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Abstract

Semantic models derived from visual information have helped to overcome some of the limita-
tions of solely text-based distributional semantic models. Researchers have demonstrated that
text and image-based representations encode complementary semantic information, which when
combined provide a more complete representation of word meaning, in particular when com-
pared with data on human conceptual knowledge. In this work, we reveal that these vision-based
representations, whilst quite effective, do not make use of all the semantic information available
in the neural network that could be used to inform vector-based models of semantic representa-
tion. Instead, we build image-based meta-embeddings from computer vision models, which can
incorporate information from all layers of the network, and show that they encode a richer set of
semantic attributes and yield a more complete representation of human conceptual knowledge.

1 Introduction

Many approaches to representing the meaning of imageable, concrete concepts (e.g. FROG, APPLE,
CAR, GUITAR) have been developed in the fields of cognitive science, computational linguistics and
computer vision. Most explicitly, property listing studies have been used in cognitive psychology and
cognitive neuroscience to characterise word meaning in terms of discrete semantic properties (McRae et
al., 2005; Devereux et al., 2014; Buchanan et al., 2019). In property listing studies, human participants
enumerate as many features as they can for each concept word, and these responses are then aggregated
and normalised to a set of verbal semantic descriptors that correspond to elements of concept meaning
(e.g. does-croak for FROG). This gives a representation of each concept as a sparse vector which encodes
the semantic properties that occur for that concept. The resulting properties can then been applied to
research investigating the organisation of semantic processing across the cortex, and to studies of the
speed or ease of semantic processing for different concepts and different types of concept knowledge
(Fieder et al., 2019; Evans et al., 2019; Kivisaari et al., 2019a; Bruffaerts et al., 2019).

A desirable trait of semantic property norms is their interpretability, since this interpretability facili-
tates the design of cognitive experiments on conceptual semantics (Murphy, 2004). This interpretability
has also allowed researchers in NLP interested in distributional lexical semantics to gain better insights
into the kinds of information that dense vector space models attain from pretraining. Even though many
state-of-the-art vector space models of word meaning perform well when evaluated on both intrinsic and
downstream tasks (Mikolov et al., 2013; Pennington et al., 2014; Bojanowski et al., 2017), researchers
have demonstrated that such models often fail to fully encode certain facets of conceptual meaning (Li
and Gauthier, 2017). For example, taxonomic properties (i.e. properties describing the object category,
such as is-an-amphibian for FROG) and properties reflecting encyclopedic information or information
about object function tend to be well-represented in the vector space, but properties that correspond to
other kinds of attributes, such as colour, form, and modes of motion, tend to be poorly encoded (Ru-
binstein et al., 2015; Collell and Moens, 2016). These insights have motivated the development of
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multimodal semantic representations, which learn from multiple sources of information to ground these
representations in the real world – an approach most successfully demonstrated by models that combine
data from text and images (Bruni et al., 2014; Kiela and Bottou, 2014; Lazaridou et al., 2015b; Silberer,
2017).

Generally, when image data is incorporated into the construction of word embedding spaces, vectors
are derived from the penultimate layer of a deep convolutional neural network trained on an image
classification task. Although not usually explicitly stated, the rationale for using the penultimate layer of
the network is that this layer should be the layer that is maximally relevant to the predicted label for the
objects, whilst also being the layer that is least influenced by the low-level visual noise due to the details
of the sampled training images. However, it is possible that meaningful object knowledge is present in
lower layers of the network even if such information is not directly relevant to the object labelling task
that the computer vision model is trained on. For example, in human property listing data, the property
is-green is reliably given for FROG. In a computer vision model trained to discriminate between object
classes, however, the greenness of frogs may not be strongly relevant to discriminating between images
of frogs and images of other amphibians or reptiles (which also tend to be green) and so this information
– highly relevant to human semantic representations – may not be strongly represented in the penultimate
layer.

In this work, we demonstrate that whilst using the penultimate layer of a computer vision model is
an effective way to capture concept semantics, this approach is not optimal with respect to the goal of
producing representations that encode information about cognitively-relevant semantic attributes of con-
cepts. Using human property norm data, we demonstrate that certain features and feature types are more
decodable at particular layers of the network than others. To produce representations that can make use of
all the available semantics-relevant information from the network, we merge the feature map information
by constructing meta-embeddings using information from all convolutional layers. We demonstrate that
these ensembles of distributional models produce more complete representations of conceptual meaning,
when evaluated against human conceptual knowledge. To our knowledge, ours is the first work to con-
sider and evaluate the use of all layers of computer vision models for constructing semantic models, and
is the first to consider a range of recent computer architectures in building ensembled and multi-modal
representations. Finally, we demonstrate how these meta-embeddings can be used in a zero-shot property
mapping task, which allows us to automate the generation of interpretable semantic properties for unseen
concepts. We make our code, embeddings, and analysis pipleine openly available1.

2 Related Work

Whilst word embedding vectors derived from text data have a long history of proven utility on a wide
range of downstream tasks, they have been shown to struggle with encoding certain types of semantically-
relevant information. Directly analysing the relationship between explicit property knowledge found in
property norm data and the information in pretrained distributional models shows that particular proper-
ties relating to more sensory or perpetual information about object semantics can be poorly captured,
compared with more associative and encyclopedic knowledge (Rubinstein et al., 2015; Collell and
Moens, 2016; Li and Gauthier, 2017). Sommerauer and Fokkens (2018)), using probing classifiers,
showed that many of these properties may not be decodable at all from text-based embedding spaces.
Findings such as these have motivated researchers to incorporate multimodal information into represen-
tations of word meaning (Bulat et al., 2016).

Meta-embeddings have emerged as a useful method for combining information from different word
embeddings models (Yin and Schütze, 2016). Different embeddings may be trained on various corpora
of text, with different sizes, vocabularies, learning methods or model architecture. Meta-embeddings
can then be created that combine the complementary information from all sources (Muromägi et al.,
2017). In the context of language modelling, different layers of a pre-trained language model may be
sensitive to different kinds of linguistic information, and effectively combining embedding information
across layers has been shown to improve performance on different tasks sensitive to different kinds of

1Github link to code at https://github.com/stevend94/Decoding-Semantic-Properties.

https://github.com/stevend94/Decoding-Semantic-Properties


1908

information (such as POS-tagging and word sense disambiguation) (Peters et al., 2018). A number of
successful methods have emerged for combining word embedding spaces from different sources. Coates
and Bollegala (2018) demonstrate that combining vectors using element-wise addition can be just as
effective as concatenating, given that the embeddings are orthogonal. Bollegala and Bao (2018) propose
a number of autoencoder type networks to combine one or more vector space models. Finally, Neill and
Bollegala (2018) give a comprehensive set of empirical results for a number of models and loss functions
for learning complex meta-embeddings, demonstrating that loss functions that focus on vector direction
such as cosine or KL-divergence based losses give the best performance on intrinsic benchmarks.

In distributional semantics, powerful approaches have been developed for building functions that can
map from one semantic space to another (Lazaridou et al., 2014), compelling researchers to construct
cross-modal mappings from dense distributional models with much larger vocabularies onto property
norm data (Fagarasan et al., 2015). For example, Derby et al. (2019) constructed distributed seman-
tic representations for each property dimension used in a large set of property norms, whilst Li and
Summers-Stay (2019) showed that deep neural networks provide the best performance for zero-shot
mapping between semantic spaces.

Motivating our work on ensembling over layers of deep convolutional neural network vision models, it
has been shown that different layers of such networks learn features that reflect different kinds of visual
properties. The lower layers of vision networks tend to capture visually basic features such as Gabor
filters and colour gradients, which are then combined at later layers to construct task-specific high-level
visual features that are relevant to object classification (Yosinski et al., 2014; Zeiler and Fergus, 2014).

3 Approach

The most prominent method for building image-based semantic models involves using pretrained deep
convolutional neural networks (DCNNs) to extract visual information from image data by retrieving the
output vectors from the penultimate layer of the network. In this work, we utilise DCNNs trained for
the ImageNet LSVRC competition (Deng et al., 2009), which aim to predict the correct object in an
image from a set of 1000 possible labels. In general, these networks use convolutional layers to extract
visual information and build increasingly complex features, before one or many fully-connected layers
are used to compute the probability distribution over the classes. Distributional semantic spaces can
then be constructed from the penultimate fully-connected layer. Here, we instead focus our analysis on
representational spaces generated at all convolutional layers of the network. Our goal is to demonstrate
that the types of semantic attributes encoded in these feature maps depend on their depth in the network,
and thus using only the penultimate layer may be suboptimal for representing concept meaning.

3.1 Visual Stimulus

We make use of the CSLB property norm data (Devereux et al., 2014), which includes 638 concept
words together with 2725 human-elicited semantic properties2. We used a script to web scrape ten
representative images for each of these concepts from a Google image search. We manually reviewed
the images to check that they were appropriate and representative (for example, to ensure images for the
search term APPLE do not include the logo of Apple Inc.). For each word, we feed the corresponding
images into a DCNN and extract the feature map outputs at every layer of the network. Once we have
retrieved the feature maps for each concept, we perform additional preprocessing steps in order to create
embedding vectors at each layer. Each convolutional filter should activate if it receives certain visual
patterns from the stimulus, with the resulting feature map representing the activity value of each filter
at each spatial location. To obtain an overall measure of the presence of each feature in each image, we
perform global max pooling across the feature maps, which takes the highest activity value at all spacial
locations for each filter. We then average the max-pooled responses for each filter across each of our ten
images to get the final concept representation and finally normalise the vectors using L2 distance.

2https://csl.psychol.cam.ac.uk/propertynorms/

https://csl.psychol.cam.ac.uk/propertynorms/
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Figure 1: Decodability scores on human property norm data using the convolutional layers of four deep
neural networks for image classification (AlexNet, VGG ResNet, and DenseNet. The ResNet panel in-
cludes red dotted vertical lines indicating the residual connections of the network.

3.2 Image Classification Models

For our analysis, we evaluate a number of standard implementations of networks trained for image classi-
fication3. The first model is AlexNet, containing five convolutional layers followed by three feed-forward
layers. AlexNet is the most widely used pretrained DCNN in work on multimodal distributional seman-
tics. Next, we chose the VGG16 model, which has a similar architecture to AlexNet but contains 16
convolutional layers (Simonyan and Zisserman, 2014). By comparing Alexnet and VGG16, we aim to
investigate how depth affects the models’ ability to encode human-relevant semantic property knowl-
edge. For our third model, we chose ResNet34 which is not only deeper, with 34 convolutional layers,
but also has residual connections between layers. These connections allow information from lower lay-
ers to more easily flow to higher layers.The final model we consider is DenseNet; it further extends the
objective of feeding low-level information as inputs to the latter layers of the network by using dense
skip connections (Huang et al., 2017). As DenseNet has a vast number of layers (169), we only take the
output of the first convolutional layer, each block layer in the network, and each transition block (which
perform downsampling of the feature maps). ResNet and DenseNet have been shown to be amongst the
most “‘brainlike” DCNNs, insofar as their internal representations correlate well with neuroimaging data
from the human visual processing stream (José Meijer and Visser, 2019; Wen et al., 2018).

4 Analysis

To measure how well each layer of a DCNN encodes salient properties of human conceptual knowledge,
we train supervised models to predict the presence of a property for a given concept. We note that while a
supervised classifier’s ability to identify the presence of a property indicates that the property is encoded
in the representations, the converse is not always true (Collell and Moens, 2016).

3https://pytorch.org/docs/stable/torchvision/models.html

https://pytorch.org/docs/stable/torchvision/models.html
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Figure 2: Decodability scores on fine-grained feature categories using the convolutional layers of the
four DCNNs. The ResNet panel includes red dotted lines indicating residual connections.

4.1 Decoding Property Norms Data from DCNN layers

We first preprocessed the property norm data so as to retain only semantic properties that occur for at
least 5 concepts (leaving 638 concepts and 390 properties). For each property, we perform 5-fold cross-
validation with stratified sampling so that at least one positive case occurs in each test fold, and train a
logistic regression classifier to predict the presence of that property for each embedding, recording the
average F1 score over all the folds. Since the dataset is highly imbalanced, we down-weight the negative
classes in the loss function and regularise by adding the L2 norm of the weights. After obtaining the
classification result for each property, we use the partition of properties into distinct feature classes in the
CSLB data to aggreggate the results by property class. These property classes are Taxonomic (e.g. is-an-
amphibian), Encyclopaedic (e.g. lays-spawn), Functional (e.g. hops), Visual Perceptual (e.g. is-green)
and Other perceptual (e.g. does-croak).

The results are consistent across all models, with Taxonomic being the most decodable followed by
Visual Perceptual, Other Perceptual, Functional and finally Encyclopaedic (Fig. 1). These results follow
previous work where taxonomic features tend to be more decodable than other attributes, for many vector
space models. Furthermore, all types of concept properties seem to be more decodable as we move to
later layers of the network. Such results could be down to the supervised classifier being unable to make
use of the more image-specific information in the lower layers, or the fact that layers in the latter part
of the network tend to be better for classification tasks. The most notable exception to this is DenseNet,
which has two spikes in performance at the convolutional bottleneck layers.

4.2 Fine-Grained Analysis of the Decoding Results

Whilst the five property classes provide a useful distinction between types of semantic information, they
tend to include a broad range of semantic attributes. For example, the visual-perceptual class includes
visual features relating to colour and texture (is-green, has-smooth-skin) as well as more complex infor-
mation about form (has-four-legs). To gain a deeper understanding of the kinds of semantic knowledge
encoded in the DCNN layers, we divided the properties into more fine-grained classes. First, we split
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Model Encyclo. Functional Taxonomic Visual Perceptual Other Perceptual Overall

ResNet 33.09 35.97 61.56 46.84 42.83 44.05
SVD Meta ResNet 32.68 35.92 68.12 50.19 48.22 45.80
1ToN Meta ResNet 34.44 37.45 66.77 51.28 48.25 46.74

Table 1: Average cross-validation F1 scores ×100 for the ResNet embedding space based on the penul-
timate layer, and the two meta-embedding approaches, for each of the five property classes.

the Visual Perceptual features into two basic types of visual information, Colour and Shape/Size. We
expect the lower layers to perform well at decoding these properties since previous research has shown
that the lower layers tend to learn colour gradients and Gabor filters (Zeiler and Fergus, 2014). In the
CSLB property norm data, semantic properties always consist of a relation term and an attribute value.
For example, FROG has the feature “has-legs”, where “has” is the relation. The property listing task
prompted participants to use four such relations: “is”, “has”, “does” and “made-of” (Devereux et al.,
2014). These relations relate to the type of property being described; for example, “does” relates to ac-
tion or function, while “has” corresponds to object parts. We therefore use these four relations to build
the other fine-grained categories, for a total of six categories. Based on the previous results, we expect
the later DCNN layers to have higher average F1 scores for all properties, but here we are interested in
which type of property is most decodable at each layer.

In the lower layers of the DCNNs, we see that Colour tends to be the most decodable followed by
“made-of” and Shape/Size, but as we move through to the middle sections of the networks “made-of”
properties become the most decodable, for all DCNNs (Fig. 2). As we move further, “has” and “is-a”
property decoding improves, and by the end either “is-a” or “made-of” become the most decodable
property types. As we move through the networks, features related to color or shape become relatively
less decodable, compared to other feature types. Overall, the results support the rationale that the penulti-
mate layer (as is commonly used) should give a good correspondence to object semantics for the purpose
of building distributional semantic models. But would such models also benefit from having direct in-
formation about different features from earlier stages of the DCNNs?

5 Improving Distributional Semantic Models with Visual Meta-Embeddings

We have seen that particular layers of DCNNs best capture different types of semantic information. Here
we investigate whether we can use this insight to obtain improved image-based semantic embedding
spaces and thus build more faithful representations of conceptual meaning. (In these experiments, we
focus on ResNet, since it gave the best performance on the decoding task; for results with all four models,
see the Supplementary Table 1).

5.1 Convolutional Meta-Embeddings

In order to make full use of the information generated by the network, we require a method that can effec-
tively combine the feature maps from each layer, retaining only the most relevant information from each.
We construct semantic representations by aggregating features from the output of each convolution layer
by assembling them into a single set of representations known as a meta-embedding. Meta-embeddings
are vector representations that incorporate information from a set of word embeddings that can differ in
a range of aspects such as training data and training methods (Peters et al., 2018; Coates and Bollegala,
2018). Most importantly, they look to combine complementary knowledge from each embedding, and
do not require that the vectors be the same dimensionality. Here we apply two common approaches. The
first approach is a simple concatenation technique to combine all embeddings. Following previous work,
we also up-weight the best embeddings; in this case, we multiply the second-to-last layer by 5 and the
last layer by 10, keeping the other layers the same before concatenating. To reduce dimensionality, we
also apply Single Value Decomposition (SVD) to fix dimensionality to 300 while preserving information
from the most important features. We refer to these embeddings as SVD Meta ResNet. The second
approach uses a method known as 1ToN (Yin and Schütze, 2016); this method looks to learn set of meta-
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K Nearest Neighbour (K=5) Ridge Regression Neural Network (h=1200)
Hit@T Accuracy Top 1 Top 5 Top 10 Top 20 Top 1 Top 5 Top 10 Top 20 Top 1 Top 5 Top 10 Top 20

Unimodal Vector Representations

ResNet 1.95 29.3 50.0 69.1 5.80 29.1 44.8 61.9 3.23 42.0 60.06 75.5
SVD Meta ResNet 2.04 28.3 50.7 68.6 4.92 43.2 61.0 75.3 2.79 45.1 62.4 76.5
1ToN Meta ResNet 2.76 29.3 53.4 71.8 5.92 41.4 58.4 74.6 2.82 44.1 61.4 76.0

GloVe 1.76 27.3 53.8 70.6 7.18 38.9 56.6 71.1 5.14 44.0 62.0 76.7

Multimodal Vector Representations

ResNet + GloVe 2.38 31.7 59.0 76.7 8.87 43.6 60.6 75.5 6.74 50.8 69.5 82.6
SVD Meta ResNet + GloVe 2.32 31.6 58.8 76.4 8.88 43.8 60.8 75.6 6.24 51.9 71.1 83.0
1ToN Meta ResNet + GloVe 2.60 32.3 60.3 78.8 8.18 48.1 66.1 80.6 5.08 52.6 70.9 83.7

Table 2: Results for zero-shot cross-modal mapping task using several predictive models. The Hit@K
tells us the percentage of test features which appear in the top K neighbours with the ground truth
representations.

embeddings using a neural network. For each word, we have a meta-embedding vector, for which the
network predicts the associated word embedding for each of our vector space models using several linear
layers. A network which combines the information from N embeddings will contain N linear layers
which map the meta-embedding into the original constituent word embedding spaces. Suppose we have
N distributional models {W 1,W 2, . . .WN}, with equal vocabulary V , and vector lengths (ai)Ni=1 ⊂ N.
We define the 1ToN neural network with an embeddings matrix E ∈ R|V |×k for some size k ∈ R, with
N linear projections of weights Mi ∈ Rk×ai and corresponding biases bi, 1 ≤ i ≤ N . For each word
w ∈ V , let wi ∈ W i be it’s associated word vector for each 1 ≤ i ≤ N , with meta embeddings E(w).
We want to minimize the following loss function, for our neural network parameterized by θ:

L(θ) =
N∑
j=1

βj(|ŵj − wj |2 + λ|Mj |2) (1)

ŵj =MT
j E(w) + bj (2)

where [β1, β2 . . . βN ] are the scaler weightings for each component embedding, though we set these
values to one. We instead up-weight the embeddings from the last two convolutional layers which we
multiply by 5 and 10 respectively. We call this the 1ToN Meta ResNet embedding.

6 Experiments

To evaluate these two meta-embedding models, we repeat the decoding experiment with the SVD and a
1ToN meta-embeddings both of size 300 built using the feature maps from all of the ResNet convolutional
layers. We compare the meta-embeddings with embeddings constructed from the penultimate layer of
ResNet (i.e. the traditional approach) to see how well they decode each property type.

6.1 Property Decodability
The results are displayed in Table 4. We see that both meta-embedding approaches, ensembling over
the convolutional layers of ResNet, are better representations for decoding human property knowledge
than the traditional approach of using the penultimate layer of ResNet alone. We see that there is no real
change in how decodable Encyclopaedic or Functional properties are in the meta embeddings, which is
to expected, as this is where text-based word embeddings have been shown to perform strongest. Further-
more, Taxonomic and Visual Perceptual properties are more decodable since certain layers more strongly
encode different types of visual information depending on their location in the DCNN. Surprisingly,
Other Perceptual information, such as olfactory or taste-based features are also more decodable in the
meta-embeddings. Overall, Taxonomic, Visual Perceptual and Other Perceptual have the most significant
improvement when using all layers, with the overall F1 score increasing by 5 on average for these three
categories, compared with using the penultimate layer of ResNet alone.
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(a) Car - Predictions from ResNet
convolution layer 3

(b) Fruit - Predictions from ResNet
convolution layer 15

(c) Wampimuk - Predictions from ResNet
convolution layer 27

(d) Guitar - Predictions from ResNet
convolution layer 35

Figure 3: Top predictions from the zero-shot cross-modal mapping task for 4 example images. Property
predictions for each image are from different convolutional layers of ResNet. Each colour represents a
feature category: Taxonomic , Visual Perceptual , Functional and Other Perceptual .

6.2 Cross-Modal Embedding-to-Property Mapping
While the sparse property vectors obtained from norming studies are useful in cognitive science due to
their interpretability, as a lexical resource they are very limited in size, due to being created manually.
This has driven recent work aiming to learn zero-shot cross-modal mappings between a pretrained se-
mantic embedding space and these property vectors, so that property-norm information can be generated
automatically from word embeddings (Derby et al., 2019; Fagarasan et al., 2015). Furthermore, we can
extend our analysis of the convolutional layers from global to local interpretations based on some sample
images (See appendix B). Here we evaluate how accurately our models predict semantic properties for
unseen concept words in a zero-shot set-up using several regression models. We predict the property
vector for each test concept and find the top T nearest neighbours of the predicted vector, to determine
whether the concept word for the ground-truth vector is retrieved within that set, which we refer to as
a hit. We perform repeated 10-fold cross-validation on the concepts due to the small number of train-
ing samples and average the number of hits across all test folds at each T , for T ∈ [1, 5, 10, 20] in our
evaluations. We perform 5 repeats of each cross-validation. To learn a cross-modal mapping, we report
the results for three different models. A k-nearest-neighbours model with k = 5, ridge regression and
a neural network with one hidden layer. The neural network had a hidden layer of size 1200, Relu ac-
tivations and used the Adam optimiser. We include a neural network as previous work has shown that
they give the strongest performance on this zero-shot cross-modal mapping task (Li and Summers-Stay,
2019). The loss function we use is based on the cosine similarity function from Lazaridou et al. (2014).
For each ground truth property norm representation y ∈ G, with corresponding predicted vector ŷ from
the network parameterised by θ, the loss function is

L(θ) =
∑
y∈G

1

2
(1− cos(y, ŷ)) (3)

Training neural networks on such a small set of data points for zero-shot cross-modal mapping can be
difficult, as several problems arise such as “hubness” (Radovanović et al., 2010), “pollution” (Lazari-
dou et al., 2015a) and neighbourhood structures resembling the input space more than the output (Collell
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Model MEN (104) SimLex999 (48)

Unimodal Vector Representations

ResNet 0.540 0.324
SVD Meta ResNet 0.555 0.360
1ToN Meta ResNet 0.683 0.32

GloVe 0.804 0.210

Multimodal Vector Representations

ResNet + GloVe 0.829 0.322
SVD Meta ResNet + GloVe 0.829 0.316
1ToN Meta ResNet + GloVe 0.846 0.491

Table 3: Spearman ρ correlation with MEN and SimLex999 human similarity benchmarks.

and Moens, 2018). Hence, we perform a hyperparameter search using a small grid of values with 5-fold
cross validation to determine the best set of training parameters. To avoid over-fitting, we determine
crossvalidation performance using Mean Average Precision (MAP). To illustrate this cross-modal map-
pling approach, examples of zero-shot property predictions for held-out images are presented in Figure
3. We also combined the image embeddings with text embeddings to create multimodal distributional
models that have been shown to give better performance on cross-modal mapping (Bulat et al., 2016).
For the text embeddings, we use Spacy’s GloVe vectors (Pennington et al., 2014), from the large English
language model. To build the text+image multimodal models, we concatenate the L2-normalized vectors
from the GloVe embeddings with each of our image-based embeddings, which gives us three multimodal
models in total. The results are presented in Table 2. We see that in all cases, the meta-embeddings out-
perform the embeddings from the penultimate layer of ResNet, and in particular, the 1ToN embeddings
show the best performance. As the number of models being ensembled increases, information can get
lost when concatenating to high dimensionality (Neill and Bollegala, 2018), but with the 1ToN method
the network effectively retains the important information from the ensembled component embeddings
because of the learning objective.

6.3 Semantic Similarity Task
A common benchmark to evaluate distributional semantic models is to directly compare word similarity
scores with human annotator similarity ratings for word pairs. We utilize MEN (Bruni et al., 2012) and
SimLex999 (Hill et al., 2015), for which we have 104 and 48 word pair ratings respectively. In this final
evaluation of the models, we use cosine similarity to score word-pair similarity and then use Spearman
ρ to measure the correlation between embedding word similarities and the human annotator ratings. As
we can see in Table 3, the results again show the same pattern, with the meta embeddings outperforming
the penultimate ResNet layer for both the unimodal and multimodal (text+image) embeddings.

7 Conclusion

We have demonstrated the potential of utilizing interpretable semantic primitives derived from human
property norm data as a tool for investigating the information captured in the latent representations of
deep convolutional neural networks. We reveal that, whilst the widely accepted approach for extracting
visual semantic representations, using the penultimate layer of DCNNs, yields strong representations
of conceptual meaning, they overlook key information generated by the neural network. Instead, we
develop meta-embeddings that encompass all the salient feature information encoded in the represen-
tations produced at all layers of several DCNNs. These new vector space models are not only closer
representations of human conceptual knowledge, but also can be used to build multimodal semantic
models that improve performance on a zero-shot cross-modal mapping task and give better fit to human
semantic similarity benchmarks. Furthermore, the field of meta-embeddings is rich in potential methods
for combining vector space models from different semantic domains, while our research offers empir-
ical evidence that supports our method for constructing meta-embeddings to improve image-based and
multi-modal distributional semantic models.
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Appendix A. Supplementary Figure 4.

Model Encyclo. Functional Taxonomic Visual Perceptual Other Perceptual Overall

AlexNet Representations

AlexNet 20.86 21.91 36.90 32.00 27.07 27.92
SVD Meta AlexNet 27.68 27.81 56.65 42.09 37.62 37.63
1ToN Meta AlexNet 28.40 27.16 54.84 41.67 34.78 37.00

VGG Representations

VGG 25.90 28.74 49.80 39.29 33.34 35.31
SVD Meta VGG 32.51 34.14 64.27 48.26 42.72 43.71
1ToN Meta VGG 33.16 34.93 64.48 48.71 44.47 44.34

ResNet Representations

ResNet 33.09 35.97 61.56 46.84 42.83 44.05
SVD Meta ResNet 32.68 35.92 68.12 50.19 48.22 45.80
1ToN Meta ResNet 34.44 37.45 66.77 51.28 48.25 46.74

DenseNet Representations

DenseNet 16.66 18.02 31.71 24.40 23.07 22.34
SVD Meta DenseNet 28.44 30.35 59.16 43.10 37.88 39.09
1ToN Meta DenseNet 31.10 32.61 59.86 45.64 41.13 41.42

Table 4: Average cross-validation F1 scores ×100 for each model for each of the five property classes.
We have included the results of all four DCNN’s used in the work.

Appendix B. Local Interpretation.
In section 3, we extracted convolutional feature maps from the layers of deep convolutional neural net-
works for a set of images representing several concepts. We then pool these features based on the concept
each image represents, so we could construct semantic representations of word meaning from each con-
volutional layer of the network. By performing a property decoding task on these embeddings, we could
then infer what semantic knowledge the model captures at particular layers of the network. Such an
approach reflects a global interpretation of what information the network captures at each convolutional
layer, and is not based on any particular sample we gave to the network. Thankfully, cross-modal map-
ping provides us with a simple method for interpreting local instances from our visual data.

Mapping Images to Semantic Primitives. When we learn a cross-modal mapping from a distribu-
tional feature space onto the conceptual feature space, the model must learn to map common features
related to a particular concept onto some plausible semantic properties. Because of this, we can use our
trained cross-modal map to predict semantic properties for other instances of the concept, since it has
been trained to map common feature onto some associated conceptual knowledge. For example, if the
model learns to map features it associates as is-red based on images from some concept such as ROSE,
then a new image of a ROSE should still produce features in the convolutional layers that the cross-modal
map similarly identifies as is-red. Furthermore, images of other concepts that also have the property
is-red, such as STRAWBERRY, should be accurately inferred from the model.

For our analysis, we train a ridge regression to map from the convolution layer embeddings of ResNet
onto the conceptual space. After training, we apply the appropriate image preprocessing to the sample
images that we wish to analyse and extract features across all convolutional layers. Since we frame the
task as a regression problem, each predicted conceptual mapping should not only predict the correct
properties for a concept, but also the strength of the production frequency for each concept. Production
frequencies are count-based statistics that reflect the number of times human annotators express that
property as true for a particular concept. For our analysis, we predict the conceptual representation for
each image and take the highest valued dimensions which correspond to some conceptual property. As
there are a large number of layers, we focuses on features at particular intervals of the network, in this
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case, layers 3, 15, 27 and 35 of ResNet.

(a) Predictions from ResNet
convolution layer 3

(b) Predictions from ResNet
convolution layer 15

(c) Predictions from ResNet
convolution layer 27

(d) Predictions from ResNet
convolution layer 35

Figure 4: Top property predictions based on the image of a car with features extracted from ResNet. Each
colour represents a feature category: Taxonomic , Visual Perceptual , Functional and Encyclopaedic .

Concept: Car. We first chose an image of the concept CAR (displayed in Figure 4). As we can see
the lower layers are dominated by visual perceptual properties, with more high-level properties eventually
emerging in the upper layers of the network. Furthermore, the lower layers of the network tend to focus
on shape, colour and form across the entire image. We can observe this in the fact that the cross-modal
map detects properties such as made-of-wood, is-green and has-leaves, a consequence of the model
detecting the trees in the background. Notice also that the dimensions of the object become more precise
as we move to the middle layers, with features such as is-small and is-circular-round appearing at the
start, while ‘is-big-large appears in the later layers. Not only do these upper layers predict more complex
notions about the concept such as made-a-metal or is-expensive, but the attention of these features tend
to be solely related to the central object in the image, in this case, a car.

Concept: Guitar. Next, we chose an image of the concept GUITAR (displayed in Figure 5), which
is another one of the concepts in our lexicon, though is not directly taken from the training data. We see
that the model detects some visual properties in the lower layers, which it assumes is related to another
high-level concept, an animal. We can see this from the top prediction being is-an-animal and other
features related to animals such as has-a-tail and has-fur-hair. It is not surprising that there is a high
degree of association between certain properties in the norming study, since many related to particular
taxonomies, in this case, is-an-animal. Nevertheless, as we move through the network the trajectory of
the prediction quickly becomes more related to a guitar, though is-an-animal is still predicted in the top
ten features. As we can see, these models generalise quite well to other images and can still decode
complex features related to conceptual categories.

Concept: Fruit. Next, we chose an image of the concept FRUIT (displayed in Figure 6), which is
neither taken from the training data or the lexicon, but instead consists of many concepts from the data
such as APPLE, BANANA and KIWI. Here we want to analyse how our cross-modal model copes with
multiple instances of the concepts. Here, we see that the model can quickly detect visual properties such
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(a) Predictions from ResNet
convolution layer 3

(b) Predictions from ResNet
convolution layer 15

(c) Predictions from ResNet
convolution layer 27

(d) Predictions from ResNet
convolution layer 35

Figure 5: Top property predictions based on the image of a guitar with features extracted from
ResNet. Each colour represents a feature category: Taxonomic , Visual Perceptual , Functional and

Other Perceptual .

as is-yellow, is-red and is-small, though other high-level properties emerge such as is-eaten-edible and
is-a-fruit. Again, is-an-animal emerges as a property, which may be due to bias in the model towards
high occurring properties.

Concept: Wampimuk. Finally, we chose an imagined concept, known as a WAMPIMUK (displayed
in Figure 7). A Wampimuk is a fictitious concept proposed by Lazaridou et al. (2014), to convey how
context can shape our perception of a concept, even if we have never heard of it before. Humans are
capable of building complete semantic representations for concepts, even when the information is frag-
mented (Kivisaari et al., 2019b). Hence, a sentence like ”We found a cute, hairy wampimuk sleeping
behind the tree” can communicate a lot of information about what a wampimuk might be, in this case,
a small furry animal. The authors create a potential image of such an animal that does not exist, yet we
can extract properties about the concept just as well. Hence, we also examine the convolutional layers
of the network when given such a creature, to determine whether reasonable semantic properties can be
captured by our cross-modal model. We see that the network produces features that the cross-modal map
detects as salient aspects of the image such as is-small and has-fur-hair. Furthermore, the model can
detect conceptual knowledge related to this imaginary creature based on the context of this information.
For example, in the lower layers, has-a-tail is predicted by the cross-modal map, even though there is
no evidence of this in the picture, yet it would make sense for a small creature. As we move to the final
layer of the network, we can even see complex taxonomies emerge, such as is-a-mammal that is quite
plausible.
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(a) Predictions from ResNet
convolution layer 3

(b) Predictions from ResNet
convolution layer 15

(c) Predictions from ResNet
convolution layer 27

(d) Predictions from ResNet
convolution layer 35

Figure 6: Top property predictions based on the image of fruit with features extracted from
ResNet. Each colour represents a feature category: Taxonomic , Visual Perceptual , Functional and

Other Perceptual .

(a) Predictions from ResNet
convolution layer 3

(b) Predictions from ResNet
convolution layer 15

(c) Predictions from ResNet
convolution layer 27

(d) Predictions from ResNet
convolution layer 35

Figure 7: Top property predictions based on the image of a wampimuk with features extracted from
ResNet. Each colour represents a feature category: Taxonomic , Visual Perceptual , Functional and

Other Perceptual .
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