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Abstract

As a conversational intelligence task, visual dialog entails answering a series of questions
grounded in an image, using the dialog history as context. To generate correct answers, the
comprehension of the semantic dependencies among implicit visual and textual contents is crit-
ical. Prior works usually ignored the underlying relation and failed to infer it reasonably. In
this paper, we propose a Visual-Textual Alignment for Graph Inference (VTAGI) network. Com-
pared with other approaches, it makes up the lack of structural inference in visual dialog. The
whole system consists of two modules, Visual and Textual Alignment (VTA) and Visual Graph
Attended by Text (VGAT). Specially, the VTA module aims at representing an image with a
set of integrated visual regions and corresponding textual concepts, reflecting certain semantics.
The VGAT module views the visual features with semantic information as observed nodes and
each node learns the relationship with others in visual graph. We also qualitatively and quanti-
tatively evaluate the model on VisDial v1.0 dataset, showing our VTAGI outperforms previous
state-of-the-art models.

1 Introduction

Cross-modal semantic understanding has become an attractive challenge in natural language processing
and computer vision, inspiring many tasks such as image captioning(Xu et al., 2015; Vinyals et al.,
2015) and visual question answering (VQA)(Antol et al., 2015; Anderson et al., 2018; Shimizu et al.,
2018). However, in these missions, the co-reference between vision and language is usually performed
in a single round and they do not have many interactions with human over a period of time. In 2017,
Das et al. introduced a continuous conversational task, visual dialog(Das et al., 2017). This task needs
an AI agent to answer a sequence of questions based on visually-grounded information and contextual
information from a dialog history.

Recently, a manual investigation(Kim et al., 2020) on the Visual Dialog dataset (VisDial) tried to figure
out how many questions can be answered with images and how many of them need conversation history
to be answered. The investigation shows that around 80% of the questions can be answered with images
and about 20% of the questions need the knowledge from dialog history. Therefore, one of the key chal-
lenges in visual dialog is how to effectively utilize these underlying contents in the textual and visual
information, i.e., input questions, dialog history and input image. In previous works, such as RvA(Niu
et al., 2019) and DAN(Kang et al., 2019), both tended to explicitly reason over past dialog interactions
by referring back to previous references, but they ignored the underlying relational structure which con-
tributes to dialog inference. Nowadays, researchers have attempted to consider the fixed graph attention
or embedding to resolve the problem with structural representations(Zheng et al., 2019; Schwartz et al.,
2019). They focused on the textual modality but neglected the rich underlying information in the image.
In this task, despite its significance to artificial intelligence and human-computer interaction, the agent
requires understanding a series of multi-modal entities, and reasons the rich information in both vision
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Figure 1: An overview of VTAGI. We present two modules, VTA and VGAT. VTA takes the attended
visual features and attended textual features including question and history as inputs, resulting in inte-
grated image representations reflecting semantics of certain objects in the image. VGAT aims to construct
a visual graph combined with textual context. The relations among the nodes are top-5 important. For
example, the most thickest link between the node v1 and vk indicates the most important dependencies
of them. ⊗ and � denote matrix multiplication and element-wise product, respectively.

and language. An ideal inference algorithm should be able to find out the underlying relational structure
and give a reasonable answer based on this structure.

To address aforementioned problem, we pay more attention on visual-textual relation and propose the
VTAGI in Figure 1 to explore potential information for structural inference. The agent will first obtain
the question features, history features and visual features by employing different attention mechanisms.
However, the semantics of the visual features and the textual concepts are usually inconsistent, and the
representations of the image lack of global structural information. Thus, the VTA module is to align
the visual features and global textual contents with their relevant counterparts in each image domain.
As a result, the visual features contain more specific semantic information. For example, in Figure 1,
the visual feature v1 contains the semantic information of “giraffe, only, beside, trees”, because each
visual feature considers all contextual information. In order to infer more reasonably and connect all
of the individual visual features, we design the VGAT module to construct a visual graph that shows
the different relationships among various visual features. For example, considering the feature v1 in
Figure 1, the thickest link between the v1 and vk indicates the most important relationship between the
two features. This module learns how to select other nodes related to the current node. In the last step in
this process, each visual feature node in this structural module is connected to its related nodes. Through
the two modules, the final visual features possess more related information and they are intra-connected
in the graph, which are beneficial to inference.

2 Related Work

Visual Dialog. Most studies on the task of visual dialog introduced by Das et al.(Das et al., 2017) can
be categorized into four groups. Fusion-based Models: late fusion (LF)(Das et al., 2017) and hierar-
chical recurrent network (HRE)(Das et al., 2017) directly encoded the multi-modal inputs (image, ques-
tion, dialog history) and decoded the answer. Attention-based Models: memory network (MN)(Das
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et al., 2017), history-conditioned image attention (HCIAE)(Lu et al., 2017), sequential co-attention
(CoAtt)(Wu et al., 2018) and synergistic co-attention network (Sync)(Guo et al., 2019) computed at-
tended representations of inputs. Visual Co-reference Resolution (VCoR)-based Models: attention
memory (AMEM)(Seo et al., 2017), neural module networks (CorefNMN)(Kottur et al., 2018), recur-
sive visual attention mechanism (RvA)(Niu et al., 2019) and dual attention network (DAN)(Kang et al.,
2019) , these solutions clarified ambiguous expressions (e.g., he, she, they) in the text and focused on
explicit visual co-reference resolution. Graph-based Models attempt to construct some structures to
obtain more underlying information. Zheng et al.(Zheng et al., 2019) designed a structural inference
model based on an EM-style (expectation-maximization) GNNs (graph neural networks) to conduct the
textual co-reference. Schwartz et al.(Schwartz et al., 2019) proposed a factor graph mechanism and con-
structed the graph over all the multi-modal features. Guo et al.(Guo et al., 2020) utilized the word-level
attention of question to construct a context-aware graph. The aforementioned graph-related models did
not highlight the visual features and their relationships. While, in our work, which also belongs to the
forth group, building a relational graph based on visual objects can contain more information.

Visual-semantic Alignment. In image captioning, Karpathy and Li(Karpathy and Fei-Fei, 2015)
introduced the notion of visual-semantic alignment, which was based on a novel combination of Convo-
lution Neural Network over image regions, bidirectional Recurrent Neural Network over sentences and a
structural objective that aligned two modalities through a multi-modal embedding. In the field of VQA,
some recent efforts(Nam et al., 2017; Kim et al., 2018; Nguyen and Okatani, 2018; Ben-Younes et al.,
2017) have also been dedicated to studying similar alignment between image and question. To acquire
integrated image representations, they normally aligned the visual features and textual concepts, which
were beneficial to explore the latent relation. In this paper, we align heterogeneous modalities (image,
question and history) based on distinct attention mechanisms, to make each region in the image pos-
sessing more specific and detailed contents. Especially, we make the visual features contain two levels
of semantic information. By adding history features, the visual features can acquire the global textual
information. And through integrating question features, visual features also get the logical contents.

Graph Neural Network. The concept of graph neural network (GNN) was first proposed by (Scarselli
et al., 2008), who extended existing neural networks for processing the data represented in graph domain.
GNNs have been applied in various tasks (Gu et al., 2019; Li et al., 2019; Liu et al., 2018; Wang et al.,
2019; Zheng et al., 2019). The core was to combine the graphical structural representation with neural
networks. The GNN follows a strategy that controls how the representation vector of a node calculated by
its neighboring nodes to capture specific patterns of a graph. The neighborhood connectivity information
in GNNs is unrestricted and potentially irregular, giving them greater applicability than convolutional
neural networks (CNNs), which impose a fixed regular neighborhood structure. In this paper, we ap-
ply GNN to learn the relation among visual features with multi-modal contexts for inferring answers.
Through this GNN, each visual feature can connect with other associated features.

3 Proposed Approach

In this section, we firstly define the visual dialog task as in Das et al.(Das et al., 2017). Formally, a visual
dialog agent takes image I, question Qt and dialog history Ht as input. Among them, the Qt is asked in
the current round t. The Ht is consist of Q&A pairs till round t-1, while in the first round it only contains
the caption C about the image I. The agent is required to return an answer At={At

1, At
2, · · · , At

100} to the
Qt, by ranking a list of 100 candidate answers in a discriminative manner.

We will present the language features and the image features in section 3.1, followed by section 3.2
describing VTA module. Finally, the detailed information of VGAT module is provided in section 3.3.

3.1 Feature Representation

Language Features. We first embed each word in the question Qt as WQ={wt,1, wt,2, · · · , wt,T } by
using GloVe(Pennington et al., 2014) embeddings, where T denotes the number of tokens in Qt. Then
we use a Bi-LSTM to encode WQ into a sequence UQ={qt1, qt2, · · · , qtT }. Similarly, we get the history
embedding vectors as WH and the sequence representation of UH={hi}t−1i=0. We then adopt the attention
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mechanism(Vaswani et al., 2017) of Eq.1 to obtain the question features Q by setting the inputs QA, KA,
VA as UQ. In the same way, the history features H attended by the question Q can also utilize Eq.1,
but the inputs KA and VA come from UH and the QA come from attended vectors of Q. As shown in
Figure 2, the question features pay particular attention to pronouns and nouns, such as “it”, “zoo”. The
history questions, attended by question, pay more attention to global and logical content, such as “giraffe
beside trees”, “No people”.

Att(Q,K, V ) = softmax(
QAK

T
A√

dk
)VA (1)

Visual Features. Inspired by bottom-up attention(Anderson et al., 2018), we use Faster R-CNN(Ren
et al., 2015) to extract object-level image features of {v1, v2, · · · and vk}. Firstly, we fuse the question
and history features by matrix multiplication of Eq.2. Then, co-attention(Lu et al., 2016) of Eq.3 is
exploited to get the attended visual features V. The C is the affinity matrix, Hv is the image attention
maps. In this paper, we select top-k region proposals from each image, where k is simply fixed as 36.

Q H = UQ ⊗H (2)

C = tanh(Q HTWbV );

Hv = tanh(WvV + (WQ HQ H)C);

αv = softmax(W T
HH

v);

V =

k∑
i=1

αv
i vi

(3)

3.2 Visual and Textual Alignment
In most previous works for this area, visual features generally contain low-level visual information and
are difficult to align with textual contents. The purpose of the VTA is to form accurate alignment between
the visual regions and the textual words. For this purpose, the global textual concepts are introduced
to compensate the lack of high-level semantic information in visual features. As shown in Figure 2,
to obtain the final visual features with matched semantic features, such as v1 matches with “giraffe
only, beside trees”, we deal with the history and question features successively. We adopt the attention
mechanism from Vaswani et al.(Vaswani et al., 2017) to learn the correlated features in a certain domain
by querying the other domain. The multi-head attention is composed of h parallel heads and each head
is formulated as a scaled dot-product attention. We evaluate the alignment between visual and history
features as follows:

Atti(V,H) = softmax(
VWQ1

i (HWK1
i )T√

dk
)HW V1

i (i = 1, 2, · · · , h) (4)

where V ∈ Rk×dh and H ∈ Rt×dh for k visual features and t history features respectively; WQ1
i , WK1

i ,
WV1

i ∈ Rdh×dk are learnable parameters of linear transformations; dh = 256 is the size of input features
and dk = dh/h (h=8) is the size of the output features for each attention head. Results from each head are
concatenated and passed through a linear transformation to construct the output:

V ′ =MultiHead(V,H) = [Att1(V,H), Att2(V,H), · · · , Atth(V,H)]W o1 (5)

the Wo1 ∈ Rdh×dk is the parameter to be learned. The multi-head attention integrates t history features
into k visual features. In this step, the features correspond to the global textual features. As illustrated in
Figure 2, the vk matches with “trees, yes, giraffe”. Similarly, we integrate t question features into k visual
features of Eq.6 and Eq.7, which make the feature vk adding “fence, no” logical semantic information.
The equations are as follows:

Atti(V
′, Q) = softmax(

V ′WQ2
i (QWK2

i )T√
dk

)QW V2
i (i = 1, 2, · · · , h) (6)
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Figure 2: Visual and Textual Alignment(VTA) module. We first integrate the attended visual features
and history features as inputs to get global semantic information. For example, the vk is first matched
with “trees yes, giraffe”. Next, the question features will be deployed to compensate the logical semantic
information for the visual features. For example, the logical semantic features (“fence no”) correspond-
ing to the vk are added, and the logical information is underlined in green. The v1, v2, · · · and vk are
visual features matched with certain textual contents.

Vf =MultiHead(V ′, Q) = [Att1(V
′, Q), · · · , Atth(V ′, Q)]W o2 (7)

Finally, the visual features Vf contain more consistent semantic features including global and logical
contexts, resulting in the following graph construction more accurately and effectively.

3.3 Visual Graph Attended by Text

The previous VTA module ensures that the refined visual features only contain homogeneous informa-
tion. For example, the visual features vk in Fig.2 only contains related information of “fence no”, but
not the “only”. Whereas, the visual features are independent and isolated. In order to establish the latent
connection among them, we introduce a VGAT module. This module aims to build a graph which takes
both visual and textual contents into account. Here, we build the visual graph by finding the visual rela-
tionships in the sentence/word-level textual information and corresponding semantics in visual features.
The construction of the graph is denoted as G={Vf ,ε}, where the node vi denotes a joint visual feature;
the directed edge εi→j represents the relational dependency from node vi to node vj (i, j = 1, 2, · · · , k).

From the Figure 3 in step Si (i = 0, 1, · · · , k), it shows that the construction of the graph has two
textual operations with different colors. The graph is denoted as G(i)={Vf ,ε(i)}:

{
G(i=0) = [Vf ;Ts]

G(i>0) = [G(i−1);T i
w]

(8)

where [;] is the concatenation operation; Ts is the visual-related textual feature in the sentence-level
stage; Ti

w is the textual features in word-level stage. To construct the original visual graph in S0 by
introducing sentence-level information, we first calculate the question and history features attended by
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Figure 3: Visual Graph Attended by Text (VGAT) module. In two different stages, we use different colors
to represent different textual operations influencing the construction of visual graph. For example, in step
S0, we construct the graph based on the visual features that are guided by sentence-level question and
history features with pink link. In step S1, to select some related neighbor visual features, we focus on
the feature v1 and integrate the word-level textual features shown in blue link. The thicker the connection
between nodes, the more important the relationship between them. Finally, in step Sk, we focus on the
feature vk and the whole VGAT module is finished.

visual features that are generated from VTA module. Then concatenate the two textual features.
Qf =MultiHead(Q,Vf );

Hf =MultiHead(H,Vf );

ε(i=0) = Ts = [Qf ;Hf ]

(9)

The next step Si (i>0), we adopt the word-level textual features, so the Ti
w is defined as follows:

Z(i)
q = L2Norm(f (i)q Q);

α(i)
q = softmax(W

(i)
Q Z(i)

q );

q(i)w =

t∑
j=1

α
(i)
q,jwqj

(10)



Z
(i)
h = L2Norm(f

(i)
h H);

α
(i)
h = softmax(W

(i)
H Z

(i)
h );

h(i)w =

t−1∑
j=0

α
(i)
h,jwhj

(11)

ε(i>0) = T (i)
w = [q(i)w ;h(i)w ] (12)

where f(i)q (·) and f(i)h (·) denote a two-layer MLP and W(i)
Q and W(i)

H are independently learned in the i-th
step. The wqj and whj

are the component of the question embedding WQ and history embedding WH

introduced in section 3.1.
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Next, we describe the correlation among different nodes in the graph G. We define A(i) ∈ Rk×k as the
adjacency correlation matrix of the G(i). In the matrix, the value A(i)

p→q represents the connection weight
of the edge ε(i)p→q. {

A(i=0) = (W1G
(i=0))T ((W2G

(i=0) � (W3Ts);

A(i>0) = (W1A
(i−1))T ((W2G

(i) � (W3T
(i)
w ))

(13)

where W1, W2, W3 are learnable parameters, and � is the element-wise product.
It is a fact that there are always only a part of the detected objects in the image related to the similar

textual contents. Therefore, the node at each step in the graph is required to connect with the most
relevant neighbor nodes. In order to obtain a set of relevant nodes R(i) in G(i) (i =1, 2, · · · , k), we
adopt a ranking method as : R(i) = top-5(A(i)), where top-5 returns the indices of the 5 largest values
in the matrix of A(i). The R(i) retains the most relevant nodes attributing to the final answer inference.
Finally, the learning on each node in the graph not only integrates visual and textual features, but also
involves context-visual relational learning. In this module, we establish links among all independent
visual features.

Finally, we learn the representation of text and visual features with et which is fed into the discrimi-
native decoder, 

zg = tanh((WgR
(i)) + bg);

αg = softmax(Pgzg);

evg =
k∑

i=0

αg,iR
(i)

(14)

et = tanh(We[Q,H, evg]) (15)

where, Wg, bg, We, Pg are learnable parameters. Q, H are attended textual features described in section
3.1, evg denotes the attended graph visual representation.

4 Experiments

4.1 Dataset and Evaluation Metrics

We evaluate the proposed approach on VisDial v1.0(Das et al., 2017), which includes additional 10k
coco-like images from Flicker compared with v0.9(Das et al., 2017). The collection of dialogs on Flicker
images is similar to that on MS-COCO images(Lin et al., 2014). The train, validation, test sets in v1.0
dataset contain 123k, 2k and 8k dialogs, respectively. Different from train and validation sets in v1.0
where each image is associated with a 10-round Q&A pair, the dialog in the test set has a random length
within 10 rounds.

We follow(Das et al., 2017) to evaluate the response at each round. Specially, the dialog agent is given
a list of 100 candidate answers, the model is expected to rank over the candidates and return a ranked list
for further evaluation. The standard retrieval metrics are: mean rank evaluates the ground truth response
(Mean), recall@K (K=1, 5, 10) evaluates where the ground truth is positioned in the sorted list(R@K),
mean reciprocal rank evaluates the precision of the model by ranking where a ground truth answer is
positioned (MRR), and normalized cumulative gain evaluates relative relevance of the predicted answers
(NDCG). Higher value for R@K, MRR and NDCG is better, while lower value for Mean is better.

4.2 Quantitative Results

Comparing Methods. We compare our proposed model with the state-of-the-art approaches on VisDial
v1.0 dataset. Based on the design of encoders, these methods can be grouped into: Fusion-base Models
(LF and HRE(Das et al., 2017)), they fused image, question and history features at different stages;
Attention-based Models (MN(Das et al., 2017) and Sync(Guo et al., 2019)), they established attention
mechanisms over image, question and history; VCoR (Visual Co-reference Resolution) based Models
(CorefNMN(Kottur et al., 2018), RvA(Niu et al., 2019), DAN(Kang et al., 2019) and HACAN(Yang
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Table 1: Retrieval performance of our model on the VisDial v1.0 test set. In this table, there are four
ways to solve the task of visual dialog. The value of NDCG, MRR and R@N, the higher the better. The
lower of the value of Mean is better. Our VTAGI outperforms all other models across all metrics on the
dataset.

Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
Fusion-based Models

LF(Das et al., 2017) 51.63 60.41 46.18 77.80 87.30 4.75
HRE(Das et al., 2017) 45.46 54.16 39.93 70.45 81.50 6.41

Attention-based Models
MN(Das et al., 2017) 47.50 55.49 40.98 72.30 83.30 5.92
Sync(Guo et al., 2019) 57.32 62.20 47.90 80.43 89.95 4.17

VCoR-based Models
CorefNMN(Kottur et al., 2018) 54.70 61.50 47.55 78.10 88.80 4.40
RvA(Niu et al., 2019) 55.59 63.03 49.03 80.40 89.83 4.18
DAN(Kang et al., 2019) 57.59 63.20 49.63 79.75 89.35 4.30
HACAN(Yang et al., 2019) 57.17 64.22 50.88 80.63 89.45 4.20

Graph-based Models
GNN(Zheng et al., 2019) 52.82 61.37 47.33 77.98 87.73 4.57
FGA(Schwartz et al., 2019) 52.10 63.70 49.58 80.97 88.55 4.51
CAG(Guo et al., 2020) 56.64 63.49 49.85 80.63 90.15 4.11
Ours 58.02 64.90 51.18 82.00 90.69 3.97

et al., 2019)), they focused on explicit visual co-reference resolution based on textual features; Graph-
based Models (GNN(Zheng et al., 2019), FGA(Schwartz et al., 2019) and CAG(Guo et al., 2020)), they
proposed graph structure to explore more information from different modalities. The first two ways
did not fully integrate textual information and image information. And the third way, the extracted
information was too scattered and lacked structural guidance.

Results on VisDial v1.0. As shown in Table 1, our VTAGI outperforms the state-of-the-art method
across all the metrics. We mainly compare our method with the graph-based ones. GNN(Zheng et al.,
2019) constructed a graph exploring the dependencies among the textual-history. In contrast, our model
builds a graph about the visual-objects integrated with question-history contexts. Compared with GNN,
our model achieves 5.2% improvements on NDCG. FGA(Schwartz et al., 2019) constructed a graph,
which simply combined representations of all modalities. In contrast, our method focuses more on the
relationships among visual features. Compared with FGA, our model achieves about 6% improvements
on NDCG. CAG(Guo et al., 2020) achieved the best performance on the metric NDCG based on the graph
method for visual dialog, which designed a visual graph guided by the current question. However, our
construction of visual graph guided by the different (sentence/word) levels question and history features
at different stages and our method is more accurate in information extraction because of the operation
of alignment. Specifically, compared with CAG(Guo et al., 2020), our result lifts NDCG from 56.64 to
58.02. In Fig. 4, we show four examples of our graphical inference. For convenience, in these examples,
we only show top-2 related objects. Each example has three processes of P1, P2 and P3. For example,
in Fig. 4(a), the P3 means that the dialog history already includes C, Q1&A1, Q2&A2 and the current
question is Q3. In this process, the more important relationships are between the boy and his clothes.
Thus, the agent can relate the boy to his clothes, and infer the answer to Q3 is “Yes.”.

4.3 Ablation Study

In this section, we perform ablation study on VisDial v1.0 dataset with the following two model vari-
ants: Model only using VGAT module (B+VGAT) and Model only using VTA module (B+VTA). The
baseline model (B) was introduced by Niu et al.(Niu et al., 2019), which proposed a novel attention
mechanism RvA to capture question-relevant dialog history but ignored the structural visual inference
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Figure 4: Visualization results of our model. It shows the relationships among various regions in the
given image, and those values on links are calculated through the semantic in contextual and visual
information. The higher the value, the thicker the line, the more important the relationship between the
two objects. Different objects are linked with different colored lines. For example, in (c) P3, the question
Q3 focuses on the bed in the given image. In the visual graph, we can see the object “bed” is connected
to “quilt” and “pillow” with two lines having the higher weights of 0.42 and 0.38, respectively.

based on semantics. In our work, the main system not only aligns the visual and textual contents, but
also constructs a visual relational features graph for effective inference. The B+VTA+VGAT(w/o ques-
tion) and the B+VTA+VGAT(w/o history) confirm the importance of question and history information
in VGAT module, respectively. In Table 2, B+VGAT and B+VTA improve the NDCG by about 2%
respectively. Meanwhile, the combined architecture (B+VGAT+VTA) raises the NDCG from 55.59% to
58.02%.

Our ablation experiments illustrate the necessity and rationality of each part in our model. The VTA
allows the visual representations to describe salient image regions with semantic perspective through
the alignment between textual and visual features. This module provides more underlying information
in image, thus the following module VGAT can make use of the information in both textual and visual
features to learn the relationships among all features in the given image. The VGAT makes the visual
features more fine-grained and correlational, and the structure of visual graph is helpful for answer
inference. From the experimental results, our method is superior to the baseline and those models based
on the graph method.

5 Conclusion

In this paper, we introduce Visual-Textual Alignment for Graph Inference (VTAGI) network based on
graph method for the visual dialog task. Rather than relying on the visual attention maps in prior works,
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Table 2: Ablation analysis of our proposed model. B means the Baseline Model. B+VGAT and B+VTA
indicate the usage of different modules. And their performances are implemented on VisDial v1.0.
Results highlighted in bold in the last column combine both two modules and it achieves the best perfor-
mance.

Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
B 55.59 63.03 49.03 80.40 89.83 4.18
B+VGAT 57.60 64.64 50.86 81.87 90.47 3.99
B+VTA 57.59 64.78 51.10 81.72 90.42 4.00
B+VTA+VGAT(w/o question) 57.46 64.20 50.97 81.96 90.51 4.13
B+VTA+VGAT(w/o history) 57.83 64.39 51.15 81.83 90.37 4.02
B+VGAT+VTA 58.02 64.90 51.18 82.00 90.69 3.97

VTAGI introduces alignment operation influenced by textual information and graph neural network ap-
proach. Our method is committed to obtaining more fine-grained and semantic-grounded image presen-
tations with the help of linguistic clues. We empirically validate our proposed model on VisDial v1.0
dataset. Results show that our method is able to find and utilize underlying information for dialog infer-
ence, demonstrating its effectiveness. In future work, we aim to integrate positional relationships among
visual objects by understanding the context.
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