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Abstract

Weakly supervised machine reading comprehension (MRC) task is practical and promising for
its easily available and massive training data, but inevitablely introduces noise. Existing related
methods usually incorporate extra submodels to help filter noise before the noisy data is input to
main models. However, these multistage methods often make training difficult, and the qualities
of submodels are hard to be controlled. In this paper, we first explore and analyze the essential
characteristics of noise from the perspective of loss distribution, and find that in the early stage
of training, noisy samples usually lead to significantly larger loss values than clean ones. Based
on the observation, we propose a hierarchical loss correction strategy to avoid fitting noise and
enhance clean supervision signals, including using an unsupervisedly fitted Gaussian mixture
model to calculate the weight factors for all losses to correct the loss distribution, and employ
a hard bootstrapping loss to modify loss function. Experimental results on different weakly
supervised MRC datasets show that the proposed methods can help improve models significantly.

1 Introduction

Machine reading comprehension (MRC) (Rajpurkar et al., 2016) is a well-known NLP task, and has
made significant progress in recent years (Yu et al., 2018; Devlin et al., 2019; Gong et al., 2020; Yuan et
al., 2020). To learn a well-performed MRC system, large amount of human annotated data is required.
However, human annotation is high-cost in real-world application, and it is hard to control the quality
for some of hard instances. Recent approach (Joshi et al., 2017) utilized a distantly supervised method to
collect the excerpts for answers. It greatly scales up the dataset and reduces the cost, but introduces more
harmful noisy samples inevitably. There are many of approaches proposed to filter noise for question
answering (QA) recently. Lin et al. (2018) and Lee et al. (2019a) adopted a paragraph selector to calculate
confidences of paragraphs to help filter noisy ones before they are input into the main model. Niu et al.
(2020) designed a submodel to generate labels to supervise the training of the selector. Back to MRC,
Lee et al. (2019b) further proposed to generate labels for unlabeled samples, then train an extra Refinery
model to refine the overall labels for multilingual MRC task with limited training data.

Admittedly, these multistage methods have achieved certain improvements, but rely heavily on the se-
lector, retriever or refinery. The qualities of these complementary models are hard to be controlled, and
make training difficult. In fact, we can explore another novel idea that exploits the essential characteris-
tics of noise itself to help alleviate its effect for MRC task. Inspired by the idea of learning with noisy
labels in image classification (Arazo et al., 2019), we explore and find that the loss distribution of weakly
supervised MRC training data has inspiring characteristics. As shown in Figure 1 (a), at the beginning
of training, losses of noisy samples are generally greater than losses of clean samples significantly. And
in Figure 1 (b), during training, the losses of all samples roughly converge into two clusters according to
values. In addition, we have noticed that without correction, noise tends to attract more attention due to
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the produced larger loss, which causes the model optimized into wrong direction easily. We argue that it
is one of the essential reasons why the performance will be hurt by much noise.

In this paper, our main idea for improving original models is to correct the loss distribution based on
the above findings, which reduces losses of noisy samples thus avoiding fitting noise and pushes models
to pay more attention to the supervision signals from clean data, as shown in Figure 2. Specifically,
instead of modifying the original structures of previous well-performing models, we first choose to fit a
2-component Gaussian mixture model (GMM) to loss distribution unsupervisedly, then infer the proba-
bilities of samples being clean or noisy through the posterior probability provided by GMM. Note that
we have verified in Section 5.2 that the noise recognition accuracy can even exceed 90% by GMM. Based
on the inferred results of GMM, we then automatically produce weight factors for all losses. Specifically,
we assign larger factors to losses that have higher probabilities of being clean samples by GMM, while
assign lowers ones to losses that are more likely to be noisy. Note that in the traditional case without
correction, the weight factors of all losses can be regarded as an uniform distribution. In addition, we
also propose to use the hard bootstrapping loss to replace standard cross-entropy loss to further correct
loss values of the individual samples to further avoid fitting noise.

Our contributions are summarized as: (1) We explore the essential characteristics of noise in weakly
supervised MRC from the perspective of loss distribution, and offer new ideas for this task and other
related NLP tasks in weakly supervised manner; (2) We propose the hierarchical loss correction method
to avoid fitting noise and strengthen the supervision from clean samples, which uses unsupervisedly
fitted GMM to calculate weight factors for correcting loss distribution, and uses hard bootstrapping loss
to modify loss function; (3) We conduct ample experiments on two types of multiple weakly supervised
datasets, and experimental results show that the proposed method can improve models significantly.

2 Preliminaries

2.1 Problem Formulation

The typical machine reading comprehension (MRC) task focuses on learning a model hθ(x) to answer a
question q given the excerpt evidence e derived from excerpt set E . The training set can be formalized
into a set of triple examples D = {(qi, ei, ai)|i = 1, ..., N}, where N is the number of examples in D,
qi = {wqi1 , w

qi
2 , . . . , w

qi
n } is the question with n tokens, ei = {wei1 , w

ei
2 , . . . , w

ei
m} is the excerpt evidence

with m tokens, ai = {weii , w
ei
i+1, . . . , w

ei
i+s−1} is a substring from ei, and defines the golden answer to

qi. Following Devlin et al. (2018) and Joshi et al. (2017), this task can be formulated as to predict an
answer span, i.e., the start and end indices of answer ai in excerpt ei.

TriviaQA (Joshi et al., 2017) contains a distantly supervised MRC dataset, whose evidences are gath-
ered automatically, with the assumption of distant supervision that the presence of the answer string
in an evidence document implies that the document does answer the question. Formally, in the dis-
tantly supervised MRC task, ei is set to a set of excerpts, and training data is formalized as Dds =
{(qi, {eij}Mj=1, ai)|i = 1, ..., N}, where M is the number of excerpts. Although all excerpts in the set
contain answer strings, there is no guarantee that answers to questions will be derived from the excerpts.
When aligned to standard MRC data, a sample of distant supervised data (qi, {D1

i , D
2
i , . . . , D

M
i }, ai)

can be expanded into M samples in standard format {(qi, D1
i , ai), (qi, D

2
i , ai), . . . , (qi, D

M
i , ai)}. Obvi-

ously this automated operation can easily obtain a large number of training data, but inevitably introduces
a lot of noise, which will hurt the model’s performance.

In this paper, we consider such a more common and general weakly supervised MRC scenario, which
extends from the distantly supervised MRC task (Joshi et al., 2017): in the training set D, both the
excerpts and the answer spans may be noisy. That is, not only do the excerpt ei not guaranteed to provide
the evidence to answer the question qi, but the answer span ai itself is likely to be noise. Anyway, xi ∈ D
is a noisy sample when excerpt evidence ei or answer span ai is noisy. We focus on improving the models
on weakly supervised MRC training data.
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2.2 Empirical Explorations

Typical MRC models usually learn the model parameters θ by minimizing the following loss function:

L = −
N∑
i=1

log(P 1
si) + log(P 2

ei) = −
N∑
i=1

yTi log(P (ai|ei, qi)) = −
N∑
i=1

yTi log(hθ(xi)) (1)

where si and ei of answer ai are the start and end positions in excerpt ei for sample xi. P 1
si and P 2

ei are
the probabilities of the starting and ending position, respectively. yi defines the label of the start and end
indices. hθ(x) defines the softmax probability produced by the model.

Taking Eq. (1) as the loss function, we train MRC models on weakly supervised datasets and record
the entire loss convergence process, and collect all samples’ losses computed by a trained model instance,
as shown in Figure 1. From Figure 1(a), we can find that in the early stages of training, noise samples
usually lead to significantly larger losses than clean samples. And from Figure 1(b), the losses of the
entire dataset can be roughly divided into two clusters, we argue that the cluster with larger mean loss
value corresponds to noisy samples, and conversely the other corresponds to clean samples.

These observations intuitively suggest that we can use a 2-component mixture model to unsupervisedly
fit the overall loss distribution, where two independent components correspond to the loss distributions
caused by noise and clean data, respectively. During training, we can reasonably correct the loss dis-
tribution before the loss back propagation by using the mixture model to infer whether the losses come
from noise or clean data, thereby reducing disturbance from noise and pushing the model to pay more
attention to the supervision signals from clean data. It is worth noting that the entire process does not
use any additional supervision signals, but it gives the model much additional important information.

(a) (b)

Figure 1: Analysis of loss characteristics. (a): Comparison of loss convergence processes when training
on original SQuAD data and noisy SQuAD data with 80% noise; (b): Frequency distribution histogram
of losses obtained by infering all samples of distantly supervised TriviaQA data using a model instance.

3 Methodology

We propose hierarchical loss correction strategy to avoid fitting noise and enhance supervision signals
from clean samples. The overall framework of the proposed methods is shown in Figure 2. We first
model loss by fitting a GMM, then perform loss correction operation before back propagation.

3.1 Modeling Loss

Based on observations in Section 2.2, we can effectively infer whether a sample is more likely to be clean
or noisy by fitting a probability distribution model to the losses of all training data. Intuitively, we argue
that losses corresponding to clean and noisy samples obey two independent probability distributions,
respectively. Therefore, losses of all training samples obey a mixture probability distribution composed
of the above two distributions. We employ the widely used unsupervised GMM to fit the losses, since
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Figure 2: The framework of the proposed methods. Original losses are computed by aligning the predic-
tions with the ground truth. A GMM is fitted to them to give the posterior probabilities to compute the
corrected loss distribution for actual back propagation. original losses are used during pretraining.

loss histogram in Figure 3 shows Gaussian distribution is suitable, which has good mathematical prop-
erties. Specifically, we use 2-component GMM to fit the loss distributions of clean and noisy samples,
respectively. Next, we introduce how to fit GMM to losses unsupervisedly and use it to model noise.

We assume that the observed losses l = {li}Ni=1 can be generated by a GMM θG:

P (l|θG) =
∑K

i=1
αkφ(l|θk) (2)

where θG = (α1, α2, . . . , αK ; θ1, θ2, . . . , θK), θk are parameters of the k-th Gaussian component and αk
are mixing coefficients for the convex combination of each individual probability density function (PDF)
p(l|θk). We employ the Expectation Maximization (EM) algorithm to fit GMM to the observed losses.

Specifically, we define the latent variables γ̂jk to be the posterior probability of the point lj having
been generated by mixture component θk, where j = 1, 2, . . . , N, k = 1, 2, . . . ,K. In the E-step we fix
the parameters αk, θk and update the latent variables using Bayes rule:

γ̂jk = E(γjk|l, θG) = P (γjk = 1|l, θG) =
αkφ(lj |θk)∑K
k=1 αkφ(lj |θk)

(3)

And given fixed γ̂jk, the M-step estimates parameters µ̂k, δ̂k of the Gaussian distribution, and α̂k as:

µ̂k =

∑N
j=1 γ̂jklj∑N
j=1 γ̂jk

; σ̂k =

∑N
j=1 γ̂jk(lj − µk)2∑N

j=1 γ̂jk
; α̂k =

∑N
j=1 γ̂jk

N
(4)

Repeat the above calculation until convergence or the iterations exceeds the maximum limitation.
Given a fitted GMM, we can effectively model the losses. Specifically, we calculate the probability of

a sample being clean or noisy through the posterior probability as follows:

p(θk|li) =
p(θk)p(li|θk)

p(li)
(5)

We use the component θk with the smallest mean µk to represent the loss distribution of clean samples.

3.2 Hierarchical Loss Correction

We further consider correcting losses to avoid fitting noise. The correction process includes hierarchical
operations, fine-grained loss function correction and high-level loss distribution correction.

Since standard cross-entropy (CE) in loss Eq. (1) is ill-suited to deal with noisy samples because the
model will exploit wrong knowledge from noisy samples (Zhang et al., 2017), it is replaced with the
hard bootstrapping loss (Reed et al., 2015) to correct the training objective and alleviate the disturbance
of noise, which deals with noisy samples by adding a perception term to CE loss:

Lhard = −
∑N

i=1
(βyi + (1− β)zi)

T )log(hi) (6)
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where zi := 1[k = arg maxhj , j = 1, . . . , N ], β weights the model prediction zi in the loss function.
Following Reed et al. (2015), we set β = 0.8, ∀i.

We further propose to correct the loss distribution based on the posterior probability by GMM. Gen-
erally, neural MRC models are trained by stochastic gradient descend (SGD) approach, in which losses
directly affect the calculation of gradients, which in turn affect the optimization process, so that samples
with larger losses have more influence. Traditional models trained on clean data try to fit all losses with
the intuition that the under-fitting leads to large losses. But when training on noisy data, we argue large
losses are more likely to be caused by noise and need to be corrected. We correct entire loss distribution
by using GMM to infer the possibilities that samples are clean, and adopting a softmax operation to
assign larger weight factors to the samples with higher probabilities and lower ones to others. The loss
distribution correction operation with weight factors is given as:

Lcorrect =
∑N

i=1

1

Z
e

p(k=kc|lhardi )

T lhardi
(7)

where Z =
∑N

j=1 e
p(k=kc|lhardj )

T is the normalization factor, kc = arg min(θG.means) is the Gaussian
component with the smallest value of mean parameter in GMM model θG, indicating that it is clean
component fitted to the clean data, and T is the temperature parameter.

Algorithm 1: Loss correction process for reading comprehension question answering.

Input: Training epoch number K; training data size N ; train triple samples {xi}Ni=1; GMM
refitting frequency f ; the size of mini-batch b.

initialize MRC model θ;
Pretrain θ with original losses by standard cross entropy;
for k ← 1 to K do

if k % f == 0 then
Compute all losses l of all samples {xi}Ni=1 by Eq. (6);
Fit GMM θG to all losses l using EM algorithm as Eq. (3) and Eq. (4);
kc ← arg min(θG.means) // choosing the Gaussian component with the smallest mean

value to represent the distribution of clean data;
for mini-batch in batches of epoch do

Compute batch losses lhard of the mini-batch samples {xi}bi by Eq. (6);
Compute posterior probabilities {p(k = kc|li)}bi=1 for lhard;
Compute corrected batch losses lchard by Eq. (7);
Loss back propagation from lchard and updata θ;

3.3 Overviews

In summary, the framework of the proposed methods is shown in Figure 2, and we train the improved
moels according to Algorithm 1. In practice, we first pretrain the original model using standard CE.
Then, we compute the bootstrapping losses, and fit a 2-component GMM to these losses using EM
algorithm and record the clean Gaussian component with minimum mean value. In each training step,
we compute batch losses of the batch samples and the probabilities of these samples being clean, then
employ a softmax operation to compute the weight factors to further calculate the corrected losses. At
the end of the step, we do back propagation based on the corrected losses.

4 Experimental Setup

4.1 Datasets

SQuAD. SQuAD (Rajpurkar et al., 2016) is a standard and high-quality MRC dataset. The annotators
were asked to write more than 100,000 questions and select a span of arbitrary length from the given
Wikipedia paragraph to answer the question. In practice, we use the SQuAD v1.1, and randomly select
a certain percentage of samples to add noise to them. For each noisy sample, we randomly select a
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continuous sequence of tokens from the evidence paragraph to replace the original label. Note that in
this scenario, the answer is noisy. In order to fully explore the influence of noise, we generate 4 noisy
training data, and their noise ratios are 0.2, 0.4, 0.6 and 0.8, respectively.

TriviaQA. TriviaQA (Joshi et al., 2017) is a collection of trivia question-answer pairs that were scraped
from the web. We use their distantly supervised MRC dataset whose excerpt evidences are scraped from
Wikipedia. We convert TriviaQA into a weakly supervised data format that conforms to the definition
in the section 2.1. Note that, in this scenario, the evidence file is noisy. However, unlike the randomly
created noise in squad, noise in TriviaQA is real in natural scenes.

4.2 Setup
Baselines. We use two widely used models (Cui et al., 2019; Lee et al., 2019b), and a shrunken model
as the baselines. BERT: We modify a pre-trained uncased BERT (Devlin et al., 2018) model on a masked
language task to MRC task by mapping the features extracted by BERT into the inferencing position
logits to predict answer spans through a dense layer. BiDAF: Seo et al. (2016) proposed a multistage
hierarchical process, which represents context at different levels of granularity, and uses a two-way
attention flow mechanism to obtain query-aware context representation, we follow the implementation
setting of original BiDAF. BiDAFm: To explore the impact of model capacity on the proposed methods,
we build a mini version of BiDAF, denoted BiDAFm, by reducing the amount of parameters; specifically,
we set word dimension to 50 (original 100), char channel size to 20 (original 100), hidden size of LSTM
to 35 (original 100), char channel width to 2 (original 5) and char dimension to 3 (original 8).

Evaluation Metrics. Following Chen et al. (2017) and Lee et al. (2019b), we use these two official
evaluation metrics to evaluate our models, namely ExactMatch (EM) and F1 score. Among them, EM
evaluates the percentage of prediction answers that exactly match one of the ground truth ones and F1
score can measure the average overlap between the prediction and ground truth answer. And we directly
use the official evaluation script provided by SQuAD v1.1 for evaluation.

Settings. We implement the proposed methods by employing the loss correction strategies based on
the above three baselines, including using a mixture probability distribution model to fit to losses of
models, which in turn helps correct the loss distribution, and replacing the cross-entropy loss in Eq. (6)
to the hard bootstrap loss which is more suitable for processing noisy data. Based on these settings, we
retrain these new models in the same experimental environment. In practice, for mixture models, we use
2-component GMM, and its max iteration number is set to 100. We use Glove pretrained embeddings
to initialize word embedding in BiDAF. We set β in hard bootstrapping loss to 0.8, set learning rate in
BERT and BiDAF to 0.0005 and 0.001, respectively, and set temperature T to 1.0. We bounding the loss
observations in [ε, 1− ε] instead of [0, 1] (ε = e− 4 in practice) to sidesteps this issue that EM algorithm
will become numerically unstable when the observations are very near 0 and 1.

5 Results and Analysis

5.1 Experimental Results
Table 1 shows the evaluation results of the baselines and the improved models using the proposed meth-
ods on EM and F1 metrics. We can find that our methods make the original well-performed models
achieve a further significant performance improvement on the real distantly supervised TriviaQA dataset.
Among them, the improved model based on BERT improves by 13.9% and 10.0% on the EM and F1
respectively, and the improved model based on BiDAFm improves by 17.4% and 13.2%, respectively.
It shows that the proposed methods can effectively improve the models training on noisy data. On
noisy SQuADs with different ratios of noise, our methods can still significantly improve models. Taking
SQuAD with 60% noise as an example, the improved model based on BiDAF has improved 10.42 per-
centage points (29.4%) and 9.50 points (21.1%) on EM and F1, respectively. The improved model based
on BERT has improved 8.07 percentage points (20.6%) and 8.20 points (16.6%), respectively. It shows
that the proposed methods can indeed help reduce the disturbance of noise on the model, and this ability
can be clearly reflected on different data sets.
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Model
SQuAD TriviaQAclean noise-0.2 noise-0.4 noise-0.6 noise-0.8

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

BiDAFm

OR 60.19 71.87 58.13 69.53 54.08 65.99 38.92 50.79 5.07 7.38 17.41 22.24
HB - - 58.50 70.23 54.47 66.21 42.81 52.05 6.40 8.92 19.22 23.32

DCE - - 59.09 70.28 55.93 66.94 47.23 57.89 8.25 10.84 19.86 24.45
DHB - - 58.61 70.47 56.25 67.54 43.71 52.95 8.52 11.09 20.44 25.18

BiDAF
OR 64.18 74.70 60.02 70.62 53.42 63.85 35.36 44.95 10.35 15.35 22.92 27.23
HB - - 61.94 72.01 57.35 67.58 34.91 44.89 10.63 15.98 23.00 27.17

DCE - - 63.25 73.15 57.75 68.46 45.78 54.45 11.14 15.97 23.17 27.41
DHB - - 63.36 73.89 59.13 70.38 43.91 53.01 12.16 17.12 23.14 27.28

BERT
OR 69.56 79.08 61.36 72.48 53.13 64.10 39.08 49.44 15.49 24.60 25.65 30.95
HB - - 62.37 73.16 54.22 64.82 43.74 54.03 17.75 25.84 26.24 31.70

DCE - - 63.06 73.73 54.99 66.09 43.73 53.48 17.36 26.62 28.28 33.34
DHB - - 64.12 74.09 56.94 67.34 47.15 57.64 18.43 26.09 29.21 34.02

Table 1: Evaluation results of different models under different loss correction strategies on two category
of weakly supervised training sets. Among them, OR represents the original methods with cross entropy,
HB represents methods using hard bootstrapping loss only, and DCE and DHB represent strategies of
using loss distribution correction based on cross entropy and hard bootstrap loss, respectively.

Ablation Study. For each group of experiments, we report the experimental results of different mod-
els using original cross entropy loss and hard bootstrapping loss, and using high-level loss distribution
correction with the two loss functions, respectively. From Table 1, we can find that: (1) Compared with
using original cross entropy, the strategy of only correcting the loss function with hard bootstrapping
loss can also improve models to a certain extent. (2) Both loss correction combination strategies have
significant impacts on models’ promotions. (3) The models using the loss distribution correction based
on standard cross-entropy strategy has been effectively improved compared to the baselines, and some
models using this strategy perform best in some scenarios, such as the BiDAF-based improved model
trained on SQuAD with 60% noise. (4) But overall, the improved models using loss distribution correc-
tion based on hard bootstrap loss strategy will perform better, because the strategy attempts to provide
cleaner loss signals by correcting both the loss values of the samples themselves and the loss distribution.
Since there is no guarantee that adopting the combination strategy based on hard bootstrap loss will be
better, we recommend to try both combination strategies if conditions permit, and choose the one that
performs better, in the practice of applying the proposed methods.

5.2 How does GMM work?

We further analyze GMM’s ability to distinguish between noisy and clean samples based on loss distri-
bution unsupervisedly. First, independent of the noisy SQuAD sets for training, we randomly regenerate
a series of test sets from original training set to evaluate GMM, which contain corresponding proportions
noise and labels used to mark whether the samples are noise. Specifically, we regularly use the model
in normal training process to output the loss corresponding to each sample in the corresponding test set,
and use a new GMM instance to fit this loss distribution. Then use the fitted GMM to infer whether the
sample is clean or noise. Along with training process, we record the best evaluation results of GMM.

From Table 2, we can find that GMM can very effectively identify noise. On data sets with a noise
ratio of 60% or less, BERT-based and BiDAF-based improved models can correctly identify more than
97% and 80% of noisy samples, respectively. And on the noisy data a noise ratio of 80%, the noise
recognition rate still reaches 74%. This means that based on the observations in Section 2.2, GMM can
provide so much extra useful information out of nothing to help improve the models. Specifically, the
posterior probability given by GMM help to correct the loss distribution, thereby reducing the disturbance
of noise, and push the model pay more attention to the supervision signals from clean data. We also note
that the recognition rates of noise and clean data is a trade-off. Noise recognition and clean recognition
are difficult to perform both well at the same time. However, in general, the recognition results of GMM
are very effective in correcting the loss distribution, because as long as the attentions to clean samples are
increased or the to noisy samples are reduced, the model can be optimized in a more correct direction.
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Model noise-0.2 noise-0.4 noise-0.6 noise-0.8
all noise clean all noise clean all noise clean all noise clean

BiDAFm
OR 74.30 99.62 67.95 87.24 79.59 92.30 56.57 81.96 18.21 32.26 17.29 92.11

DHB 54.54 99.77 43.21 87.50 79.23 92.96 72.52 80.20 60.91 33.62 17.20 99.31

BiDAF OR 78.64 99.61 73.38 81.27 98.61 69.81 77.94 81.93 71.91 72.33 81.81 34.45
DHB 60.47 99.82 50.60 87.76 80.12 92.81 78.17 81.21 73.58 30.31 17.91 79.90

BERT OR 72.00 99.35 65.14 67.20 98.97 46.24 68.74 97.02 26.08 71.22 74.16 59.45
DHB 76.71 99.62 70.96 72.78 98.86 55.58 76.23 98.27 42.95 68.07 74.74 41.36

Table 2: Accuracy of unsupervisedly identifying the noise in the training data of different noisy SQuAD
with different noise rates by GMM obtained by fitting to the loss observations. Among them, all repre-
sents the overall accuracy, noise, and clean respectively are the proportion of noise samples and clean
samples that are correctly identified.

5.3 Fit to Loss Distribution
In addition, we intuitively show how GMM fits the loss distribution, as shown in Figure 3. From Figure
3, we can find that the loss distribution of different models trained on different noisy data sets can be
indeed roughly divided into two clusters, indicates that it makes sense to use a two-component mixture
probability model to fit the loss distribution. Moreover, the Gaussian distribution is very universal,
because it can basically fit loss clusters in various situations. Of course, the operators can explore or
design a special distribution to replace the Gaussian distribution for specific scenarios in practice. Note
that we focus more on the generalization ability of the Gaussian distribution in this paper.

(a) BiDAF on SQuAD with 60% noise (b) BERT on SQuAD with 60% noise

(c) BiDAF on TriviaQA (d) BERT on TriviaQA

Figure 3: Analysis of fitting a 2-component Gaussian mixture model to the losses computed by models
(BiDAF and BERT) on different noisy data sets, where two clusters in the histogram correspond to two
Gaussian components depicted by the red and blue curves, respectively.

5.4 Explore Other Mixture Model
From observations in Section 2.2, we can know that as long as a probability model can well fit the loss
distribution, it can be used to participate in the construction of the mixture model. In addition to GMM,
we also explore the Beta Mixture Model (BMM), which performs well in noisy image classification
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Model PDM
SQuAD TriviaQAnoise-0.2 noise-0.4 noise-0.6 noise-0.8

EM F1 EM F1 EM F1 EM F1 EM F1

BiDAFm
BMM 58.18 69.59 53.93 66.63 47.39 57.31 6.42 9.52 19.20 24.77
GMM 58.61 70.47 56.25 67.54 47.23 57.89 8.52 11.09 20.44 25.18

BERT BMM 62.89 73.75 55.19 65.85 43.27 51.84 18.97 28.93 27.38 32.41
GMM 64.12 74.09 56.94 67.34 47.15 57.64 18.43 26.09 29.21 34.02

Table 3: Comparison results of employing different mixture models to improve BiDAFm and BERT on
different noisy data sets.

tasks (Arazo et al., 2019). The beta distribution over a normalized loss l ∈ [0, 1] is defined to have PDF:
p(l|α, β) = Γ(α+β)

Γ(α)Γ(β) l
α−1(1 − l)β−1, where Γ(·) is the Gamma function, and α, β > 0 are parameters.

Similarly, the mixture PDF is given by substituting the above into Eq. (5). Based on BiDAFm and
BERT, we conduct comparison experiments on all noisy datasets. The experimental results are shown in
Table 3. From Table 3, we can find that: (1) loss correction based on BMM can also bring a significant
performance improvement, compared with the results in Table 1; (2) in most scenarios, GMM can help
to achieve more significant improvements than BMM, indicating that GMM has obvious advantages in
MRC task, and is very suitable for this task. It enlightens us that when there is no better choice, the
Gaussian mixture model is a good solution, or serves it as a baseline to explore better models.

6 Related Work

Machine Reading Comprehension. Machine reading comprehension (MRC) (Rajpurkar et al., 2016)
has received increasing attention recently, which requires a model to extract an answer span to a question
from reference documents (Yu et al., 2018; Devlin et al., 2019; Liu et al., 2020; Zheng et al., 2020;
Yuan et al., 2020). Owing to the rise of pre-training models (Devlin et al., 2018), a machine is able to
achieve highly competitive results on classic datasets (e.g. SQuad (Rajpurkar et al., 2016)), even close
to human performance. However, there is still a huge gap between high performance on the leader-
board and poor practical user experience, due to the noisy dataset, high-cost annotation and low resource
languages. Recently, the more challenging distantly supervised MRC task, TriviaQA (Joshi et al., 2017)
was proposed, in which the provided evidences are noisy and collected based on the distant supervision.
(Yuan et al., 2020) proposed a multilingual MRC task to facilitate the study on low resource languages.
(Lee et al., 2019b) focused on annotating the unlabeled data with heuristic method and refine the labels
by an extra Refinery model for multilingual MRC task.

Learning with Noisy Labels. Recently, the great progress has been made on learning with noisy labels
in image classification and question answering (QA) domains. Reed et al. (2015) and Ma et al. (2018)
proposed a bootstrapping method to reconstruct loss function for noisy data combined with model pre-
dictions. Jiang et al. (2018) and Arazo et al. (2019) put forward an empirical assumption that samples
with lower losses are clean, then separate the clean and noisy samples based on the loss distribution.
For QA task, Lin et al. (2018) and Lee et al. (2019a) utilized an extra paragraph selector to filter noise
by calculating confidences of paragraphs. Niu et al. (2020) further proposed a complementary model to
generate labels to the paragraphs for training selectors supervisedly.

7 Conclusion

In this paper, we explore natural characteristics of noise from perspective of loss, and find in early stages
of training, noisy samples usually result in significantly larger losses than clean samples. Based on
the observation, we propose a hierarchical loss correction strategy to avoid fitting noise and strengthen
supervision signals from clean samples by incorporating an unsupervisedly fitted GMM and modifying
original loss funciton to hard bootstrapping loss. We conducted ample experiments on multiple weakly
supervised MRC datasets. Experimental results show that the proposed methods can effectively help
models to achieve significant improvements.
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Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning
Research, pages 3361–3370. PMLR.

Yilin Niu, Fangkai Jiao, Mantong Zhou, Ting Yao, jingfang xu, and Minlie Huang. 2020. A self-training method
for machine reading comprehension with soft evidence extraction. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 3916–3927, Online, July. Association for Computational
Linguistics.



2634

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 2383–2392, Austin, Texas, November. Association for Computational Linguistics.

Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew Rabinovich. 2015.
Training deep neural networks on noisy labels with bootstrapping. In International Conference on Learning
Representations (ICLR).

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2016. Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603.

Adams Wei Yu, David Dohan, Quoc Le, Thang Luong, Rui Zhao, and Kai Chen. 2018. Fast and accurate
reading comprehension by combining self-attention and convolution. In International Conference on Learning
Representations.

Fei Yuan, Linjun Shou, Xuanyu Bai, Ming Gong, Yaobo Liang, Nan Duan, Yan Fu, and Daxin Jiang. 2020. En-
hancing answer boundary detection for multilingual machine reading comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pages 925–934, Online, July. Associa-
tion for Computational Linguistics.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. 2017. Understanding deep
learning requires rethinking generalization. In International Conference on Learning Representations (ICLR).

Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan, Wanxiang Che, Daxin Jiang, Ming Zhou, and Ting Liu.
2020. Document modeling with graph attention networks for multi-grained machine reading comprehension.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6708–6718,
Online, July. Association for Computational Linguistics.


	Introduction
	Preliminaries
	Problem Formulation
	Empirical Explorations

	Methodology
	Modeling Loss
	Hierarchical Loss Correction
	Overviews

	Experimental Setup
	Datasets
	Setup

	Results and Analysis
	Experimental Results
	How does GMM work?
	Fit to Loss Distribution
	Explore Other Mixture Model

	Related Work
	Conclusion

