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Abstract

We propose a novel text generation task, namely Curiosity-driven Question Generation. We
start from the observation that the Question Generation task has traditionally been considered as
the dual problem of Question Answering, hence tackling the problem of generating a question
given the text that contains its answer. Such questions can be used to evaluate machine reading
comprehension. However, in real life, and especially in conversational settings, humans tend to
ask questions with the goal of enriching their knowledge and/or clarifying aspects of previously
gathered information.

We refer to these inquisitive questions as Curiosity-driven: these questions are generated with
the goal of obtaining new information (the answer) which is not present in the input text. In
this work, we experiment on this new task using a conversational Question Answering (QA)
dataset; further, since the majority of QA dataset are not built in a conversational manner, we
describe a methodology to derive data for this novel task from non-conversational QA data. We
investigate several automated metrics to measure the different properties of Curious Questions,
and experiment different approaches on the Curiosity-driven Question Generation task, including
model pre-training and reinforcement learning. Finally, we report a qualitative evaluation of the
generated outputs.

1 Introduction

The growing interest in Machine Reading Comprehension (MRC) has sparked significant research efforts
on Question Generation (QG), the dual task to Question Answering (QA). In QA, the objective is to
produce an adequate response given a query and a text; conversely, for QG, the task is generally defined
as generating relevant questions given a source text and, optionally, a specific target answer included
therein. To our knowledge, all works tackling QG have thus far exclusively focused on generating relevant
questions which can be answered given the source text: for instance, given The 1st COLING conference
took place in 1965 as input, a question likely to be automatically generated would be When did the 1st
COLING conference take place?, where the answer 1965 is a span of the input. Such questions are useful
to evaluate reading comprehension for both machines (Hermann et al., 2015; Eyal et al., 2019) and humans
(Mani et al., 1999).

However, the human ability of asking questions goes well beyond evaluation: asking questions is
essential in education (Gall, 1970) and has been proven to be fundamental for children cognitive de-
velopment (Chouinard et al., 2007). Curiosity is baked into the human experience: it allows to extend
one’s comprehension and knowledge by asking questions that, while being relevant to context, are not
directly answerable by it, thus being inquisitive and curious. The significance of such kind of questions is
two-fold: first, they allow for gathering novel relevant information, e.g. a student asking for clarification;
second, they are tightly linked to one’s understanding of the context, e.g. a teacher testing a student’s
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knowledge by asking questions whose answers require a deeper understanding of the context and more
complex reasoning.

From an applicative point of view, we deem the ability to generate curious, inquisitive, questions as
highly beneficial for a broad range of scenarios: i) in the context of human-machine interaction (e.g.
robots, chat-bots, educational tools), where the communication with the users could be more natural;
and ii) during the learning process itself, which could be partially driven in a self-supervised manner,
reminiscent of how humans learn by exploring and interacting with their environment. To our knowledge,
this is the first paper attempting to tackle Curiosity-driven neural question generation.

The contributions of this paper can be summarized as follows:

• we propose a new natural language generation task: curiosity-driven question generation;

• we propose a method to derive data for the task from popular non-conversational QA datasets;

• we experiment using language model pre-training and reinforcement learning, on two different
datasets;

• we report a human evaluation analysis to assess both the pertinence of the automatic metrics used
and the efficacy of the proposed dataset-creation method above.

2 Related Works

Deep learning models have been widely applied to text generation tasks such as machine translation
(Kalchbrenner and Blunsom, 2013), abstractive summarization (Rush et al., 2015) or dialog (Henderson
et al., 2013), providing significant gains in performance. The state of the art approaches are based on
sequence to sequence models (Cho et al., 2014; Sutskever et al., 2014). In recent years, significant
research efforts have been directed to the tasks of Machine Reading Comprehension (MRC) and Question
Answering (QA) (Hermann et al., 2015; Rajpurkar et al., 2016). The data used for tackling these tasks are
usually composed of {context, question, answer} triplets: given a context and the question, a model is
trained to predict the answer.

Following QA, research on Question Generation (QG) (Amidei et al., 2018) has also seen increasing
interest from the community: the QG task (Du et al., 2017; Zhou et al., 2017) can be considered as the
dual task for QA (Duan et al., 2017): given a context and an answer span, the model is trained to generate
the corresponding question. One of the main motivations is that an effective QG model can be used to
generate synthetic data in order to augment existing QA datasets (Yuan et al., 2017; Alberti et al., 2019).
For instance, Yuan et al. (2017) proposed a reinforcement learning setup trained using a QA-based metric
reward: given a paragraph and an answer, the model first generates questions; then, the paragraph and the
corresponding generated questions are given to a pre-trained QA model which predicts an answer; finally,
the reward is computed as the number of overlapping words between the ground truth answer and the
predicted answer – in other words, the reward to maximize, for the QG model, corresponds to the QA
score. For an extensive evaluation of models trained with different rewards we refer the reader to the work
of Hosking and Riedel (2019).

Most of these works follow the approach by Ranzato et al. (2015), who applied reinforcement to neural
machine translation: first, a sequence to sequence model is trained under teacher forcing (Williams and
Zipser, 1989) to optimize cross-entropy, hence helping to reduce the action space (i.e. the vocabulary
size); then, the model is finetuned with a mix of teacher forcing and REINFORCE (Williams, 1992). For
automatic evaluation, all previous works on QG resort to BLEU metrics (Papineni et al., 2002), originally
developed and widely used in Machine Translation. However, how to evaluate text generation models
remains an open research question: Nema and Khapra (2018) pointed out that, on QG tasks, the correlation
between BLEU and human evaluation was poor.

A thorough investigation of the behavior of open-domain conversational agents has been recently
presented by See et al. (2019). Using controllable neural text generation methods, the authors control
important attributes for chit-chat dialogues, including question-asking behavior. Among the take-away
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messages of this work, is that question-asking represents an essential component in an engaging chit-
chat pipeline: the authors find, via a large-scale human validation study, that agents with higher rates
of question-asking obtain qualitative improvements in terms of inquisitiveness, interestingness and
engagingness.

Indeed, in a conversational setting, it can be expected that the nature of follow-up questions significantly
differs from those used as target in a traditional QG training setup: as mentioned earlier, QG has so far
been framed as the dual task to QA, hence training models to generate questions whose answer is present
in the input context. In contrast, we argue that in natural conversations the questions follow the input
context but are rather a means to augment one’s knowledge (as their answer is not explicit in the input
context). In this work, we thus define the task as Curiosity-driven Question Generation.

3 Dataset

Question Answering datasets are usually composed of a set of questions associated with reading passages
(the context) and the corresponding answers contained therein. The QA task is defined as finding the
answer to a question given the context. As opposed, the Question Generation (QG) task is to generate
the question given the input and (optionally) the answer. Most previous efforts on the QG task have
resorted to the widely used Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016). It
contains roughly 100,000 questions posed by crowd-workers on a selected sample of Wikipedia articles.
Several other QA datasets have also been recently published accounting for characteristic such as requiring
multi-passage or discrete reasoning (Yang et al., 2018; Dua et al., 2019); further, conversational QA
datasets have been made available: CoQA (Reddy et al., 2019) and QuAC (Choi et al., 2018) have the
desirable property to be in a dialogue-like setting.

In our scenario, Curiosity-driven QG, the reading passage associated with a question should not contain
the answer, but rather pave the way for asking a new, curious, question – whose answer would eventually
enrich the knowledge on the matter at hand. Therefore, a natural choice to build QG data would be to rely
on existing datasets for conversational QA. A detailed comparison of the above-mentioned CoQA and
QuAC datasets is provided by Yatskar (2019), who reports the proportion of Topic Error (i.e. questions
unlikely to be asked in the context) and Entity Salad (i.e. questions unanswerable for any context):1

compared to QuAC, CoQA is found to include significantly more Topic Error and Entity Salad questions.
For this reason, we resort to QuAC in order to derive data Curiosity-driven QG.

Furthermore, recognizing the fact that the great majority of QA datasets available does not account for
conversational characteristics, we propose a methodology to derive data for Curiosity-driven Question
Generation from standard QA datasets, and apply it to the popular SQuAD (Rajpurkar et al., 2016).

For both our data sources, and consistently with standard QA and QG tasks, we encode each sample as
a triplet {P, q, a} where the paragraph P comprises n sentences [s0, ..., sn], and a represents the answer
to the question q. A canonical QG approach would thus use sa, i.e. the sentence of P that contains the
answer, as source, and q as generation target. On the contrary, for Curiosity-driven QG, any sentence
sx from P can potentially be used as the source sequence, as long as it does not contain the answer –
i.e. under the necessary constraint of x 6= a. In the following subsections, we elaborate on additional
constraints depending on the nature of the source data.

In general, we define samples as triplets

t = {sx, P ′, y} (1)

where sx and P ′ are, respectively, the input sentence and the paragraph P modified according to the
appropriate dataset-depending constraint, as detailed in the following, and y is the reference (target)
question.

3.1 Conversational QA Data
As mentioned above, we first derive our data from the QuAC dataset, which is built from Wikipedia
articles by iterating over the following procedure: given a sentence, a student annotator asks a relevant

1see section 2.1 in Yatskar (2019)
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Train Dev Test

Learning to ask 86,635 8,965 8,964

Unconstrained 342,768 27,624 27,807
Constrained 25,356 2,076 2,087

Table 1: Data distributions over the train-validation-test splits. Learning to ask refers to the original split
by Du et al. (2017), from which our data is derived. The bottom rows refer to the data we obtain using our
methodology, with and without NER constraining.

question for which he does not have the answer; then, the teacher (annotator) retrieves a sentence that
contains the answer. Thus, the logical conversational ordering in QuAC makes each question curious by
design, given the text that precedes it. More formally, for a question q (our target), we consider the source
sx as the text P ′ preceding the sentence sa that contains the answer. In other words, our QuAC-derived
dataset is built by applying the stricter constraint x < a. Numerically, QuAC compounds to 83,568
questions (on 11,567 articles) for the train set, 7,354 for the validation set and 7,353 for the test set (each
covering 1,000 articles). Since the test set is not public, we use the original QuAC validation set for
testing. From the training set, we randomly drop 1,000 articles (hence, 7,224 samples) which we use to
derive our validation set, thus resulting in 76,345 questions for training.

3.2 Standard QA Data
As discussed in section 2, most of the available QA datasets are not conversational. Thus, we propose a
simple method to obtain data for Curiosity-driven QG from standard QA datasets. For this, we use the
widely popular SQuAD (Rajpurkar et al., 2016), and specifically the original splits released by Du et
al. (2017), which are commonly used for Question Generation. As opposed to QuAC, the questions in
SQuAD do not follow a logical ordering. Therefore, any sentence sx from P can potentially be used as
the source sequence, as long as it does not contain the answer a (constraint: x 6= a). Nonetheless, as is
reasonable for factoid QA datasets, several questions are so specific to their associated sentence sa that
they would be extremely unlikely to be asked without knowing the contents of sa itself. To exemplify this
issue, take the following paragraph from SQuAD:

Nikola Tesla was the fourth of five children. Nikola had an older brother named Dane [..]

Given “Nikola had an older brother named Dane.” as sa, and operating under the sole constraint of
x 6= a, the sentence “Nikola Tesla was the fourth of five children” would be eligible as a source sx for the
target question “Who was Dane?”. This question can only be asked if either contextual information or
background knowledge is available, since it requires to know that Dane was among Tesla’s four siblings.
To overcome this problem, we added an additional constraint based on Named Entity Recognition (NER):
sx is an acceptable input only if all the entities present in the question q are also present in the input
sentence sx. In the previous example, this would thus filter out the target “Who was Dane?” while
allowing for “How much brothers and sisters Nikola have?”. For our experiments we used spaCy.2

In Table 1 we report the number of samples we obtained from SQuAD before and after applying NER
filtering. After applying the above methodology to construct a dataset for Curiosity-driven QG, our
training dataset contains 25,356 samples for training, 2,076 for development, and 2,087 for testing.

4 Metrics

Automatic evaluation of Natural Language Generation (NLG) systems is a challenging task (Nema and
Khapra, 2018). For QG, n-gram based similarity metrics are commonly used. These measures evaluate
how similar the generated text is to the corresponding reference(s). While they are known to suffer from
several shortcomings (Liu et al., 2016; Paulus et al., 2017; Scialom et al., 2019a), they allow to evaluate
specific properties of the developed models. In this work, we use various automatic metrics detailed below,
and we assess their quality for our task through a human evaluation – see Section 6.

2https://spacy.io/usage/linguistic-features

https://spacy.io/usage/linguistic-features
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BLEU One of the most popular metrics for QG, BLEU (Papineni et al., 2002) provides a set of measures
to compare automatically generated texts against one or more references. In particular, BLEU-N is based
on the count of overlapping n-grams between the candidate and its corresponding reference(s).

Self-BLEU Within the field of Computational Creativity, Diversity is considered a desirable property
(Karampiperis et al., 2014). Indeed, generating always the same question such as “What is the meaning
of the universe?” would be an undesirable behavior, reminiscent of the “collapse mode” observed in
Generative Adversarial Networks (GAN) (Goodfellow et al., 2014). Therefore, we adopt Self-BLEU,
originally proposed by Zhu et al. (2018), as a measure of diversity for the generated text sequences.
Self-BLEU is computed as follows: for each generated sentence si, a BLEU score is computed using
si as hypothesis while the other generated sentences are used as reference. When averaged over all the
references, it thus provides a measure of how diverse the questions are: low Self-BLEU scores indicate
high diversity.

QA-based metrics Given a text, a question can be considered curious if the answer is not contained
in the input text. In our framing, this implies that a question q should not be answerable given its
corresponding input sentence sx. Thanks to the recent improvements obtained on Question Answering
tasks – for instance, human-level performance has been achieved on SQuAD-v13 – the answerability of a
question can be automatically measured. Therefore, given a question-context pair as input to a QA model,
two type of metrics can be computed as: n-gram-based, measuring the average n-gram overlap between
the retrieved answer and the ground truth; and, probability-based: the confidence of the QA model for
its retrieved answer; this corresponds to the probability of being the correct answer assigned by the QA
model to the retrieved answer. This latter metric is more abstractive, allowing more flexibility beyond
n-grams.

Since several diverse questions can be generated for a given input, we consider the latter metric
(probability-based) to better fit the Curiosity-driven QG task. Hence, given the evaluated question q and
the input text sx, we define a metric QA prob as the confidence of the QA model that its predicted answer
is correct. This metric measures answerability of q given sx: therefore, the lower this score, the less likely
the answer is contained in the input text.

While being non-answerable represents a necessary condition for q being a curious question with
respect to its context sx, we also want q to be as relevant and useful as possible. To this end, we
compute the above QA prob for question q on P ′, which represents the source paragraph stripped from
the sentence containing the answer (see Eq. 1). The higher this score, the more likely the question
is relevant and useful to augment the knowledge provided by sx. Thus, the two proposed metrics are
defined as QAsource = QAprob(q, sx) and QAcontext = QAprob(q, P

′). Hence, under our definition,
Curiosity-driven questions are those that minimize QAsource while maximizing QAcontext. In other
words, we want a curious question to not be answerable given its input, while being answerable given the
context.

To compute these QA-based metrics, we use the HuggingFace implementation4 of BERT (Devlin et al.,
2018).

5 Experiments

Baseline model As baseline architecture we adopt the popular Transformer (Vaswani et al., 2017),
which proved to perform well on a wide range of text generation tasks. Among these, neural machine
translation (Ott et al., 2018b), automatic summarization (Gehrmann et al., 2018), and question generation
(Dong et al., 2019; Scialom et al., 2019b). It can be briefly described as a sequence-to-sequence model
with symmetric encoder and decoder based on a self-attention mechanism, which allows to overcome the
inherent obstacles to parallelism present in recurrent models such as Long Short Time Memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997).

3https://rajpurkar.github.io/SQuAD-explorer/
4https://github.com/huggingface/pytorch-transformers

https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/huggingface/pytorch-transformers
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The copy mechanism (Gulcehre et al., 2016) proved beneficial for QG (Zhao et al., 2018; Scialom et al.,
2019b); indeed, the QG task is very sensitive to rare and out of vocabulary words such as named entities
and this mechanism helps deal with it efficiently: more than 50% of the answers in SQuAD, for instance,
correspond to named entities – see Table 2 in Rajpurkar et al. (2016). Hence, following (Gehrmann et al.,
2018; Scialom et al., 2019b), we include a copy mechanism in our Transformer architecture.

For our experiments, we used the following hyper-parameters for the transformer: N=2 (number of
blocks); d model=256 (hidden state dimension); d ff=512 (position-wise feed-forward networks
dimension); and, h=2 (number of attention heads). Experiments run with the original hyper-parameters5

as proposed by Vaswani et al. (2017) obtained consistent and numerically similar results. During training,
we used mini-batches of size 64 and the Adam optimizer (Kingma and Ba, 2014). At generation time, the
decoding steps are computed via beam search with k = 5.

5.1 Reinforcement

Reinforcement Learning (RL) is an efficient technique to maximize discrete metrics for text generation.
Previously, Ranzato et al. (2015) used the REINFORCE algorithm (Williams, 1992) to train RNNs
for several generation tasks, showing improvements over previous supervised approaches. Moreover,
Paulus et al. (2017) combined supervised and reinforcement learning, demonstrating improvements over
competing approaches both in terms of ROUGE and on human evaluation. However, the metrics used
as reward are often found to overfit, leading to numerical improvements which do not correspond to
increased output quality – and rather contribute to degrading, leading to reduced effectiveness of the
trained models for practical applications. On this matter, and with a particular focus on QG, Hosking
and Riedel (2019) performed a human evaluation of RL models trained with several metrics as reward,
finding them to be indeed poorly aligned with human judgments: the models appear to learn to exploit
the weaknesses of the reward source. In particular, the model learns to generate questions which are
adversarial to a QA model: while meaningless, the QA would systematically be duped into assigning a
high probability for their answerability. For more details on adversarial probing of QA systems we refer
to Jia and Liang (2017). To overcome this issue, we propose to use a balanced reward:

r(q, P, P ′) = QAcontext −QAsource (2)

thus maximizing the probability of finding an answer to the generated question within the input paragraph
but not in the source sentence. We hypothesize that such a metric might lead the model to avoid generating
adversarial questions, having to find a balance between QAcontext or −QAsource.

In our experiments, we follow the approach proposed by (Ranzato et al., 2015; Paulus et al., 2017),
considering a mixed loss Lml+rl which combines supervised and reinforcement learning schemes:

Lml+rl = γLrl + (1− γ)Lml (3)

where the maximum likelihood Lml is defined as Lml = −
∑m

t=0 log(p(yt|y0, ..., yt−1, X)), with
X = [x1, ..., xn] representing the source text of length n and Y = [y1, ..., ym] the corresponding reference
question of length m. Conversely, we define the reinforcement loss Lrl to be minimized according to the
standard RL actor-critic scheme, where r(q, P, P ′) is the reward function defined in Section 2:

Lrl = (r(Ŷ )− r(Y s))
m∑
t=0

log(p(yst |ys0, ..., yst−1, X)) (4)

Greedy decoding according to the conditional distribution p(y|X) is used to obtain a sequence Ŷ . The
model is sampled using its Markov property, i.e. one token at a time, producing the output sequence Y s.

5N=6, d model=512, d ff=2048, h=8.



2230

human base b1 base b3 base b5 RL b1 RL b3 RL b5
BLEU1 - 31.94 26.92 22.26 30.19 32.15 26.06
BLEU2 - 14.45 14.76 13.55 13.19 16.01 15.28
BLEU3 - 7.49 10.59 10.84 6.81 9.04 11.52
BLEU4 - 4.31 8.79 9.59 3.72 6.1 9.85

Self-BLEU1 96.09 99.84 99.88 99.95 99.96 99.94 99.96
Self-BLEU2 84.55 99.64 99.75 99.91 99.91 99.89 99.93
Self-BLEU3 70.55 99.39 99.63 99.87 99.86 99.84 99.9
Self-BLEU4 57.57 99.09 99.5 99.83 99.79 99.79 99.87

QAsource 44.5 48.86 35.8 29.88 57.54 41.36 35.03
QAcontext 48.94 48.32 40.96 38.48 55.38 42.95 41.63

Table 2: Results obtained on QuAC-derived data. b1, b3, b5 suffixes indicate the beam size used.

Pretraining (PT) As shown in Table 1, the constrained dataset amounts to roughly three times less
samples than both QuAC and the original SQuAD dataset it derives from. We thus investigate, for this
dataset, the impact of pretraining the model under the traditional (i.e. not Curiosity-driven) QG training
setup, using the training set provided by Du et al. (2017)). Then, we resume training using the data
obtained after applying the NER-based constraints for Curiosity-driven QG to the same training samples.
For the QuAC Curiosity-driven dataset, the amount of data is comparable to the original dataset, given the
conversational nature of QuAC. Therefore, we do not use pretraining for the experiments on QuAC.

6 Results

Automatic metrics In Table 2 we report the results of our experiments on QuAC for the baseline model
(base) and the RL model. We use a beam k, and compute the results for k = [1, 3, 5]. In addition the
generated questions with a beam k = 5, we also computed the results for k = 1 and k = 3.

While one would expect to see for all the metrics a slight improvement, with increasing beam size,
we observe a strong divergence among the results: increasing values for k correspond to a significant
improvements in terms of BLEU-4 and notable drops for BLEU-1. A similar phenomena was observed
by Ott et al. (2018a) in the context of machine translation: they found that the presence of 1 or 2% of
noisy data is enough to significantly degrade the beam search results. In our case, one of most frequent
generated question is Are there any other interesting aspects about this article ?. Indeed, the frequency of
this question in our training set amounts to 4.18% of the questions. On the test set we see that roughly 80%
of the generated questions start with the token “are” . This sequence is not very likely to be generated
with a greedy search (k = 1): at any time step during the generation, if any other token has a higher
probability, this question will be dismissed. On the other hand, with a higher beam, it is likely to be kept
and eventually result as the most probable sequence, among the different remaining beams at the end of
the inference, consistently with what observed by Ott et al. (2018a).

Moving to our SQuAD-based experiments, we observe that the models trained on SQuAD do not seem
to suffer from this issue since all the metrics improved when increasing the beam size from k = 1 to k = 5.
This is consistent with the results reported by (Zhao et al., 2018) where improving the beam improve
slightly all the metrics. Thus, we only report the results with k = 5 in Table 3. A possible explanation is
that SQuAD only contains factoid questions, as opposed to QuAC wherein, for instance, the open-ended
question ”Are there any other interesting aspects about this article” covers 4.18% of the samples.

We observe that the models trained with RL obtain, as could be expected, higher scores for QAcontext

with respect to those trained without RL. A higher QAcontext implies that the QA model is more likely to
find an answer in the near context of the source. QAsource is lower, as expected, for SQuAD based models,
though comparatively higher than the models trained with RL on QuAC. We identify two possible reasons
for this: first, the QA model is trained on answerable questions; second, the nature of the QUaC questions
is less factoid than the SQuAD ones, and non-factoid questions can arguably be harder for the QA model
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human base RL PT PT+RL
BLEU1 - 32.81 31.71 33.02 32.13
BLEU2 - 14.31 13.67 14.9 14.58
BLEU3 - 7.57 7.21 8.1 7.81
BLEU4 - 4.12 3.88 4.61 4.53

Self-BLEU1 95.85 93.80 94.37 95.80 95.42
Self-BLEU2 87.96 87.00 88.80 91.29 90.71
Self-BLEU3 81.75 79.59 82.64 86.47 85.66
Self-BLEU4 77.60 72.60 76.48 81.63 80.52

QAsource 54.12 57.85 55.87 63.13 58.46
QAcontext 74.93 52.11 55.98 50.81 56.36

Table 3: Results obtained on SQuAD-derived data.

Answerability Correctness External Knowledge Relevance Soundness
base 1.23 4.07 2.41 2.54 3.21
RL 1.14 4.07 2.66 2.65 3.09
PT 1.16 4.22 2.30 2.43 3.13
PT+RL 1.35 4.23 2.21 2.53 3.06

human 1.42 4.61 2.90 3.91 4.49

Table 4: Qualitative results obtained via human evaluation.

to evaluate. This could explain why, in the RL setting, QAcontext (the evaluation on answerable questions)
is higher for both SQuAD and QUaC models, but only SQuAD models achieve a lower QA source (the
evaluation on non-answerable questions). Further, we observe that pretraining allows to achieve higher
BLEU scores at the cost of lower Self-BLEU, thus showing an increased accuracy but less diversity in the
generated questions. Indeed, we find that pretrained models tend to generate a higher number of questions
starting with “What” compared to both other models and the references; the distribution for the first words
of the human questions appears closer to that of non-pretrained models.

Human Evaluation In addition to the automatic metrics, we proceeded to a human evaluation. We
chose to use the data from our SQuAD-based experiments in order to also to measure the effectiveness
of the proposed approach to derive Curiosity-driven QG data from a standard, non-conversational, QA
dataset. We randomly sampled 50 samples from the test set. Three professional English speakers were
asked to evaluate the questions generated by: humans (i.e. the reference questions), and models trained
using pre-training (PT) or (RL), and all combinations of those methods. Before submitting the samples for
human evaluation, the questions were shuffled. Ratings were collected on a 1-to-5 likert scale, to measure
to what extent the generated questions were: answerable by looking at their context; grammatically
correct; requiring external knowledge to be answered; relevant to their context; and, semantically sound.
The results of this human evaluation are reported in Table 4.

7 Discussion

What is the impact of the pretraining? We observe that for pretrained models (i.e. PT and PT+RL)
the Correctness is significantly higher than the models without pretraining (i.e. base and RL). This is
consistent with the higher BLEU observed for these models in Table 3. Additionally, we observe that for
pretrained models the External Knowledge required to answer the generated questions is lower, while
the Relevance is slightly higher. This might be due to the nature of the pretraining, during which the
models learn to generate non-curious questions that focus on their inputs. Again, this is consistent with
the significantly higher QA source scores obtained by these models (see Table 3).
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Figure 1: Correlation matrix obtained from the human assessment data (∗ : p < .05, ∗∗ : p < .005).

Does Reinforcement help? From the human assessment we conducted – see Table 4, we observe that
the models trained via RL obtain higher scores for Relevance and lower ones for Soundness, as compared
to their non-reinforced counterparts. Further, the results reported in Table 3 show the reinforced models
obtaining lower BLEU and QAsource source; conversely, they score higher when it comes to QAcontext.
We thus conclude that reinforcement brings improvements in terms of diversity of the generated questions,
at the price of slightly degraded formulations in the outputs.

How effective is our dataset creation methodology? Looking at the bottom row of Table 4, which
shows the scores obtained by the reference (human) questions, we observe the highest relative values
for all dimensions, with the exception of Answerability. This indicates that the data we derived from a
non-conversational QA dataset (SQuAD) fits well the task of Curiosity-driven question generation. As a
sidenote, we remark that the models we built obtain lower scores than humans in terms of Answerability,
a fact we hypothesize due to the lower quality of the generated questions: the less sound and correct, the
less answerable a question would be, regardless of its context.

How well do the metrics fit human judgement? We report the pairwise Spearman correlation and
p-value among all the different metrics and human measures in Figure 1. Our analysis shows that BLEU
metrics correlate positively with Relevance (B4: .29, p<.005) and Soundness (B4: .19, p<.005), and to
a weaker extent with Answerability (B1: .15, p<.05) and Unexpectedness (B1: .13, p<.05).6 Self-BLEU
metrics correlate significantly with Soundness (Self-B1: .17, p < .05) and Correctness (Self-B4: .15,
p<.05), while QAcontext is associated with Relevance (.18, p<.005). The only human measure that does
not correlate with any automatic metric is External knowledge. It is indeed one of the most challenging
aspect to evaluate, even for humans. However, as expected, it correlates negatively with Answerability.

8 Conclusions

Asking inquisitive questions allows humans to learn from each other and increase their knowledge. We
thus proposed a new task: Curiosity-driven Question Generation, which attempts to address such a key
component for several human-machine interaction scenarios. In absence of data directly usable for this
task, we proposed an automatic method to derive it from conversational QA datasets. Further, recognizing
that the great majority of QA datasets are not conversational, we also extended the method to standard QA
data. Our experiments, which include learning strategies such as pretraining and reinforcement, show
promising results under both automatic and human evaluation. In future works, we plan to extend the
approach to conditional generation of Curiosity-driven questions.

6For a standard QG task, Nema and Khapra (2018) report a Pearson correlation of 0.258 for BLEU-1 and 0.233 for BLEU-4.
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