding with the dimension of 300 and set the dropout rate as 0.1.
L2 regularization is used with a rate of 1 × 10−3. We use the Adam optimizer (Kingma and Ba, 2014)
with the learning rate of 0.001. For the GCN model, we set the propagation layer num as 2 and treat the
dependency tree as an undirected graph. All the results are reported on the test set after early stopping
on the dev set.

3.2 Baselines

We compare our model with the existing baselines including: Joint Seq(Hakkani-Tür et al., 2016) pro-
poses an RNN-based multi-task modeling approach for jointly modeling domain detection, intent detec-
tion, and slot filling. Attention BiRNN(Liu and Lane, 2016) leverages the attention mechanism to learn
the relationship between slot and intent. Slot-Gated Atten(Goo et al., 2018) proposes the slot-gate to
model the correlation of slot filling and intent detection. Self-Attentive Model(Li et al., 2018) proposes a
novel self-attentive model with the intent augmented gate mechanism to utilize the semantic correlation
between slot and intent. Bi-Model(Wang et al., 2018) proposes the Bi-model to consider the intent and
slot filling cross-impact to each other. CAPSULE-NLU(Zhang et al., 2018a) proposes a capsule-based
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Model SNIPS ATIS
Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

Joint Seq (Hakkani-Tür et al., 2016) 87.3 96.9 73.2 94.3 92.6 80.7
Attention BiRNN (Liu and Lane, 2016) 87.8 96.7 74.1 94.2 91.1 78.9
Slot-Gated Full Atten (Goo et al., 2018) 88.8 97.0 75.5 94.8 93.6 82.2
Slot-Gated Intent Atten (Goo et al., 2018) 88.3 96.8 74.6 95.2 94.1 82.6
Self-Attentive Model (Li et al., 2018) 90.0 97.5 81.0 95.1 96.8 82.2
Bi-Model (Wang et al., 2018) 93.5 97.2 83.8 95.5 96.4 85.7
CAPSULE-NLU (Zhang et al., 2018a) 91.8 97.3 80.9 95.2 95.0 83.4
SF-ID Network (E et al., 2019) 90.5 97.0 78.4 95.6 96.6 86.0
Stack-Propagation (Qin et al., 2019) 94.2 98.0 86.9 95.9 96.9 86.5
Our model 94.8* 98.2* 87.6* 95.7 97.2* 86.9*

Table 1: Slot filling and intent detection results on two datasets. The numbers with * indicate that the improvement of our
model over all baselines is statistically significant with p < 0.05 under t-test.

model with a dynamic routing-by-agreement schema to accomplish slot filling and intent detection. SF-
ID Network(E et al., 2019) introduces an SF-ID network to establish multiple direct connections for the
slot filling and intent detection to help them promote each other mutually. Stack-Propagation(Qin et al.,
2019) proposes a Stack-Propagation framework that can directly use the intent information as input for
slot filling, thus to capture the intent semantic knowledge. We report the experiment results of these
models adopted from (Qin et al., 2019).

3.3 Overall Results

We evaluate the SLU performance about slot filling using F1 score, intent prediction using accuracy, and
sentence-level semantic frame parsing using overall frame accuracy. We take the overall accuracy as the
main evaluation metric since the metric considers the joint performance of both slot filling task and intent
detection task. Table 1 displays the performance of our proposed model and baseline models on ATIS and
Snips dataset. As shown in Table 1, we observe that our model outperforms all the baselines obviously
on Overall (Acc). Specially, compared with the best prior joint work Stack-Propagation, we achieve
0.7% improvement on Overall (Acc) in the Snips dataset. Meanwhile, we achieve 0.4% improvement
on Overall (Acc) in the ATIS dataset. In Snips dataset, our model outperforms the baseline models on
all the evaluation metric. Although our model achieve 0.2% lower performance than Stack-Propagation
on Slot (F1) in ATIS dataset, our model still outperforms Stack-Propagation on main evaluation metric,
i.e. Overall (Acc), obviously. Above results indicate that our proposed model can improve the SLU
performance significantly by integrating the syntactic structure with contextual information.

4 Qualitative Analysis

In this section, we present a detailed qualitative analysis on each component of our proposed model and
provide certain typical cases to show the effectiveness of incorporating syntactic information. We first
perform an ablation study to validate the effect of different modules of our model. Then we explore
more methods of feature aggregation and demonstrate the superiority of our proposed local-to-global
multi-head attention mechanism. Next, we give some typical cases of our model and baseline to show
the effect of syntactic structure. Finally, we conduct experiment with BERT to verify that our model is
more effective with pre-trained model.

4.1 Effect of Syntactic GCN

To verify the effectiveness of syntactic information delivered by the dependency tree, we conduct com-
parison experiments with the same architecture except for the way of constructing the adjacency matrix
A. As Table 2.1 shows, we experiment with two distinct adjacency matrices of all 0s and all 1s. The
Adj=0 model which fills the adjacency matrix with all 0s aims to disentangle GCN from our proposed
model as a baseline. And the Adj=1 model which fills the adjacency matrix with all 1s demonstrates the
effect of the dependency tree.
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Model SNIPS ATIS
Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

Adj=0* 93.3 97.7 84.6 94.9 96.5 84.9
Adj=1** 92.9 97.7 83.5 90.8 95.5 79.8
Syntax GCN 94.8 98.2 87.6 95.7 97.2 86.9

Table 2: Effect of Syntactic GCN. * indicates that the Adj=0 model fills the adjacency matrix with all 0s. By contrast, **
indicates that the Adj=1 model fills the adjacency matrix with all 1s. Syntax GCN represents our proposed syntactic GCN
model where the adjacency matrix is filled with the dependency tree as described in Section 2.1.
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(b) Split by sentence length in the Snips test dataset

Figure 3: Test set performance with regard to sentence length for our proposed model, Stack-Propagation (Qin et al., 2019) and
our model w/o GCN which fills the adjacency matrix with all 0s.

In the Snips dataset, compared to the Adj=0 model, Adj=1 gets a drop of 1.1% on Overall (Acc) while
our model get 3.0% improvements. The similar results are also shown in the ATIS dataset. We hy-
pothesize that this is because filling the adjacency matrix with all 1s essentially builds a fully-connected
graph, which induces tremendous noise to the model. By contrast, integrating the syntactic information
makes a word focus more on its dependency words as constraints. The experiment results confirm that
incorporating syntactic dependency benefits the understanding of natural language.

4.2 Effect of Sentence Length

To understand what our syntax GCN model captures and how it differs from the previous baselines such
as Stack-Propagation, we compare their performance over examples with different ranges of sentence
length in the Fig 3. Specifically, for each model, we train it on the same training set and report their
overall accuracy on examples with different sentence lengths of the test set.

Fig 3 shows that our proposed syntax GCN model outperforms Stack-Propagation with notable im-
provements at handling long sentences. We believe our model can better resolve issues of long-term
dependencies via the explicit syntactic information. Besides, compared to the model w/o GCN, our
model consistently achieves superior performance, which demonstrates the effectiveness of the feature
aggregation layer.

4.3 Effect of Feature Aggregation

We further explore the benefits of our feature aggregation mechanism in our model. We conduct com-
parison experiments with the same architecture except for the feature aggregation layer. Table 3 shows
the overall results of different feature aggregation methods, including Add, Concat, Gate, Full and our
local-to-global multi-head attention mechanism. Given the syntactic representation h(L)i and contextual
representation h(0)i of the i-th word, we define the Gate as oi = α ∗ h(L)i + (1 − α) ∗ h(0)i where α =

W1h
(L)
i +W2h

(0)
i , and the Full as oi = Concat([h

(L)
i ;h

(0)
i ; |h(L)i − h(0)i |;h

(L)
i ∗ h(0)i ]).

Compared to the base RNN, all the aggregation methods, Add, Concat, Gate, Full, achieve 1% ∼ 2%
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Model SNIPS ATIS
Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

RNN 90.7 96.9 80.7 94.3 95.3 82.5
Add 91.7 97.4 82.3 94.8 95.6 84.4
Concat 91.5 98.1 82.1 94.9 94.4 83.5
Gate 92.0 97.7 82.6 94.9 95.3 83.9
Full 91.5 97.9 81.6 94.9 94.2 83.5
Local Integration 93.4 97.9 85.9 95.2 96.1 85.1
Global Matching 94.1 98.0 86.7 95.3 97.1 86.2
Our model 94.8 98.2 87.6 95.7 97.2 86.9

Table 3: Effect of Feature Aggregation.
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Figure 4: Case study of RNN and our model. The [GREEN] ([RED]) highlight indicates a correct (incorrect) tag.

improvements in both datasets, which demonstrates the effectiveness of incorporating syntactic structure
via GCN. Further, our proposed local-to-global aggregation layer outperforms these methods with a
statistically significant margin. The results confirm feature aggregation mechanism plays a vital role in
the integration of contextual representation and syntactic information.

4.4 Case Study
We display two samples from basic RNN and our model in Fig 4. Given the same input ”find flights
arriving new york city next saturday”, RNN can not distinguish the from loc from to loc because it
can not explicitly model the relationships between new york city and arriving. By contrast, our model
leverages the syntactic structure to make new york city focus more on its dependency word arriving.
This example illustrates the syntactic structure could enhance the contextual representation to facilitate
the SLU tasks by modeling direct relations between words.

4.5 Visualization Analysis
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Figure 5: Visualization of attention distributions of the self-attention layer of global matching in our syntactic GCN model(right)
and the variant without GCN(left).

To have a quick grasp of how syntactic information works, we perform visualization analysis of at-
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tention distributions of the self-attention layer of global matching in our syntactic GCN model and the
variant without GCN, as shown in Fig 5. Weights of attention are selected from the first head of the
self-attention layer. After integrating syntactic knowledge, the word ”city” focuses more on its depen-
dency word ”arriving”, which convincingly indicates that ”new york city” is an entity of arrival city but
departure city. The visualization confirms that syntactic knowledge makes a word attentively select the
relevant words and enhance contextual representations to distinguish subtle differences. Compared to
(Zhang et al., 2019) which restrains the scope of attention only between word and all of its ancestor
head words, we incorporate the syntactic dependency tree as a soft mask. We believe this soft mask can
alleviate errors caused by incomplete dependency parser.

4.6 Ablation Study

Model SNIPS ATIS
Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

RNN 90.7 96.9 80.7 94.3 95.3 82.5
GCN* 83.6 97.4 66.8 81.9 95.1 54.5
RNN+GCN** 91.7 97.4 82.3 94.8 95.6 84.4
RNN+GCN+Local Integration 93.4 97.9 85.9 95.2 96.1 85.1
RNN+GCN+Global Matching 94.1 98.0 86.7 95.3 97.1 86.2
Our model 94.8 98.2 87.6 95.7 97.2 86.9

Table 4: Performance of different model variants. * indicates that the GCN model initializes the first GCN layer inputs h(0)

with word embeddings. ** indicates that the RNN+GCN model simply sums contextual embeddings and GCN outputs.

To study the effect of each component of our method, we conduct ablation analysis (Table 4). In the
ATIS and Snips dataset, the basic RNN model achieves 82.5 and 80.7 on overall accuracy respectively,
which are much higher performance than vanilla GCN, 54.6 and 66.8. These results indicate that SLU
tasks need contextual word representation, especially for slot filling task, while the syntactic structure
could enhance the RNN model as supplementary knowledge. We can see that the simple RNN+GCN
achieves 1.9% improvements in the ATIS dataset and 1.6% improvements in the Snips dataset.

On the other hand, although simply inducing syntactic structure(RNN+GCN) helps improve the ba-
sic RNN model, both Local Integration and Global Matching further improve the whole performance.
We can see that Local Integration and Global Matching achieve 0.7% and 1.8% improvements in the
ATIS dataset, 2.4% and 4.4% improvements in the Snips dataset, compared to the RNN+GCN. The
full local-to-global aggregation further achieves 2.5% and 5.3% improvements respectively. The results
demonstrate the effectiveness of the feature aggregation mechanism since the syntactic representation
and contextual word representation can complement each other. Hence, our proposed local-to-global
multi-head attention achieves the best performance.

4.7 Effect of BERT

Model SNIPS ATIS
Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

Our model 94.8 98.2 87.6 95.7 97.2 86.9
Intent detection (BERT) - 97.8 - - 96.5 -
Slot filling (BERT) 95.8 - - 95.6 - -
BERT SLU (Chen et al., 2019) 97.0 98.6 92.8 96.1 97.5 88.2
Stack-Propagation + BERT (Qin et al., 2019) 97.0 99.0 92.9 96.1 97.5 88.6
Our model + BERT 97.1 99.0 93.0 96.2 97.8 88.7

Table 5: The SLU performance on BERT-based model on two datasets.

Considering the performance with the fine-tuning approach, we also conduct experiments that we re-
place the contextualized BiLSTM by the BERT (Devlin et al., 2019) in our framework and keep the same
architecture in rest of our model. The results of BERT model on ATIS and SNIPS datasets are shown
in Table 5. From the Table 5, we can observe our model utilizing BERT achieves a new state-of-the-art
performance. These results indicate a strong pre-trained model can further improve the performance for
our model on SLU tasks. Our model + BERT outperforms Stack-Propagation + BERT which indicate
that our framework is more effective with BERT than baseline models.
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5 Related work

Slot filling and intent detection are two major tasks for SLU. Recently, the typical pipeline methods
build slot filling and intent detection separately, where slot filling is implemented as a standard sequence
labeling task (Yao et al., 2014) and intent detection is built as a classification task (Lai et al., 2015),
respectively. More recent work (Hakkani-Tür et al., 2016; Liu and Lane, 2016; Goo et al., 2018; Li et
al., 2018; Wang et al., 2018; Zhang et al., 2018a; E et al., 2019; Qin et al., 2019) implement slot filling
and intent detection as a joint model to eliminate the error propagation without any linguistic knowledge.
Instead, our work apply the linguistic knowledge (i.e. dependency tree) as a prior to guide the learning
slot filling and intent detection jointly.

Dependency tree, as a important linguistic knowledge, is applied to recent natural language processing
tasks. In relation extraction and machine translation, many studies (Xu et al., 2015; Liu et al., 2015;
Miwa and Bansal, 2016; Chen et al., 2018) have show that the dependency trees can capture long-distance
relations effectively. In machine reading comprehension, (Zhang et al., 2019) use syntax to guide the text
modeling by incorporating explicit syntactic constraints into attention mechanism for better linguistically
motivated word representations and achieve promising results on both SQuAD 2.0 and RACE datasets.
Inspired by (Zhang et al., 2019), our work utilize the dependency tree to guide the joint model for slot
filling and intent detection. Different from (Zhang et al., 2019), our work apply the representation over
dependency tree as a inner feature instead of syntactic constraints into attention mechanism.

Graph Convolution Network (GCN) also have been utilized for many natural language processing
tasks. (Vashishth et al., 2019) propose a flexible graph convolution based method for learning word
embeddings. (Marcheggiani and Titov, 2017) apply a GCN as sentence encoders to produce latent feature
representations of words in a sentence for semantic role labeling task. (Bastings et al., 2017) present a
simple and effective approach to incorporate syntactic structure by the way of GCN into the encoder-
decoder model for machine translation. (Yao et al., 2019) build a single text graph for a corpus based on
word co-occurrence and document word relations, then learn a text GCN for the corpus to classify the
text. Different from above work, our work propose a model that applies a GCN over dependency trees to
integrate the syntactic structure for joint learning slot filling and intent detection.

6 Conclusion

In this paper, we propose a novel joint model that applies a graph convolution network over dependency
trees to integrate the syntactic structure for learning slot filling and intent detection jointly. In addition,
we utilize multi-head attention to fuse syntactic representation with contextual word representation to
access complementary representation for SLU task. Experimental results show that our proposed model
outperforms strong baseline models and achieves state-of-the-art performance on both ATIS and Snips
datasets in overall accuracy metric. Finally, we apply the BERT model to our framework and experiments
demonstrate that our proposed model integrating BERT model can improve the performance on both slot
filling and intent detection more obviously.
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