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Abstract

Machine reading comprehension (MRC) is one of the most critical yet challenging tasks in nat-
ural language understanding(NLU), where both syntax and semantics information of text are
essential components for text understanding. It is surprising that jointly considering syntax and
semantics in neural networks was never formally reported in literature. This paper makes the
first attempt by proposing a novel Syntax and Frame Semantics model for Machine Reading
Comprehension (SS-MRC), which takes full advantage of syntax and frame semantics to get
richer text representation. Our extensive experimental results demonstrate that SS-MRC per-
forms better than ten state-of-the-art technologies on machine reading comprehension task.

1 Introduction

Machine Reading Comprehension (MRC) requires machines to read and understand a text passage, and
answer relevant questions about it, where MRC systems must have the ability to infer the meanings of
underlying natural language, where both syntax and semantics are critical for text understanding.

Traditional MRC methods are feature-based approaches, where they first manually generate syntactic
or semantic features and subsequently apply a standard machine learning model to identify a best answer.
For instance, Sachan and Xing (2016) use the Abstract Meaning Representation (AMR) formalism in a
max-margin framework, which only focuses on semantic information. In addition, there are studies that
take both syntax and semantics into account for MRC (Wang et al., 2015; Li et al., 2018). However,
these methods heavily rely on manually defined features and are difficult to generalize to other tasks.

Recently, as large QA datasets become available, Neural-based methods have been proposed for MRC,
where even without time consuming feature engineering, they can still achieve favorable results. Espe-
cially significant progress has been achieved on MRC tasks by fine-tuning a pre-trained general purpose
language model (Devlin et al., 2018; Radford et al., 2018). Despite the success of those neural models, a
number of studies have found there is a huge gap between MRC deep learning models and human beings
(Wang and Jiang, 2019), as they might not really understand the natural language text (Mudrakarta et
al., 2018). As such, some works employ semantic knowledge in neural network to facilitate sentence
modelling (Guo et al., 2020; Zhang et al., 2018a; Zhang et al., 2018b). However, no work has been
focused on integrating syntax and semantics into neural network for MRC.

Note that FrameNet (Fillmore, 1976; Baker et al., 1998), as a widely adopted knowledge base, provides
rich schematic scenario representation that could be potentially leveraged to better understand sentences.
In this paper, we proposed a Syntax and Frame Semantics model for Machine Reading Comprehension
(SS-MRC), which fuses Syntax and Frame Semantics into an end-to-end neural model for addressing
MRC task. The key contributions of this work are summarized as follows:

1. To our best knowledge, we are the first to explore the schema of fusing syntax and frame semantics
into an end-to-end neural network for Machine Reading Comprehension (MRC) task.
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Figure 1: An Annotated Sentence with Syntax and Frame Semantics.

2. We propose a novel Syntax and Frame Semantics for Machine Reading Comprehension (SS-MRC)
method, which takes full advantage of syntax and frame semantics for every token in the sen-
tence/sequence to obtain richer and more comprehensive representation.

3. Our extensive experimental results demonstrate our proposed SS-MRC method is significantly bet-
ter than ten state-of-the-art methods across two benchmark datasets for MRC task.

2 Syntax and Frame Semantics Labeling

We employ Stanford CoreNLP (Manning et al., 2014) to analyze the syntactic structure of every sentence
in given text passage. Figure 1 shows dependency parse results (top part) of a example sentence. Words
on the arrows are dependency labels, e.g., the arrow from word choose to word they indicates that they is
the subject of choose and the dependency label of they is nsubj — a nominal syntactic subject.

In addition, we employ SEMAFOR (Das et al., 2014) to automatically process different sentences
with multiple semantic annotations (Kshirsagar et al., 2015). In particular, a Frame (F) is defined as a
composition of Lexical Units (LUs) and a set of Frame Elements (FEs). Given a sentence, if its certain
word evokes a frame by matching a LU, then it is called Target (T). Figure 1 provides an example
sentence (bottom part) with four T, namely choose, make, chocolate cake and chocolate frosting. Each T
has its evoked semantic frame right below it, i.e. F1, F2, F3, F4. For each frame, its corresponding FEs
are shown enclosed in the block. For example, T choose evokes the F1:Choosing frame, and has two FEs
Cognizer, Chosen, fulfilled by They and to make a chocolate cake with chocolate frosting respectively.
In addition, evoked F2:Manufacturing frame has three FEs, namely, Manufacturer, Product, Resource,
fulfilled by They, a chocolate cake and chocolate frosting, respectively. From this example, it is very
clear that both syntax and frame semantics information are very useful for MRC task.

3 Model Overview
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Figure 2: An Overview of the SS-MRC Model.

http://stanfordnlp.github.io/CoreNLP/
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Figure 3: Siamese-based Fusion Method.
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Figure 4: Location-wise Fusion Method.

Figure 2 shows our proposed SS-MRC model, consisting of five modules: three input modules (seman-
tics, syntax, and context), one fusion module and one answer prediction module. We first pack passage,
question and candidate answer into a sequence x = {x1, x2, . . . , xn}. Input module takes in source
context x and external feature text xsf , i.e., syntactic context xs and frame semantic context xf . In par-
ticular, syntactic context xs are produced by replacing words with their dependency labels, while frame
semantic context xf are produced by replacing words with frames and frame elements (Guo et al., 2020).
Then Bert (Devlin et al., 2018) is employed to encode the source context x into a vector gx. After that,
Syntax and Frame Semantics Fusion module fuses syntactic context xs and frame semantic context xf

into a feature vector gsf , which will be elaborated in next subsection. Finally, Answer Prediction module
predicts answers based on both source context representation gx and overall feature representation gsf .

4 Syntax and Frame Semantics Fusion Module

In this paper, we explore three different fusion methods to generate gsf by integrating xs and xf . Note
that our Syntax and Frame Semantics Fusion Module is backbone-free, which indicates that we can use
any existing neural models, i.e., LSTM, GRU and Transformer. In this work, we use Bi-LSTM as our
backbone model.

4.1 Siamese-based Fusion Method (SFM)
Siamese-based Fusion Method (SFM) is a straightforward idea. Its architecture, as shown in Figure 3,
consists of two sub-networks (Bromley et al., 1993). We run Bi-LSTM on syntactic context xs and frame
semantic context xf independently, and then aggregate their vectorized representations into a vector gsf :

gs = BiLSTM(xs) (1)

gf = BiLSTM(xf ) (2)

gsf = f(gs ⊕ gf ) (3)

Where ⊕ is the concatenation of gs and gf , and f(·) is a non-linear transformation.

4.2 Mixed-based Fusion Method (MFM)
While the Siamese structure is easy to train, there is no interaction between the two feature text xs and
xf during the training process, which causes information loss (Wang et al., 2017). As such, we propose
a Mixed-based Fusion Method (MFM), which directly concatenates the syntactic context xs and frame
semantic context xf into a sequence xsf , and then performs a single BiLSTM on xsf to get vector gsf .

gsf = BiLSTM(Concat(xs, xf )) (4)

4.3 Location-wise Fusion Method (LFM)
We observe that every token/word can concurrently have both syntax and frame semantics information.
Thus, instead of simply mixing up them in sentence level, like above two methods, we design a novel
Location-wise Fusion Method (LFM) to coherently integrate both syntax and frame semantic information
at token level, obtaining a better sentence representation, shown in Figure 4.
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Method MCTest-160 (%) MCTest-500 (%)
Sachan and Xing (2016) + Semantics – 70.33
Wang et al. (2015) + Syntax + Semantics 75.27 69.94
Li et al. (2018) + Syntax + Semantics 74.58 72.67
Attentive Reader (Hermann et al., 2015) 46.3 41.9
Neural Reasoner (Peng et al., 2015) 47.6 45.6
Parallel-Hierarchical (Trischler et al., 2016) 74.58 71.00
Reading Strategies (Sun et al., 2018) 81.7 82.0
BERT+DCMN+ (Zhang et al., 2019) 85.0 86.5
XLNet+DCMN+ (Zhang et al., 2019) 86.2 86.6
FSR (Guo et al., 2020) + Semantics 86.1 84.2
SS-MRC 87.2 86.7

Table 1: The Performance Comparison of 11 Different Models on Two MCTest Datasets.

Method 160 (%) 500 (%)
Bert 82.5 80.9
SS-MRC (SFM) 86.2 84.5
SS-MRC (MFM) 86.6 85.0
SS-MRC (LFM) 87.2 86.7

Table 2: Performance Comparison with Three D-
ifferent Fusion Models.

Method 160 (%) 500 (%)
SS-MRC 87.2 86.7
-Syntax 86.1 84.2
-Frame semantics 85.4 83.0
-Syntax -Frame semantics 82.5 80.9

Table 3: Ablation Study of SS-MRC Model.

xsfi = f(xsi ⊕ xfi ) (5)

gsf = BiLSTM(xsf ) (6)

For simplicity, we use xsi and xfi to represent the i-th location information of xs and xf respectively.
xsfi is the concatenation (⊕) of xsi and xfi . Thus, xsf is represented as {xsf1 , . . . , xsfN }.

5 Experiments

5.1 Datasets for MRC
We employ MCTest (Richardson et al., 2013) to test the performance of different models for multiple-
choice machine comprehension task. It consists of two data sets, namely MCTest-160 and MCTest-500.

5.2 Implementation Details
Our implementation is based on the PyTorch of BERT (Devlin et al., 2018) and Bi-LSTM (Zhang et al.,
2018a). We have used a single GPU, Nvidia P100 with 16G memory, for training our models. Adam has
been selected as our optimizer with a batch size of 8, and the initial learning rate is set as 5e-5.

5.3 Experiment Results
Based on standard training-test setting of MCTest, Table 1 shows our SS-MRC model achieves 87.2%
and 86.7% accuracy on MCTest-160 and MCTest-500 respectively, which is better than ten state-of-the-
art methods consistently, including three feature-based models (the first block), six neural-based models
without syntax and semantic (the second block), and 1 neural method with Frame semantic (FSR).

Recall in Section 4, we proposed three different methods, namely, SFM, MFM, LFM, to integrate syn-
tax and semantic information. Table 2 shows their detailed results. We have the following observations:

(1) No matter which of the three fusion methods we choose, their performance are all better than
standard BERT model, indicating both syntax and frame semantic information are valuable in helping
language understanding, and thus they can boost reading comprehension performance.
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Passage ...They chose to make a chocolate cake with chocolate frosting.
She helped measure the flour, the sugar ... They ate the chocolate
cake at Julia’s party with scoops of vanilla ice cream and fresh
strawberries. Annie gave their dog, Sunny...

Question What did Annie and her mother make?

Option
A) flour and sugar ∗ B) cake and frosting
C) ice cream and strawberries D) Julia and Sunny

Frame
Semantic

{flour, sugar, cake, frosting, ice cream, strawberries} ∈ Food
{Julia, Sunny}/∈Food
Make in the given passage and question evokes the same Frame
Manufacturing.

Syntax
cake and frosting are obj and obl of make in the passage,
and what is obj of make in the question.

Table 4: A Case Study Example. Correct answer is marked with (∗).

(2) LFM performs better than SFM and MFM, signifying that location-wise fusion method is more ef-
fective. As a token within a sentence typically has both syntax and multi-semantic annotations/functions,
token level integration can systematically integrate corresponding syntax and semantic information.

To evaluate the contributions of different key factors in our SS-MRC method, three ablation studies
are performed. From their results in Table 3, we observe both syntax and frame semantics contribute to
the overall performance of our model, with frame semantics contributing more significantly than syntax.
Note that the performance of SS-MRC (without syntax) is exactly the same as FSR (Guo et al., 2020).

5.4 Case Study
For case study, Table 4 shows an example in MCTest, where our proposed model is able to answer it
correctly. Note both cake, frosting et al. belong to the Food Frame, while Julia and Sunny evoke two
different Frames People and Animals respectively. The target word Make in the given passage and
question evokes Frame Manufacturing. As shown in Figure 1 and Figure 5, we know that cake and
frosting are obj and obl of make in the passage, and what is obj of make in the question, so we can infer
that ’What’ in question refers to ’cake and frosting’ in passage.

Frame

Semantics

did Annie makeand her motherWhat .

F1: INTENTIONALLY_ACT F2: MANUFACTURING

FE21: Product

FE11: Act FE12: Agent 

FE22:Manufacturer

nsubj

aux

nmod
cc Syntax

FE11: Act 

nsubj

obj

Figure 5: An Example from MCTest Demonstrates the Effectiveness of Frame Semantic and Syntax.

6 Conclusion

We propose a novel syntax and frame semantic fusion method for MRC in a neural network, which, to
our best knowledge, is the first attempt in this area. Our extensive experimental results demonstrate it
works better than ten state-of-the-art methods for the challenging machine reading comprehension task.
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