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Abstract

In this study, we propose a beam search method to obtain diverse outputs in a local sequence
transduction task where most of the tokens in the source and target sentences overlap, such as in
grammatical error correction (GEC). In GEC, it is advisable to rewrite only the local sequences
that must be rewritten while leaving the correct sequences unchanged. However, existing meth-
ods of acquiring various outputs focus on revising all tokens of a sentence. Therefore, existing
methods may either generate ungrammatical sentences because they force the entire sentence to
be changed or produce non-diversified sentences by weakening the constraints to avoid gener-
ating ungrammatical sentences. Considering these issues, we propose a method that does not
rewrite all the tokens in a text, but only rewrites those parts that need to be diversely corrected.
Our beam search method adjusts the search token in the beam according to the probability that
the prediction is copied from the source sentence. The experimental results show that our pro-
posed method generates more diverse corrections than existing methods without losing accuracy
in the GEC task.

1 Introduction

Grammatical error correction (GEC) is a task that corrects grammatical errors in an input text. Depending
on the input, there are multiple ways to correct such text. For example, 10 annotators can produce 10
different valid correction results for the same grammatically incorrect text (Bryant and Ng, 2015). If a
GEC model presents multiple candidates for correction, it helps the user decide whether to utilize the
correction results such that the user can select a favorite correct expression from among the candidates.

However, currently existing GEC models do not consider the generation of multiple correction can-
didates. Generally, in GEC, the method for obtaining multiple corrections involves the use of a plain
beam search to generate the n-best candidates (Grundkiewicz et al., 2019; Kaneko et al., 2020). How-
ever, it has been shown that a plain beam search does not provide a great enough variety of candidates
and produces lists of nearly identical sequences (Vijayakumar et al., 2018). Therefore, the n-best candi-
dates generated by a beam search without diversity control are not expected to provide useful additional
information. Considering this problem, several beam search methods have been proposed to generate
diverse candidates (Li et al., 2016; Vijayakumar et al., 2018; Kulikov et al., 2019). These diverse beam
search methods encourage diversity by globally rewriting all tokens in a sentence. We will refer to such
methods as diverse global beam search methods. Conversely, considering a local sequence transduction
task in GEC, wherein most of the tokens in the source and target sentences overlap, excessive correction
of the input sentence is not preferred because unnecessary rewriting damages the grammatically correct
parts of the input sentence. Furthermore, encouraging more corrections than necessary decreases the
performance of the GEC itself (Hotate et al., 2019). We hypothesize that both plain beam search and
diverse global beam search methods may not be suitable for GEC tasks, and a GEC model must correct
the grammatical errors of the input sentence in diverse ways while preserving the correct portions of the
sentence.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Figure 1: Illustration of error corrections obtained with previous and proposed beam search methods.

In this study, we propose a diverse local beam search method to obtain diverse outputs considering
whether a token should be corrected during the beam search. Note that our method can be used for any
local sequence transduction task. Figure 1 shows a comparison of existing and proposed methods. The
proposed beam search method considers the following: (a) In plain beam search, the correction is con-
centrated on a specific path. Therefore, this method generates sentences with similar token combinations
and a small number of word types. (b) The diverse global beam search method explores many different
paths. Therefore, unlike plain beam search, this method generates sentences with various token combina-
tions and a large number of word types. However, it also generates correction candidates for tokens that
are not corrections. (c) The proposed diverse local beam search expands different paths only for tokens
that require corrections. Therefore, our diverse local beam search generates sentences with combinations
of more diverse tokens than plain beam search only at points that need correction. It should be noted
that all the above methods have the same n but different paths. The experimental results show that our
diverse local beam search could generate more diverse and accurate n-best candidates than the existing
methods. The performance of the general evaluation datasets in the GEC task demonstrated almost no
deterioration.

2 Related work

Several studies have been proposed to obtain diverse outputs using beam search. Li et al. (2016) modified
standard beam search to penalize the scores of searches with the same parent node. Their algorithm
recommends only those hypotheses that come from different parent beams. Vijayakumar et al. (2018)
proposed a method to divide the beam into several groups and perform beam search for each group.
Additionally, they added a constraint to make it harder to select tokens selected by other groups in
the same time step. Kulikov et al. (2019) proposed an iterative beam search, which produces a more
diverse set of candidate responses in neural dialogue modeling. However, these studies do not distinguish
between the parts that do not need to be rewritten and those parts that require diverse corrections.

3 Diverse local beam search

Diverse local beam search encourages candidates of diverse corrections for parts of the input sentence
that must be corrected and discourages candidates for already correct parts of the input sentence. Con-
sequently, it runs the computation for fewer parts to generate diverse candidates. For this purpose, a
penalty score sb,t is assigned to each beam b at each time step t, indicating whether a correction should
be made. Although different methods can be used to calculate a penalty score, in this study, we use a
copy probability from the copy-augmented model (Zhao et al., 2019) as a penalty score sb,t. We explain
the copy-augmented model in greater detail in Section 4.1. Using the penalty score, we penalize the
beam search score k as follows:

kb,t = (λsb,t + β) log pb,t (1)
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where p is the output distribution of the GEC model. β and λ are hyperparameters, where β prevents the
penalty from falling to zero and λ determines the strength of the penalty.

4 Experiments

4.1 Model
We used the copy-augmented model (Zhao et al., 2019) as the GEC model. This model controls the
balance between the copy distribution pcopy and generation distribution pgen via the balancing factor
αcopy. pcopy is the probability distribution of the tokens to be copied from the source sentence, and pgen

is the generation probability distribution that predicts the output tokens. The output distribution pb,t is
calculated as follows:

pb,t =
(
1− αcopy

b,t

)
pgenb,t + αcopy

b,t pcopyb,t (2)

Copying from a source sentence or generating a token can be considered as a choice between correcting
or not. Therefore, we used αcopy

b,t as the penalty score sb,t in Equation 1.
As a diverse global beam search, we used the diverse beam search (Vijayakumar et al., 2018) approach,

wherein the number of groups is defined from the number of desired diverse sentences, and a diversity
strength for the beam search is selected such that the output tokens at each time step in each group
differs. We set the number of groups to n of n-best and the diversity strength to 0.7 for diverse global
beam search. For diverse local beam search, we used β = 1.0 and λ = 4.0 for diverse local beam
search1.

4.2 Datasets
For models that have been pre-trained with publicly available pseudo-data, we fine-tuned them using
published training data2. We used the public NUCLE (Dahlmeier et al., 2013), Lang-8 (Mizumoto et al.,
2011), and FCE (Yannakoudakis et al., 2011) corpora as our training data. We used the JFLEG test set
and dev set corrected by four different annotators (Napoles et al., 2017) as the development set. We also
used the CoNLL-2014 dataset as the test set. The original CoNLL-2014 dataset was corrected by two
different annotators (Ng et al., 2014). However, in this work, eight corrections made by (Bryant and Ng,
2015) and four corrections with minimal corrections made by (Sakaguchi et al., 2016) were also used as
references.

4.3 Evaluation
Performance of GEC (G-score). We evaluated each decoding method using the GLEU score (Napoles
et al., 2017) for the JFLEG and the F0.5 score by using the MaxMatch scorer (Dahlmeier and Ng, 2012)
for the CoNLL-2014 test set as general evaluation metrics for the GEC.

Diversity of corrections (C-score). To evaluate the diversity of corrections, we calculated the coverage
score between the n-best candidates and references. We used the weighted recall, which was used as the
evaluation metric in the 2020 Duolingo Shared Task3 as a coverage score. In this work, the number of
duplicated corrections divided by the total number of corrections is used for weighting. This gives higher
weight to corrections with more duplicates.

Correctness of corrections (DF score). To evaluate the correctness of the corrections, we distin-
guished between the correct and incorrect parts of the input sentences and considered the correction
outputs acceptable if they only change tokens that require corrections. In this study, we used document
frequency (DF) to assess the correctness of the corrections.

First, we calculated the number of n-grams that are present in both the source and predicted sentences4.
Then, we calculated the DF score by dividing it by the number of all n-grams in both the source and

1We searched for β in increments of 0.1 with a range of 0.0 to 1.0 and λ in increments of 1 with a range of 1 to 10.
2https://github.com/zhawe01/fairseq-gec
3https://sharedtask.duolingo.com/
4In this case, the number of n-grams in the predicted sentences is limited to the number of occurrences in the source

sentences.
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Method
n = 10 n = 15 n = 20

G-score C-score DF score G-score C-score DF score G-score C-score DF score
JF

L
E

G PBS 50.92 29.75 84.92 50.92 31.80 83.24 50.92 33.18 82.08
DGBS 51.24 19.99 83.08 51.27 20.65 78.97 51.27 21.30 76.53
DLBS 50.97 30.35 85.50 50.94 32.64 84.26 50.92 33.74 83.35

C
oN

L
L PBS 59.67 32.61 87.04 59.64 34.29 84.99 59.61 35.10 83.49

DGBS 57.88 24.26 86.83 57.94 25.13 81.98 57.89 25.61 79.67
DLBS 59.47 33.79 87.51 59.44 35.10 85.67 59.40 36.38 84.65

Table 1: Evaluation results for 10-, 15-, and 20-best candidates. The G-score denotes performance of the
GEC task, which is GLEU for JFLEG and F0.5 for CoNLL-2014. The coverage score (C-score) and DF
score denote the diversity and correctness of the corrections, respectively.

Figure 2: Illustration of the average number of word types per sentence for each method.

reference sentences. Finally, the average score of multiple outputs per source sentence was calculated
over the entire test set.

4.4 Results
Table 1 shows the evaluation results of our two baselines of plain beam search (PBS) and diverse global
beam search (DGBS), as well as those of our proposed diverse local beam search (DLBS). We performed
experiments for 10-, 15-, and 20-best candidates. Thus, DGBS has lower coverage scores compared to
PBS. Moreover, the DF scores of DGBS are lower compared to PBS. These results show that DGBS
cannot produce more diverse outputs than PBS in GEC. We hypothesized that this is because DGBS
attempts to rewrite and diversify all tokens regardless of their correctness in the source sentence.

By contrast, our proposed approach’s coverage scores and DF scores are higher than those of our
baselines. Therefore, we can conclude that our proposed method diversifies only the tokens that must be
corrected in the source sentence.

4.5 Analysis
Diversity has two aspects: the diversity of the correction points and that of the words to be corrected. The
DF score can measure the diversity of the corrected parts, but not the diversity of the corrected words.
Here, we analyze the number of word types for the output as the diversity of the words to be corrected.
Figure 2 shows the average number of word types per sentence for each method. The horizontal axis
represents n of the n-best or the number of reference sentences, and the vertical axis represents the
average number of word types per sentence. The GOLD value indicates a reference for CoNLL-2014,
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Source You can share photos , videos and every meaningful experiences of your life .

X You can share photos , videos and every meaningful experience of your life .
PBS X You can share photos , videos and every meaningful experience in your life .

You can share photos , videos , and every meaningful experience of your life .

X You can share photos , videos and every meaningful experience of your life .
DGBS You can share photos , videos and experiences of your life with everyone else .

You can share photos , videos and every meaningful experience of life .

X You can share photos , videos and every meaningful experience of your life .
DLBS X You can share photos , videos and every meaningful experience in your life .

X You can share photos , videos and all the meaningful experiences of your life .

Table 2: Examples of outputs from CoNLL-2014. The italic tokens represent the tokens that are corrected
in reference, and the bold tokens represent tokens generated by the model that are different from the
source sentence. The Xrepresents the output sentences that matched one of the references.

and the dashed line indicates the maximum value of GOLD. In all methods, the number of word types
increases as the number of sentences increases. However, in GOLD, the increase is particularly small as
the number of references increases. This implies that, although there are several references, not all of
them use different words. PBS has fewer word types for the output than GOLD. The number of word
types in DGBS increases linearly with the number of n, indicating that DGBS generates more word types
than necessary when compared to GOLD. Conversely, DLBS can diversify the output more appropriately
than PBS and DGBS.

4.6 Examples of corrections

Table 2 shows the output examples of each decoding method. We can observe that DGBS has unnecessar-
ily changed parts of the input sentence (e.g., “meaningful” and “your”). Conversely, the proposed method
generates diverse outputs only for the tokens that should be rewritten (e.g., “every,” “experiences,” and
“of”).

5 Conclusion

Existing methods of acquiring diverse outputs rewrite all tokens of the input sentence. In this work, we
proposed a method to produce diverse candidates for only the parts that require corrections via GEC. It
was shown that the proposed method can diversify the outputs more properly in GEC than the existing
methods. In the future, we would like to apply this method to other model architectures and extend it to
tasks other than GEC.
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