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Abstract

Emotion-cause pair extraction (ECPE), which aims at simultaneously extracting emotion-cause
pairs that express emotions and their corresponding causes in a document, plays a vital role in
understanding natural languages. Considering that a cause usually appears around its correspond-
ing emotion, we construct a pair graph and a Pair Graph Convolutional Network (PairGCN) to
model dependency relations among local neighborhood candidate pairs. Moreover, in our pro-
posed graph, there are three types of dependency relations and each type of dependency relations
has its own way to propagate contextual information. Experiments on a benchmark Chinese
emotion-cause pair extraction corpus demonstrate the effectiveness of the proposed model.

1 Introduction

Emotion-cause pair extraction (ECPE), which was first proposed in Xia & Ding (2019), aims to ex-
tract emotion expressions and their corresponding causes in a document simultaneously. Different from
emotion cause extraction (ECE) (Lee et al., 2010; Gui et al., 2016) which extracts the causes for given
emotion expressions, EPCE is a much more challenging task.

There has been a surging interest in developing neural models either for emotion cause extraction or
for emotion extraction, while ECPE, as a special causal relation extraction task, is newly proposed and
remains largely unexplored. Previous research on ECPE (Xia and Ding, 2019) focused on designing
pipeline systems in which emotion clauses and cause clauses are extracted separately, and the two sets of
clauses are paired to generate candidate emotion-cause pairs, and then emotion-cause pairs are selected
from these candidate pairs with a filter. Hence, prediction errors unavoidably accumulate through the
pipeline framework. Therefore, in this work, we aim to design an end-to-end framework in which any
two clauses in a document are paired (i.e., one is a candidate emotion clause, and the other is a candidate
cause clause) so as to generate candidate emotion-cause pairs and then emotion-cause pairs are selected
from these candidate pairs. E.g., in Fig. 1, there are 25 candidate pairs, and only (c4, c2) and (c4, c3) are
emotion-cause pairs.

Furthermore, modelling contextual information for a candidate pair is also crucial for ECPE. In previ-
ous pipeline systems (Xia and Ding, 2019), two features were extracted for each clause in a document for
emotion extraction and emotion cause extraction respectively, and then a candidate pair was represented
by the combination of these clause-level features. However, dependency among candidate pairs does not
take into account. In fact, an emotion usually has a few cause clauses occurring within a specific distance
from the emotion expression. E.g, in the Chinese ECPE corpus provided by Xia & Ding (2019), ∼90%
emotions has one and only one cause clause, and ∼96% cause clauses occur within a window size of 2
from their corresponding emotion clauses. The emotion-cause co-occurrence property indicates that in
a local neighborhood if one candidate pair has been detected as an emotion-cause pair, other candidate
pairs are usually non-emotion-cause pairs. Thus, modelling contextual information should consider pair-
level dependency. Here, a local neighborhood refers to a set of candidate pairs whose candidate emotion
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Figure 1: An ECPE example for a document consisting of 5 clauses. There are two emotion-cause pairs
in the document: (c4, c2) and (c4, c3).

clauses are the same, and candidate cause clauses are not far away from each other. In this paper, we
propose a novel Pair Graph Convolutional Network (PairGCN), an end-to-end model for ECPE. We first
construct a pair graph to model three types of dependency relations among the candidate pairs in a local
neighborhood, where a node represents a candidate pair and an edge connecting two nodes represents a
dependency relation between the corresponding two candidate pairs. Then, a Graph Convolutional Net-
work (GCN) is designed to use the three types of edges to propagate contextual information in the pair
graph.

Above all, our main contributions can be summarized as follow:

• We propose a PairGCN model that utilizes an end-to-end framework for ECPE.

• We design a Graph Convolutional Network to model three types of dependency relations among
local neighborhood candidate pairs so as to facilitate the extraction of pair-level contextual infor-
mation.

• Our model is evaluated on a benchmark Chinese emotion-cause pair extraction dataset for three
tasks, i.e., emotion-cause pair extraction, emotion extraction, and emotion cause extraction. Exper-
imental results demonstrate the effectiveness of our PairGCN model.

2 Related Works

In this section, we will briefly summarise related research on emotion cause extraction (ECE), emotion-
cause pair extraction (ECPE), and graph neural networks (GNNs).

2.1 Emotion Cause Extraction and Emotion-Cause Pair Extraction

The task of emotion cause extraction (ECE) which extracts the causes of given emotion keywords has
been intensively studied for years. Most of the previous works focused on contextual information extrac-
tion from the context of the given emotion keyword either with manual rules or with machine learning
methods. Lee et al. (2010) constructed an emotion cause corpus from Sinica Corpus and then built a
rule-based system to extract linguistic features. Based on this corpus, Chen et al. (2010) proposed a
multi-label approach with linguistic patterns that can capture linguistic cues in contexts with manual
rules. Other rule-based feature extraction methods (Neviarouskaya and Aono, 2013; Li and Xu, 2014;
Gao et al., 2015a; Gao et al., 2015b; Yada et al., 2017; Yu et al., 2019) were also proposed to extract
contextual features.

Other than rule-based methods, Gui et al. (2016) constructed a Chinese event-driven ECE corpus with
SINA city news and proposed a convolution kernel-based multi-kernel Support Vector Machine (SVM) to
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extract contextual features from given syntactical trees. Afterward, deep learning has attracted attention
from the ECE research community. Gui et al. (2017) converted the ECE task to a Question Answering
(QA) task and proposed a Convolutional Multiple-Slot Deep Memory Network to store relevant contex-
tual information. Other neural models (Li et al., 2018; Xu et al., 2019) were also proposed to extract
contextual information. Besides, Chen et al. (2018) presented a neural network-based joint approach
for emotion extraction and emotion cause extraction to capture mutual benefits across these two emotion
analysis tasks.

Different from ECE in which emotion keywords are provided before the extraction of their causes,
the task of emotion-cause pair extraction (ECPE) was first proposed in Xia & Ding (2019), in which
emotions and their corresponding causes are extracted at the same time. For this new task, they proposed
a two-step approach, which firstly extracted emotion clauses and cause clauses individually using an
interactive multi-task learning network which consists of two hierarchical BiLSTM networks, and then
each emotion clause was paired with each cause clause and these candidate pairs were filtered by a
logistic regression model. Overall, in the previous works on ECE and ECPE, modelling contextual
information does not consider dependency relations among local neighborhood candidate pairs.

2.2 Graph Neural Networks

The Graph Convolutional Network (GCN) was first proposed in Kipf & Welling (2017) for node classifi-
cation, which operated directly on a graph. After that, Graph Neural Networks have been widely applied
to various NLP tasks, such as relation extraction, aspect-level sentiment analysis, and text classification.
Zhang et al. (2018) used GCNs to capture long-range relations among dependency trees and further
applied a novel pruning strategy to the input trees. Sun et al. (2019) proposed a GCN for aspect-level
sentiment analysis, which propagated both contextual and dependency information from opinion words
to aspect words. In addition, Yao et al. (2019) built a text graph based on word co-occurrence and
document-word relations and then learned a Text Graph Convolutional Network for text classification.
Ghosal et al.(2019) used two layers of GCNs to capture speaker information for emotion recognition in
conversations. In this paper, we attempt to use GCNs to model dependency relations in a local neighbor-
hood so as to capture pair-level contextual information for ECPE.

3 Methodology

In this section, we briefly introduce the definition of ECPE. Then, we describe our PairGCN which mod-
els two types of contexts for ECPE: sequential clause context and pair-level context. The former refers
to the clause sequence in a given document that provides sequential information for each clause, and the
latter refers to the candidate pairs in a local neighborhood which gives dependency information for each
candidate pair. Accordingly, as illustrated in Fig. 2, there are two encoders in our PairGCN: clause-level
context encoder and pair-level context encoder. The clause-level context encoder uses two hierarchical
BiLSTM networks to model the sequential clause context and then extracts an emotion feature and a
cause feature for a clause respectively. The pair-level context encoder uses a Pair Graph Convolutional
Network to model the pair-level context and then extracts a contextual feature for a candidate pair. Fi-
nally, classification assigns a label to a candidate pair according to its feature representation.

3.1 Task Definition

Given a document D = {c1, c2, . . . , cL}, the clauses are formed into a set of candidate emotion-cause
pairs P using the Cartesian product.

P = {. . . , cpi,j , . . . } (1)

cpi,j = (cei , c
c
j) (2)

where cei is clause ci serving as a candidate emotion clause, ccj is clause cj serving as a candidate cause
clause, and there are totally L × L candidate pairs in P . Given a candidate pair cpi,j = (cei , c

c
j), ECPE
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Figure 2: The overview of our Pair Graph Convolutional Network. In a pair graph, solid lines are D1
edges, dashed lines areD2 edges, and SL edges are eliminated for simplification. In addition, blue nodes
represent emotion-cause pairs, and both white nodes and gray nodes are non-emotion-cause pairs.

assigns a binary label, where “1” means that clause cei expresses an emotion and clause ccj provides
the cause of this emotion, and “0” indicates that such an emotion-cause relation does not exist in the
candidate pair. E.g., in Fig.1, (c4, c2) is an emotion-cause pair (with label “1”) and (c4, c5) is a non-
emotion-cause pair (with label “0”).

3.2 Clause-level Context Encoder

For clause ct, we employ a clause-level context encoder to extract two features based on its sequential
clause context: the clause-level emotion feature ve

t when ct serves as a candidate emotion clause, and
the clause-level cause feature vc

t when ct serves as a candidate cause clause. In order to extract the
emotion features and the cause features respectively, the clause-level context encoder consists of two
hierarchical BiLSTM networks (i.e., the cause encoder and the emotion encoder in Fig. 2), and each
hierarchical BiLSTM network consists of a word-level BiLSTM and a clause-level BiLSTM. Finally, for
the document with L clauses, an emotion feature sequence representation ue = {ue

1,u
e
2, . . . ,u

e
L} and a

cause feature sequence representation uc = {uc
1,u

c
2, . . . ,u

c
L} are obtained respectively by the word-level

BiLSTM, and an emotion feature sequence representation ve = {ve
1,v

e
2, . . . ,v

e
L} and a cause feature

sequence representation vc = {vc
1,v

c
2, . . . ,v

c
L} are obtained respectively by the clause-level BiLSTM.

Since the word-level BiLSTM is similar to the one used in Xia & Ding (2019), we omit the details for
limited space and only present our clause-level BiLSTM.

To further capture contextual information for a clause from the perspective of the whole document,
we feed either ue or uc to a clause-level BiLSTM. Moreover, although emotions can be identified solely
without their causes, identifying whether an event is the cause of an emotion could be much difficult if
the relevant emotion information does not be provided. Thus, our clause-level BiLSTM uses different
input to extract emotion features (see Eq. 3) and cause features (see Eq. 4) respectively:

ve
t = BiLSTMe

c(u
e
t ) (3)

vc
t = BiLSTMc

c([u
e
t ,u

c
t ]) (4)

where [, ] is the concatenating function, BiLSTMe
c is a clause-level BiLSTM to extract an emotion

feature ve
t ∈ R2dh , and BiLSTMc

c is another clause-level BiLSTM to extract a cause feature vc
t ∈ R2dh .

3.3 Pair-level Context Encoder

We propose a pair-level context encoder to extract contextual information that can capture dependency
among local neighborhood candidate pairs. We construct a pair graph (e.g., Pair Graph 3 and 4 in Fig. 2)
to model the candidate pairs in a local neighborhood. Then, we design a feature transformation process
(i.e., GCN in Fig. 2) to transform clause-level contextual features into pair-level contextual features.
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Distance Number Percent Distance Number Percent
0 511 23.6 ≤ 0 511 23.6
1 1342 61.9 ≤ 1 1853 85.5
2 224 10.3 ≤ 2 2077 95.8

Table 1: Statistics of distances between emotion clauses and their cause clauses in the Chinese ECPE
corpus (Xia and Ding, 2019).

3.3.1 Pair Graph Construction

Nodes: Given the set of candidate emotion-cause pairs P , each candidate pair is considered as a node.
Moreover, a candidate pair cpi,j = (cei , c

c
j) is represented as vp

i,j which concatenates the emotion feature
ve
i and the cause feature vc

j output from the clause-level context encoder:

vp
i,j = [ve

i ,v
c
j ] (5)

Edges: because the candidate pairs in a local neighborhood have the same candidate emotion clause, we
build a pair graph for the candidate emotion clause. In the case of a document with L clauses, there are
L pair graphs in total. E.g., in Fig. 2, there are 5 pair graphs for a document with 5 clauses. Furthermore,
a cause clause is likely to appear 1 or 2 offset of its emotion clause. E.g., as illustrated in Table 1,
95.8% cause clauses are mentioned within a window size of 2 from their corresponding emotion clauses.
Therefore, during building a pair graph for a candidate emotion clause cei , the nodes in its corresponding
pair graph are:

cpi,[i−2:i+2] = {c
p
i,i−2, c

p
i,i−1, c

p
i,i, c

p
i,i+1, c

p
i,i+2} (6)

Considering that a node has different influences to its neighboring nodes, three types of edges, namely
SL, D1, and D2 edges, are used in a pair graph:

(1) SL edge: This is a self-loop edge for the self-transformation of a node.

(2)D1 edge: This is an edge connecting two nodes which have a distance of 1 between their candidate
cause clauses (e.g., the edges between cpi,i and cpi,i±1).

(3)D2 edge: This is an edge connecting two nodes which have a distance of 2 between their candidate
cause clauses (e.g., the edges between cpi,i and cpi,i±2).

The incorporation of these edges into a pair graph forms the three types of dependency relations among
the candidate pairs in a local neighborhood and allows the contextual information transmit through these
edges, which in succession would facilitate the extraction of the pair-level contextual features.

3.3.2 Feature Transformation

Inspired by Ghosal et al.(2019), we use two layers of GCN (i.e., two transformations) to capture the
contextual information for a node in a pair graph.

For node cpi,j , the first transformation is applied to obtain its representation g1
i,j using the features

output from the clause-level context encoder. Specifically, the features of the nodes in the pair graph are
aggregated with different transformation parameters according to the types of their edges linked to cpi,j :

g1
i,j = σ(

1

z

∑
k∈D1

vp
i,kW

1
D1 +

1

z

∑
t∈D2

vp
i,tW

1
D2 +

1

z
vp
i,jW

1
SL) (7)

where W1
D1 ∈ Rdin×dout , W1

D2 ∈ Rdin×dout , and W1
SL ∈ Rdin×dout are weight matrices for the nodes

linked to node cpi,j withD1 edges,D2 edges, and SL edges respectively. In addition, z is a normalization
factor which is the node degree. σ is a non-linear activation function and ReLU (Nair and Hinton, 2010)
is used in this paper.
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After that, the second transformation is applied to obtain the representation g2
i,j for node cpi,j using the

features output from the first transformation:

g2
i,j = σ(

∑
k∈D1

g1
i,kW

2
D1 +

∑
t∈D2

g1
i,tW

2
D2 + g1

i,jW
2
SL) (8)

where W2
D1 ∈ Rdout×dout , W2

D2 ∈ Rdout×dout , and W2
SL ∈ Rdout×dout are weight matrices for the

normalized nodes linked to node cpi,j .

Compared to the feature transformation process used in Ghosal et al. (2019), we distinguish contextual
information propagation through D1 edges and D2 edges and use different weight matrices to deal with
the two propagations separately. Moreover, using the two transformations plus D2 edges, contextual
information can be propagated between any two nodes with the greatest distance in a pair graph. E.g.,
in Pair Graph 3 in Fig. 2, the information on cp3,1 and cp3,5 can be transmit to each other through the two
transformations which use two D2 edges (i.e., cp3,1↔ cp3,3↔ cp3,5).

3.4 Classification

Emotion-Cause Pair Extraction: Since two clauses in an emotion-cause pair are likely to appear within
a specific distance (see Table 1), distance information needs to be taken into consideration during clas-
sification (Xia and Ding, 2019). Thus, for a candidate pair cpi,j , its representation for classification is the
concatenation of g2

i,j and di,j , where di,j ∈ Rddis is a distance embedding. Then, a softmax function is
applied as follows:

p̂i,j = softmax(WT
p [g

2
i,j ,di,j ] + bp) (9)

where Wp ∈ R(dout+ddis)×dp is a weight matrix, and bp ∈ Rdpout is a bias vector. Finally, we obtain the
predicted probability distribution p̂i,j and the corresponding predicted label ÊCi,j for the candidate pair
cpi,j . During model training, we use Cross-Entropy loss as loss function.

Emotion Extraction and Emotion Cause Extraction: After obtaining the ECPE predictions for all
candidate pairs, we can extract emotion clauses and cause clauses from them. Specifically, for emotion
extraction, the prediction label Êi for clause ci can be obtained as:

Êi =


1, if

L∑
j=1

(ÊCi,j) > 0

0, otherwise

(10)

Similarly, for emotion cause extraction, the prediction label Ĉj for clause cj can be obtained.

4 Experiments

4.1 Datasets and Metrics

We evaluate the performance of our model on a Chinese ECPE corpus released by Xia & Ding (2019),
which was constructed from a benchmark Chinese ECE corpus (Gui et al., 2016). In the Chinese ECPE
corpus, there are 1,945 documents and 490,367 pair candidates in total, including 2,167 emotion-cause
pairs and 488,200 non-emotion-cause pairs. In other words, there are less than 1% emotion-cause pairs
in this corpus.

Similar to previous work (Xia and Ding, 2019), we evaluate our model on three tasks: emotion-cause
pair extraction, emotion extraction, and emotion cause extraction. To obtain statistically credible results,
we use their data-split setting, repeat the experiments 10 times, and then report the average results of
precision (P ), recall (R), and F1-score (F1) to evaluate the performances of our model. Moreover, for
each experiment, we set aside 10% of training documents as development set.
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4.2 Experimental Settings

In our experiments, we follow experimental settings in Xia & Ding (2019), using the same word embed-
dings pre-trained on the corpora from Chinese Weibo 1 with Word2Vec (Mikolov et al., 2013). Moreover,
BERT representations (Devlin et al., 2019) are also utilized, where we use the based Chinese model.
While extracting BERT embeddings, the basic input unit is a clause. Besides, the dimension of distance
embeddings is 50, and other parameters of our models are listed in Table 2. Finally, the learnable param-
eters (including all weight matrices and bias vectors) are randomly initialized by a uniform distribution
of U(−0.01, 0.01).

Word2Vec BERT
# dimension of word embeddings 200 768
# hidden unit of BiLSTM 100 200
# hidden unit of GCN 100 200

Table 2: The experiment settings of our models.

While training, we use the Adam optimizer (Kingma and Ba, 2015) to update all parameters. Each
training batch contains 32 documents, and the learning rate is set to 0.005. To reduce over-fitting, dropout
(Srivastava et al., 2014) is applied to all features vectors, including word embeddings and hidden repre-
sentations, and it is set to 0.5.

4.3 Model Comparison

In order to evaluate the performance of our model, we make a comparison with the following three
pipeline systems (1), (2), and (3), and one end-to-end system (4).

(1) Indep: This is an interactive multi-task learning pipeline system, which extracts emotion clauses and
cause clauses using two hierarchical BiLSTM independently. Then, the two sets of clauses are paired
with each other and emotion-cause pairs are extracted using a filter (Xia and Ding, 2019).

(2) Inter-CE: This is an enhanced version of Indep, which is capable of capturing the correlation between
emotions and causes. While extracting emotion clauses and cause clauses, emotion cause extraction is
used to improve emotion extraction (Xia and Ding, 2019).

(3) Inter-EC: This is another enhanced version of Indep, while it uses emotion extraction to improve
emotion cause extraction during extracting emotion clauses and cause clauses (Xia and Ding, 2019).

(4) Hier-BiLSTM: This is an end-to-end model, which extracts emotion features and cause features
using two hierarchical BiLSTM independently, and the concatenation of an emotion feature and a cause
feature is used to represent a candidate pair. Specifically, the hierarchical BiLSTM is similar to the one
used in our clause-level context encoder, except that the input to the clause-level BiLSTM in the cause
encoder is only the word-level cause feature uc

t (see Eq. 4).

4.4 Results

We first compare our PairGCN model with the three pipeline systems. As shown in Table 3, PairGCN
outperforms all pipeline systems on ECPE. E.g., compared to the best pipeline system (i.e., Inter-EC), the
F1 score of PairGCN rises from 61.28% to 63.21%. Specifically, this performance gain mainly comes
from the improvement on the precision score. Furthermore, PairGCN achieves lower recall and yet
higher precision than Inter-EC on both emotion extraction and emotion cause extraction. This indicates
that although less correct emotion cases and cause cases are detected by our PairGCN model, they are
more likely to be matched with each other so as to lead to a significant increasing in the precision score
of ECPE. Moreover, in terms of emotion extraction, though PairGCN is not trained with only emotion

1https://www.weibo.com/
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Model Emotion Extraction Cause Extraction EC Pair Extraction
P R F1 P R F1 P R F1

Indep* 83.75 80.71 82.10 69.02 56.73 62.05 68.32 50.82 58.18
Inter-CE* 84.94 81.22 83.00 68.09 56.34 61.51 69.02 51.35 59.01
Inter-EC* 83.64 81.07 82.30 70.41 60.83 65.07 67.21 57.05 61.28
Hier-BiLSTM 86.16 66.29 74.80 72.27 55.32 62.48 69.25 53.71 60.30
PairGCN 85.87 72.08 78.29 72.83 59.53 65.41 69.99 57.79 63.21
Hier-BiLSTM-BERT 88.80 74.70 81.00 78.03 65.35 70.96 75.37 64.34 69.26
PairGCN-BERT 88.57 79.58 83.75 79.07 69.28 73.75 76.92 67.91 72.02

Table 3: Experimental results of different models. “EC Pair Extraction” denotes the ECPE task. *
denotes that experimental results are cited from Xia & Ding (2019).

labels, it still shows competitive performance with a F1 score at 78.29%, compared to Inter-CE with the
highest performance 83.0%.

Compared to the end-to-end baseline Hier-BiLSTM, our PairGCN model has great improvement over
the three tasks with two types of embeddings. As shown in Table 3, compared to Hier-BiLSTM (or Hier-
BiLSTM-BERT), the F1 scores of PairGCN (or PairGCN-BERT) on emotion extraction and emotion
cause extraction rise by ∼3%, and as a result, the F1 score on ECPE increases ∼3%. This performance
gain mainly comes from the significant improvement in recall scores on the three tasks. This means
that PairGCN is capable of detecting more emotion-cause pairs with the help of the contextual features
extracted by the pair-level context encoder.

4.5 Ablation Study

To further explore the effects of the three types of edges in our full model (i.e., PairGCN and PairGCN-
BERT), we perform an ablation study and show the results in Table 4.

First of all, we investigate the impact of the pair-level context encoder by removing GCN from our full
model (i.e., PairGCN w/o GCN and PairGCN-BERT w/o GCN). In other words, only features extracted
by the clause-level context encoder (see Eq. 5) are feed to classification. As we can see from Table 4,
compared to our full model, their F1 scores of ECPE drop significantly (∼2%) with the two types of
embeddings. The decreasing performance indicates that the GCN-based feature transformation process
in the pair-level context encoder can effectively augment the effects of the features extracted by the
clause-level context encoder on ECPE. This is also reflected by the improved performances of the other
two tasks, i.e., emotion extraction and emotion cause extraction.

Secondly, from Table 4, we observe that after removing one type of edges (i.e., either D1 or D2)
from our full model, the overall performance of ECPE degrades. E.g., for models removing D1 (i.e.,
PairGCN w/o D1 and PairGCN-BERT w/o D1), their F1 score drops 0.9% and 0.7% with Word2Vec
embeddings and BERT embeddings respectively. For models removing D2 (i.e., PairGCN w/o D2 and
PairGCN-BERT w/o D2), their F1 score drops ∼1.4% with the two types of embeddings. This indicates
that the contextual information which is propagated either through D1 edges or through D2 edges in
the pair-level context encoder is very useful for ECPE. Furthermore, compared to models removing D1,
models removing D2 perform worse. Compared to D1 edges, D2 edges allows contextual information
propagate more straightforward because of their greater distance and their own weight matrices (see
Section 3.3.2), and therefore, the pair-level contextual information is effectively captured for ECPE.

Finally, compared to models removing D2 (i.e., PairGCN w/o D2 and PairGCN-BERT w/o D2) , the
performances of models removing both D1 and D2 (i.e., PairGCN w/o D1&D2 and PairGCN-BERT
w/o D1&D2) decrease slightly. This also confirms that it is necessary to distinguish D1 edges and D2
edges in a pair graph because of their different ways to propagate contextual information. Although
information propagation through D1 edges and information propagation through D2 edges are relevant,
they are not interchangeable. E.g., in Pair Graph 3 in Fig. 2, information propagation between cp3,1 and
cp3,3 can be made through either of the two paths: the combination of two D1 edges (i.e., cp3,1 ↔ cp3,2



206

Model Emotion Extraction Cause Extraction EC Pair Extraction
P R F1 P R F1 P R F1

PairGCN 85.87 72.08 78.29 72.83 59.53 65.41 69.99 57.79 63.21
PairGCN w/o D1 85.90 70.89 77.56 72.34 58.45 64.52 69.23 56.59 62.15
PairGCN w/o D2 85.79 72.03 78.20 71.35 58.85 64.36 68.18 56.83 61.85
PairGCN w/o D1&D2 86.44 68.13 76.10 73.19 57.14 64.06 70.27 55.35 61.81
PairGCN w/o GCN 87.31 66.93 75.72 73.73 56.00 63.57 70.90 54.23 61.37
PairGCN-BERT 88.57 79.58 83.75 79.07 69.28 73.75 76.92 67.91 72.02
PairGCN-BERT w/o D1 89.66 77.01 82.66 80.25 67.14 72.88 78.07 66.01 71.31
PairGCN-BERT w/o D2 87.91 78.93 82.99 77.79 68.69 72.69 75.17 67.16 70.66
PairGCN-BERT w/o D1&D2 88.39 77.50 82.45 78.21 67.87 72.49 75.68 66.46 70.59
PairGCN-BERT w/o GCN 89.64 75.18 81.60 79.08 65.46 71.43 76.77 64.39 69.85

Table 4: Ablation analysis on PairGCN and PairGCN-BERT.

↔ cp3,3), and a D2 edge (i.e., cp3,1 ↔ cp3,3). During propagation, the first path brings more information
because of passing more nodes (e.g., cp3,2), and the second path is more straightforward.

5 Conclusion and Future Work

In this paper, we propose a novel end-to-end Pair Graph Convolutional Network (PairGCN) to extract
pair-level contextual features for emotion-cause pair extraction. Experimental results indicate the capa-
bility of our PairGCN in capturing dependency among local neighborhood candidate pairs. In the future,
we would like to tackle the problem of imbalanced data by reducing non-emotion-cause pairs.
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