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Abstract

Visual Question Answering (VQA) remains algorithmically challenging while it is effortless for
humans. Humans combine visual observations with general and commonsense knowledge to
answer a question about a given image. In this paper, we address the problem of incorporating
general knowledge into VQA models while leveraging the visual information. We propose a
model that captures the interactions between objects in a visual scene and entities in an exter-
nal knowledge source. Our model is a graph-based approach that combines scene graphs with
concept graphs, which learns a question-adaptive graph representation of related knowledge in-
stances. We use Graph Attention Networks to set higher importance to key knowledge instances
that are mostly relevant to each question. We exploit ConceptNet as the source of general knowl-
edge and evaluate the performance of our model on the challenging OK-VQA dataset. Our code
will be available at https://github.com/ZiaMaryam/KVQA

1 Introduction

The task of Visual Question Answering (VQA) (Antol et al., 2015) was introduced to bridge the gap
between natural language processing and image understanding applications. Most VQA methods focus
on the visual aspect of the VQA task and predict the answer by combining the question and image
representations. However, visual-based approaches are practical when no insights beyond the visual
content is required.

Incorporating external knowledge into VQA models combines visual observations with external
knowledge (Garderes et al., 2020). Organizing the external knowledge and storing them in a struc-
tured database, such as a Knowledge Bases (KB), have become important resources for representing the
general knowledge. A typical KB could be represented as a graph, which is usually a collection of triples
also known as facts. The triples specify that two entities (nodes) are connected by a particular relation
(edge), e.g., (Shakespeare, writerOf, Hamlet) where Shakespeare and Hamlet are en-
tities and writerOf is the relation between the entities. Example of such graph structures are YAGO
(Suchanek et al., 2007), DBpedia (Auer et al., 2007), NELL (Carlson et al., 2010), Freebase (Bollacker
et al., 2008), and the Google Knowledge Graph (Steiner et al., 2012).

In recent years, a significant amount of research has been devoted to visual-based VQA while external
knowledge remains unavailable. To address this challenge, recent work (Wang et al., 2017; Wang et
al., 2018; Shah et al., 2019) generated new datasets for the purpose of evaluating the performance of
VQA algorithms capable of answering higher knowledge level. We use OK-VQA dataset (Marino et al.,
2019) for our experiments since it requires handling outside knowledge. In addition to understanding the
question and the image, the model needs to learn what knowledge is necessary to answer the OK-VQA
questions since no ground-truth facts are provided with the dataset.

In this work, our main motivation is to develop a technique to integrate general knowledge while lever-
aging the relations between objects in the visual scene and entities in the knowledge graph. Exploring
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Figure 1: Model architecture of the proposed approach.

OK-VQA questions, we found questions that need information from visual concepts and beyond. For
instance given question “What vegetable is on the lowermost portion of the plate?” (cf. Fig. 1), we need
to learn what objects are located on the lowermost plate as well as what object among them is vegetable
to retrieve the correct answer “carrot”. In order to capture this type of information, we need to represent
the dynamics and interactions between different objects in an image and entities from a relevant external
knowledge source.

The outline of our proposed model is depicted in Fig. 1. As shown in the figure, we first compute
embeddings for the question and objects detected in the input image. We then construct a Scene graph (Li
et al., 2019) which is a relation representation of visual concepts, where the nodes are the detected objects
(e.g., plate, carrot) and the edges are the relationships between objects (e.g., located). To incorporate the
general knowledge, we design a knowledge retrieval module based on sentence-level similarity scores
and pass the retrieved knowledge entities to a Concept graph. We use Graph Attention Networks (GATs)
(Velickovic et al., 2018) to assign higher weights to those objects and knowledge instances that are
mostly relevant to each question. The outputs of these three steps (question embedding, Scene graph,
and Concept graph) are fused to represent joint language-vision-knowledge embeddings and then fed to
a classifier to predict the answer.

In summary, the main contributions of our work are: 1) Novel methodology to incorporate general
knowledge to VQA models (Figure 1). Unlike existing models, we avoid the step of query construction
and do not use ground-truth facts which makes it feasible to incorporate any knowledge resources to
our model, 2) We use sentence level embeddings to retrieve knowledge instances rather than word level
embeddings which capture the semantic context of the questions and knowledge instances (Section 4.1),
3) We develop Concept graphs using GATs which operate on neighboring to attend to key knowledge
instances (Section 4.2), 4) We use both Scene graphs and Concept graphs to capture the relations between
objects and entities.

2 Related Work

2.1 Scene Graph Representation for Visual Question Answering

Teney et al. (2017) propose a model to build graphs over the scene objects and over the question words.
Each object in the scene corresponds to a node in the fully-connected scene graph, with each edge rep-
resenting the relative position of the objects in the image. They evaluate their proposed model over a
clip-art dataset. Shi et al. (2019) propose a model using scene graphs to represent objects as nodes
and the pairwise relationships as edges for both abstract scenes and real images. The explicit relations
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between objects are not taken into account in their work. Li et al. (2019) propose a VQA model that
encodes each image into a graph and represents explicit and implicit inter-object relations using a graph
attention mechanism. The graph for learning implicit relation is fully-connected and include relative ge-
ometry features. The explicit relation contains visual relationship extracted from Visual Genome dataset
(Krishna et al., 2017). Norcliffe-Brown et al. (2018) propose a graph learner module using Spatial graph
convolutions (Monti et al., 2017). Their model learns a graph representation of the input image that is
conditioned on the question, and models the relevant interactions between objects in the scene.

2.2 Knowledge-based Visual Question Answering

Knowledge-based VQA is still relatively unexplored compared to visual-based VQA. Some methods
(Wang et al., 2017; Wang et al., 2018) convert an input question into fixed templates to query an external
KB and processes the returned knowledge to form the final answer. Narasimhan and Schwing (2018)
and Narasimhan et al. (2018) propose models that retrieves most relevant facts to a question-answer
pair based on word level GloVe embeddings. However, they require ground-truth facts per question to
classify the relation that a given question refers to. Marino et al. (2019) propose ArticleNet for OK-
VQA questions. ArticleNet retrieves articles from Wikipedia for each question-image pair and then
predict whether and where the ground-truth answers appear in the article. While this method handles
external knowledge resources, it requires an expensive hand-crafted process to extract Wikipedia articles
including collecting possible search queries for each question-image pair, using the Wikipedia search
API to get the top retrieved article for each query and extracting a subset of each article that is most
relevant for the query.

3 Problem Formulation

Here is the problem definition of the knowledge-based VQA task: Given a question q ∈ Q grounded in
an image I ∈ I and a knowledge base G, the goal is to predict a meaningful answer a ∈ A. Let Θ be the
parameters of the model p that needs to be trained. Therefore, the predicted answer â of our model is:

â = arg max
a∈A

pΘ(a|I, q,G) (1)

In order to retrieve the correct answer, we aim to learn a joint representation z ∈ Rdz of q, I , and G
such that:

a∗ = â = arg max
a∈A

pΘ(a|z) (2)

where a∗ is the ground-truth answer. dz is a hyperparameter that represents the dimension of the joint
space z. dz is selected based on a trade-off between the capability of the representation and the compu-
tational cost.

4 Our Approach

Our proposed approach is outlined in Fig. 1 which consists of Image Representation, Question Represen-
tation, Knowledge Retrieval, Graph Construction, and Multimodal Fusion modules. We use pre-trained
Faster R-CNN features (Anderson et al., 2017) to extract visual information V = {vi | i = 1, ..., nv},
where each object i is associated with a visual feature vector vi ∈ Rdv and bounding-box coordinates.
For the Question Representation, we use a bidirectional RNN (GRU) and perform self attention on the
sequence of RNN hidden states to generate question embeddings q ∈ Rdq . The following sub-sections
explain the Knowledge Retrieval, Graph Construction, and Multimodal Fusion modules in detail.

4.1 Knowledge Retrieval

Given a question-image pair (q, I), the knowledge retrieval module outputs a set of knowledge entities
E and an adjacency matrix A to capture the relation between the entities. These outputs are obtained
in four steps: i) generating a question-image instance; ii) generating knowledge instances; iii) instance
representation; and iv) knowledge instance ranking. We discuss each of these steps in the following.



1866

Generating question-image instance: We first obtain a question-image instance x by concatenating
tokens of the question q = {wi | i = 1, ..., nt} and object labels L = {li | i = 1, ..., nv} detected in
the image, where nt is the number of tokens. For instance given the question “What vegetable is on the
lowermost portion of the plate?” and object labels “spoon, carrot, meat, plate” detected from the given
image, we obtain x =“ what vegetable is on the lowermost portion of the plate spoon carrot meat plate”.

Generating knowledge instances: We use ConceptNet (Li et al., 2016) as the source of general
knowledge which consists of a set of facts denoted as G = {fi | i = 1, ..., nkb}, where nkb is the number
of facts. In ConceptNet, a fact fi is represented as a triple of the form fi = (r, h, t), where r is a relation
between two entities, h is a head entity, and t is a tail entity. We select 20 most frequent relations among
34 relations in ConceptNet, i.e., r ∈ R = {RelatedTo, FormOf, IsA, PartOf, HasA, UsedFor, CapableOf,
AtLocation, Causes, HasSubevent, HasFirstSubevent, HasProperty, HasPrerequisite, MotivatedByGoal,
DerivedFrom, DefinedAs, SimilarTo, CausesDesire, MadeOf, Desires}.

We pre-process each triple and convert it to a semi-phrase to create knowledge instances y. For ex-
ample, the triple (IsA, carrot, orange vegetable), is converted to “carrot is orange vegetable” after the
pre-processing step.

Instance embedding: We propose to use pre-trained language representation (LR) models to embed
the question-image instance x and knowledge instances y generated in the previous steps. While the
pre-trained LR model such as BERT (Devlin et al., 2018) is an emerging direction, there is little work
on its fusion with the external knowledge in VQA tasks. We are particularly interested in LR models
that are trained for sentence similarity tasks since we use the generated embedding vectors to compute a
sentence level similarity between the question-image instance and each knowledge instances.

We use two state-of-the-art sentence embedding models, i.e, Universal Sentence Encoder (USE) (Cer
et al., 2018) and Sentence-BERT (SBERT) (Reimers and Gurevych, 2019) to generate the question-image
representation x ∈ Rds and knowledge instance representations y ∈ Rnkb×ds . USE presents two models
for producing sentence embeddings. We use the transformer-based model since it works best in our
model. Transformer-based USE uses an attention mechanism to compute context aware representations
of words in a sentence that take into account both the ordering and identity of all the other words. On
the other hand, SBERT is a modification of the pre-trained BERT network that uses Siamese and triplet
network structures to derive semantically meaningful sentence embeddings.

Knowledge instance ranking: We obtain a similarity score per knowledge instance by computing the
cosine similarity of the question-image representation x and knowledge instance representations y. We
rank the knowledge instances y based on the similarity scores and retrieve the top-k knowledge instances
and the corresponding set of k facts, Fk, for each question.

For every question, we extract unique entities E = {ei | i = 1, ..., 2k} from the facts Fk (at most 2
unique entities per fact) and construct an adjacency matrix A that shows the relation between the entities
in each fact. The size of the matrixA is 2k×2k. The value of an entryAij is between 0 and 20 depending
on the type of the relation r between entity i and entity j (0 if entity i and entity j do not belong to the
same fact).

4.2 Graph Construction

In order to capture both inter-object and knowledge entity relations, we construct a scene graph using
objects detected in the image and their relations, as well as a concept graph that represents the explicit
relations between entities. The details of the scene and concept graph construction are as follows.

Scene graph construction: We first construct a scene graph Gs, where nodes are a set of objects
detected in the image and edges show the relation between objects. Given two object regions, the goal
of the scene graph construction is to determine which relation exists between these two regions. We use
pre-trained scene graphs generated by (Li et al., 2019) which includes 14 explicit relations from Visual
Genome dataset (Krishna et al., 2017), with an additional no-relation class. An illustration of the scene
graph is shown in Fig. 2(a).

Inspired by (Krishna et al., 2017), we use an attention mechanism to inject information from questions
into the scene graphs. This is obtained by first concatenating the question embedding q with each of the
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Figure 2: Scene graph and concept graph illustration. The black arrows show the direction of relations
(head → tail) with class labels of relations. Object labels are in green, blue, red, and brown boxes.
Yellow boxes contain entities extracted from external knowledge.

visual features vi to generate node embeddings. Self-attention is then performed on each node to obtain
attended visual features based on the relations between a target object and its neighboring objects. The
attended visual features are added to the original visual feature vi to serve as final visual features V .

Concept graph construction: Our proposed model is designed to incorporate the general knowledge
to the VQA model by integrating the explicit relations between knowledge entities. For questions that
need outside knowledge insights, knowledge instances might have different weights. Therefore in de-
signing the proposed graph, we use a question-conditioned attention mechanism and dynamically assign
higher weights to those knowledge instances that are mostly relevant to each question, instead of treating
all the entities equally.

Considering each entity ei as one node, we construct a concept graph Ge where edges are extracted
from the adjacency matrix A obtained by the knowledge retrieval module (Section 4.1). An illustration
of the concept graph is shown in Fig. 2(b).

We pass the entities ei through a GRU model to generate entity embeddings ei ∈ Rde (de = 1024
in our experiment). To obtain a question-conditioned attention mechanism, we first concatenate entity
embeddings ei with the question embedding q to generate node embeddings:

e′i = [ei||q] for i = 1, ..., 2k (3)

GATs are used to assign different weights to N neighbours of a target node. The graph attention
mechanism is employed by applying multi-head attention with the attention mechanism as the following:

e∗i = φ(
∑
j∈Ni

αij(De
′
j + brel(i,j))) (4)

φ(.) is a nonlinear activation function such as ReLU. The attention weight αij depends on node embed-
dings as well as the relation between entity i and j, denoted as

αij =
exp(αe

ij)∑
j∈Ni

exp(αe
ij)

),

αe
ij = (Be′i)

>.Ce′j + drel(i,j).

(5)

where B,C,D ∈ Rdh×(de+dq) are projection matrices. b, d are bias terms and rel(i, j) represents the
label of each edge. αe

ij represents the similarity between the entity features, computed by scaled dot-
product and is sensitive to the relation between entities.

After encoding all the entities via the above graph attention mechanism, the output features e∗i of
attention heads are concatenated and added to the original entity embeddings ei to generate final entity
features E.
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4.3 Multimodal Fusion
We fuse the outputs of question embeddings, scene graphs, and concept graphs to create a joint language-
vision-knowledge representation. The fusion method needs to detect high-level interactions between
these three features to provide a meaningful answer, without erasing the lower-level interactions extracted
in the previous steps.

Popular fusion methods such as BAN (Kim et al., 2018) or MUTAN (Ben-younes et al., 2017) are not
suitable for our work since we have three types of features to fuse. Therefore, we design a fusion method
by applying the Compact Trilinear Interaction (CTI) (Do et al., 2019) to the question embeddings, scene
graph visual features, and concept features and generate a vector to jointly represent the three features.

Given V ∈ Rnv×dv , Q ∈ Rnh×dq where nh is the number of hidden states (nh = 1 in our experiments,
i.e., Q = q), and E ∈ R2k×de generated from previous steps, we generate a joint representation z ∈ Rdz .
The joint representation z is computed by applying CTI to each (V ,Q,E) :

z =

nv∑
i=1

nh∑
j=1

2k∑
m=1

Mijm

(
ViWzv ◦QjWzq ◦EmWze

)
(6)

whereM is an attention mapM∈ Rnv×nh×2k:

M =

R∑
r=1

JGr;VWvr ,QWqr ,EWerK (7)

where Wzv , Wzq , Wze ,Wvr ,Wqr ,Wer are learnable factor matrices, and ◦ is the Hadamard product.
R is a slicing parameter, establishing a trade-off between the decomposition rate and the performance,
and Gr ∈ Rdqr×dvr×der is a learnable Tucker tensor.

The joint embedding computes more efficient and more compact representations than simply concate-
nating the embeddings. In addition, we overcome the issue of dimensionality faced with concatenating
large matrices. The output of the fusion model is then fed to a classifier to predict the answer.

5 Experiments

We evaluate the performance of our proposed model using the standard evaluation metric recommended
in the VQA challenge (Agrawal et al., 2017):

Acc(ans) = min

(
1,

#{humans provided ans}
3

)
(8)

All experiments have been performed on OK-VQA dataset.

OK-VQA: is composed of 14,031 images and 14,055 questions. OK-VQA is divided into eleven cat-
egories: vehicles and transportation (VT); brands, companies and products (BCP); objects, materials and
clothing (OMC); Sports and Recreation (SR); Cooking and Food (CF); Geography, History, Language
and Culture (GHLC); People and Everyday Life (PEL); plants and animals (PA); science and technol-
ogy (ST); weather and climate (WC). If a question was classified as belonging to different categories by
different people, it was categorized as “Other”.

Implementation details: Each image has a total of 36 image region features (nv = 36), each rep-
resented by a bounding box and an embedding vector computed by pre-trained Faster R-CNN features
where dv = 2048. The input questions are embedded using GRU where dq = 1024 and nt = 14. We
use USE and SBERT to embed instances. USE outputs a 512 dimensional vector (ds = 512) where as
ds = 768 using SBERT. Our GATs include 16 attention heads. In the fusion model,R = 32 as suggested
in (Do et al., 2019) and dz = 512 since it leads to the best results in our model.

To train our proposed model, we use a binary cross-entropy loss with a batch size of 64 over a maxi-
mum of 20 epochs on 8 Tesla GPUs. We use the Adamax optimizer with an initial learning rate of 1e-3.
A linear decay learning rate schedule with warm up is used to train the model. The details of different
experimental setups and results are provided in the following subsections.
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@10 @20 @30 @40 @50
USE 26.08 28.83 29.03 28.48 27.92

SBERT 25.93 28.38 28.25 28.26 27.66

Table 1: Performance on OK-VQA validation set for different number of knowledge instances

Model Overall VT BCP OMC SR CF GHLC PEL PA ST WC Other
BAN 25.17 23.79 17.67 22.43 30.58 27.90 25.96 20.33 25.60 20.95 40.16 22.46
Gs + BAN 25.95 22.97 20.21 21.77 34.36 25.86 21.67 22.73 27.77 25.74 37.68 24.72
Gs+Ge 29.03 26.11 24.15 26.36 36.94 30.92 25.15 24.83 29.58 29.38 39.64 26.34

Table 2: Performance on Ok-VQA validation set for different graph setups.

5.1 Knowledge Retrieval Experiments

Our knowledge retrieval module uses sentence-level embeddings to represent question-image and knowl-
edge instances. For this purpose, we use two different methods based on popular Transformer and BERT
networks.

We first passed each question-image and knowledge instances through a bert-as-a-service model (Xiao,
2018) and derived a fixed sized vector by using the output of the special CLS token. This technique
yielded rather worst performance. Our theory is that, since Bert model is not trained for sentence-
level similarity tasks, it did not work well in our model. To bypass this limitation, we use SBERT
which is a modification of the pre-trained BERT network to generate semantically meaningful sentence
embeddings. We have tested SBERT with different backbones, e.g. BERT-base model with mean-
tokens pooling and with CLS token pooling, BERT-large with mean-tokens pooling and with CLS token
pooling, RoBERTa-base with mean-tokens pooling, and RoBERTa-large with mean-tokens pooling. The
best results were achieved by BERT-base model with mean-tokens pooling. As the second approach, we
compute the sentence embeddings using USE-large model which is trained with a Transformer encoder.

We then compute similarity scores which are the cosine similarity of a question-image instance embed-
ding and knowledge instance embedings. Top-k knowledge instances with the highest similarity scores
are retrieved as mostly relevant knowledge to each question. The accuracy of the VQA task using USE
and SBERT for different number of k is reported in Table 1.

As indicated in Table 1, we observe a higher accuracy using USE technique. We chose k = 30 and
USE to retrieve knowledge instances for the rest of experiments as this gives the best accuracy.

5.2 Graph Construction Experiments

In this subsection, we evaluate the advantage of capturing inter-object relations as well as incorporating
general knowledge. Table 2 shows the results of this experiment as explained below:

BAN: In this setup, we fuse the question embedding q with object features V using Bilinear Attention
Networks (BAN). The output of the fusion network is then fed to the classifier to predict the answer. We
found that setting γ (number of glimpses) to 2 in BAN model yields the best performance in our model.
We do not use scene graphs nor concept graphs in this experiment.
Gs + BAN: The same fusion network as BAN, but visual features are V resulted by the scene graph.

The question embedding q is fused with V and passed to the classifier to predict the answer.
Gs + Ge: This is the complete form of our model. q, V , and E are fused in this setup. CTI is used

for the fusion technique as explained in Section 4.3.
From Table 2, consistent performance gain is obtained across most of categories by combining the

scene graph and concept graph. Adding the scene graph alone improves the results in BCP, SR, PEL,
PA, ST, and Other categories. Combining the scene graph and concept graph boosts the performance
on the remaining categories except “Geography, History, Language and Culture” (GHLC) and “Weather
and Climate” (WC).
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Model Overall VT BCP OMC SR CF GHLC PEL PA ST WC Other
Q-Only 15.08 13.64 13.19 11.78 15.94 16.82 11.91 13.38 13.22 18.76 23.74 13.51
Q + Ge 20.43 19.14 18.69 16.28 21.09 21.42 17.42 19.52 19.78 22.28 30.24 18.87
MUT+AN 27.58 25.56 23.95 26.87 33.44 29.94 20.71 25.05 29.70 24.76 39.84 23.62
BAN + AN 25.63 24.45 19.88 21.59 30.79 29.12 20.57 21.54 26.42 27.14 38.29 22.16
XNM Net 25.06 25.73 21.86 18.22 33.02 23.93 23.83 20.79 24.81 21.43 37.74 24.39
Our model 29.03 26.11 24.15 26.36 36.94 30.92 25.15 24.83 29.58 29.38 39.64 26.34

Table 3: Performance on Ok-VQA validation set for ablation study and compared with SOTA.

5.3 Ablation Study and Comparison with SOTA

In Table 3, we compare two ablated instances of our model (Q-Only and Q + Ge) with its complete
form. We also report the accuracy of the state-of-the-art baselines on OK-VQA dataset. ArticleNet (AN)
(Marino et al., 2019) is a knowledge-based approach that retrieves articles from Wikipedia. Moreover,
we applied XNM Net model (Shi et al., 2019) on Ok-VQA dataset and provide the results in the table.

Table 3 shows the accuracy on the OK-VQA validation set in the following setting:
Q-Only: Only question embedding q is fed to the classifier.
Q + Ge: Integrating general knowledge without using visual features in the pipeline. Questions em-

bedding q and entity embedding E are fused using BAN and fed to the classifier. Gs is removed from
the model in this experiment.

MUT + AN: SOTA- Incorporate hidden states of ArticleNet for the top retrieved sentences into MU-
TAN.

BAN + AN: SOTA- Incorporate hidden states of ArticleNet for the top retrieved sentences into BAN.
XNM Net: SOTA- Scene graph-based VQA model. The explicit relationships between objects are not

considered in this work. Node embeddings are concatenated and used as edge features.
Our model: The complete form of our model. Question embedding q, scene graph embedding V , and

concept graph embedding E are fused using CTI and fed to the classifier.
From the table, we observe that adding general knowledge to the model leads to a gain of 5.35% in

the overall performance (Q-Only = 15.08 % vs. Q + Ge = 20.43 %).
We also note that the Gs + BAN setup (cf. Table 2) results in a better performance compared to Q

+ Ge. The reason is that most of the questions in OK-VQA datasets are related to objects found in the
images. Therefore, the accuracy drops without providing the visual features.

Furthermore, we observe that our model surpasses the SOTA models in most of the categories. Our
model performs especially well in SR, ST, and Other categories with a gain larger than 3%. Our per-
formance is slightly below ArticleNet (MUTAN + AN) in OMC, PEL, PA, and WC. However unlike
ArticleNet, our model does not require query construction and search APIs to retrieve relevant knowl-
edge.

5.4 Qualitative Results

Fig. 3 depicts a few success and failure examples of our method. In the top two rows of examples, our
model correctly retrieve the most relevant knowledge instances to the question and predict the correct
answer. We only show top-3 retrieved knowledge instances in these examples due to the lack of space.
Question, predicted answer, and provided answers are denoted by Q, A, and GT, respectively. (.) in GT
shows number of humans that provided the answer. For example in the first example in the first row, 4
human annotators provided the answer “wool”.

These results show incorporating external knowledge can improve the relational representation be-
tween entities in the question and objects in the image. For instance, the third example in the first row
asks What kind of animal this resemble? To answer this questions, one requires to know
that the question is referred to the airplane (visual information) and airplanes are designed to imitate
birds (general knowledge).

The last row in Fig 3 shows failure cases. In the first example, our model fails because the retrieved
knowledge instances are not mostly relevant to the question. The second example retrieves relevant
knowledge instances, but it is not able to predict the correct answer. The answer predicted in the fourth
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Q: What are these animals farmed for? Q: What is the blue item used for? Q: What kind of animal this resemble? Q: What climate the yellow fruit grow?
A: milk A: fight fire A: bird A: tropical
GT: wool(4), milk(3), meat(3) GT: put out fire(4), fight fire(3), water(3) GT: bird (10) GT: tropical(6), warm (4)
Top-3 retrieved knowledge instances: Top-3 retrieved knowledge instances: Top-3 retrieved knowledge instances: Top-3 retrieved knowledge instances:
1- sheep is animal that eat grass and 1- fire hydrant used for fight fire 1- airplane used for imitate bird 1- fruit receives action grow in
produce wool and milk 2- fire hydrant receives action use by fire 2- this is us military airplane warm weather
2- sheep is farm animal department 3- most mammal not capable of fly 2- fruit not capable of grow in cold place
3- sheep used for shear 3- fire engine used for put out fire 3- banana is tropical fruit

Q: What do they call running around the Q: Name the type of hat the man is Q: What type of vessel would remain in Q: What company created this gaming
bases on a single hit? wearing this environment? system?
A: homerun A: cowboy A: boat A: nintendo
GT: homerun (10) GT: cowboy(4), sombrero(4), stetson(2) GT: boat(10) GT: nintendo (10)
Top-3 retrieved knowledge instances: Top-3 retrieved knowledge instances: Top-3 retrieved knowledge instances: Top-3 retrieved knowledge instances:
1- home run is baseball term 1- cowboy capable of wear cowboy hat 1- boat that capable of travel under water 1- tv used for video game
2- score home run used for bat in other 2- hat used for slap your horse 2- boat used for keep person out of water 2- nintendo is video game company
runner on base 3- this is hat man would wear 3- vessel used for move person around 3- game created by programmer
3- bat used for hit baseball

Q: How is this beverage made? Q: Which item is to wash hands? Q: What is the nickname of this city? Q: What kind of gathering is this?
A: bake A: towel A: new york A: birthday
GT: brew(6), coffee maker(2), blender(2) GT: sink(10) GT: big apple(5), windy city(3), matrix(2) GT: party(6), family(2), wine taste(2)
Top-3 retrieved knowledge instances: Top-3 retrieved knowledge instances: Top-3 retrieved knowledge instances: Top-3 retrieved knowledge instances:
1- cup on table used for drink from 1- sink used for wash your hand 1- stop sign used for control traffic 1- guest capable of bring wine to party
2- cup on table used for fill with beverage 2- sink used for wash hair 2- stop sign used for stop 2- bottle wine at location party
3- cup on table has subevent pour of drink 3- sink used for wash up face and hand 3- sign used for traffic direction 3- party used for meet person

Figure 3: Qualitative results on OK-VQA validation set. The first two rows show success cases and the
last row shows failure cases.

example does not belong to the list of the provided answers. However, the predicted answer could
be correct. This example shows that we need a better evaluation metric for VQA tasks which covers
semantic cases such as this example.

6 Conclusion

In this paper, we proposed a novel VQA model for questions which require knowledge from external
content. We developed a knowledge retrieval model to extract most relevant facts to each question based
on sentence level embeddings. We then combined visual observations with retrieved knowledge by
learning graphs to captures the interactions between objects and knowledge entities. The experimental
results have shown the performance of our proposed model on OK-VQA dataset.

For future work, we will explore how to integrate the fact retrieval module to the main VQA pipeline
to have an end-to-end trainable model. We will also investigate how to capture the semantic similarity
between provided answers and predicted answers in the evaluation metric.
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Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8
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