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Abstract

Commitments and requests are a hallmark of collaborative communication, especially in orga-
nizational settings. Identifying specific tasks being committed to or requests from emails and
chat messages can enable important downstream tasks, such as producing to-do lists, reminders,
and calendar entries. State-of-the-art approaches for task identification rely on large annotated
datasets, which are not always available, especially for domain-specific tasks. Accordingly, we
propose Liṅ, an unsupervised approach of identifying tasks that leverages dependency parsing
and VerbNet. Our evaluations show that Liṅ yields comparable or more accurate results than
supervised models on domains with large training sets, and maintains its excellent performance
on unseen domains.

1 Introduction

In organizational settings where team members interact with each other, tasks are constantly exchanged
through communications. For example, a team leader may request a team member to accomplish a task
via email. Team members may chat with each other to make commitments about how tasks are assigned
within a team. Efficient team collaborations, including creating to-do lists and meetings, presume that
the tasks are clear. How can natural language processing (NLP) support such practices?

We define a task as a verb phrase that specifies a single action to be carried out. One or more tasks
could arise in a message from emails or chats, from a sender to a receiver. We consider the root verb
of such a verb phrase as its main verb. Therefore, we assume identifying main verbs is essential to
identifying tasks. Consider the following sentences indicating commitments or requests:(1) I will send
the QA later today and (2) please reschedule the meeting to next week. Each sentence contains only
one verb, which can easily be identified as a main verb. However, in some cases, main verbs could be
difficult to identify. For example, consider the following sentences containing multiple verbs, and thus,
the main verb of a task (in bold) is not obvious (other verbs are underlined): (1) let me know what I need
to do to be ready; (2) go ahead and start working on this; (3) before you arrange a meeting, we should
think about a few things.; and (4) I would like to meet to discuss or appeal to Greg.

Several contributions exist on identifying tasks from emails and chats. Bennett and Carbonell [2005]
provide supervised machine learning classifiers for detecting whether a sentence includes a task. Lam-
pert et al. [2010] provide a binary classifier to detect requests. Kalia et al. [2013] propose binary classi-
fiers to detect the operational forms of business tasks such as commitments of different types. Wang et al.
[2019] categorize commitments into three types—Request Information, Schedule Meeting, and Promise
Action—and train a deep learning model to identify them. Lin et al. [2018] identify actions such as
reply-yesno, reply-ack, and investigate, using a reparametrized long short-term memory (LSTM) net-
work. Mukherjee et al. [2020] apply a sequence-to-sequence model to generate to-do lists based on
commitments expressed in emails.

There are two important limitations to the existing contributions. First, the majority of them are
limited to detecting whether a sentence contains a task (binary classification) without identifying the

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1816

specific task. Second, existing studies leverage supervised approaches to identify tasks, which may
not be easily generalized to domain-specific task detection where manually annotated datasets are not
available. Manual annotation of tasks can be cumbersome, especially for domain-specific datasets.

To this end, we propose Liṅ, an unsupervised approach to identify specific tasks from sentences. To
extract specific tasks, Liṅ identifies the main verb present in a sentence by jointly modeling the syntactic
and semantic information in it. We have evaluated Liṅ on an email dataset and a chat dataset. Liṅ
achieves an F1-score of 80% for the email dataset and 89% for the chat dataset. The results show a
significant improvement over the state-of-the-art supervised approaches.

2 Method

Liṅ identifies tasks by jointly modeling the syntactic and semantic information in sentences. We observe
that tasks can be identified based on the combination of thematic role of the performer of a task, tenses,
and other syntactic and semantic features. To extract syntactic features, we consider dependency parsing
Chen and Manning [2014]. Dependency parsing provides diverse relations for verbs, which helps us
define more syntactic rules for verbs appearing in different parts of the sentence. To extract semantic
features, we consider VerbNet Schuler [2005], a structured lexicon focused on verbs.

2.1 Syntactic Features

We composed rules based on the following syntactic features to identify tasks from sentences.
1. Typed Dependency Relations. We adopt the typed dependency parsing for applying syntactic rules

to sentences. For a given sentence, we first create a dependency parse tree and then traverse the tree from
its root to other words to find a valid task. We consider dependency relations that a main verb can take on,
such as ROOT and COMP. The clausal complement (COMP) relation is one of the best indicators for main
verbs, which occur in 41% of sentences containing tasks in our annotated Email Dataset. For adjectives
and verbs, COMP behaves as their object. When COMP is a verb, it provides detailed information about
the action. For example, in I would like to call you tomorrow, the verb call has a COMP dependency on
the verb like. It is evident from this example that call is the main verb representing a task.

2. Tense. We assume a verb tagged with a part-of-speech (POS) VB or VBG identifies a task. For
example, I will send you the details represents a task since send is tagged VB whereas I sent you the
details does not represent a task since sent is tagged VBD. We further filter out VBG verbs in the past
tense using a rule on their AUX dependency For example, I was sending is eliminated.

3. Task Performer. We assume a task has a sender and a receiver. Senders are referred as the first
person, while receivers are referred as the second person. Task performers can be identified using
dependency relations, such as NSUBJ of a verb

4. Questions and Negations. We assume that questions do not indicate tasks. In questions, words
like When and Where have a dependency of ADVMOD with verbs, and can be leveraged to filter out
questions. Similarly, a sentence such as Do not call me tomorrow indicates a negative intent and hence,
does not represent a task. The ADVMOD dependency of not on the verb identifies such cases.

5. Verb Association. If a verb is associated with an AGENT but is not a valid task, we skip its
descendants except its COMPs. Consider the example Before you arrange a meeting, we should think
about a few things. This sentence does not have a commitment or request and the verb arrange should not
be considered a task. The semantic meaning of the sentence revolves around think which is an ancestor
of arrange. When a verb is not associated with AGENT, it can often mean desire, need, or intent with a
task as its descendant. Hence, we restrict skipping descendants to verbs associated with an AGENT.

6. Identifying multiple tasks. Whenever we find a valid task, we skip its descendants, since we are
interested in only identifying distinct tasks. To extract multiple tasks in sentences, we focus on the CONJ

dependency relation.

2.2 Semantic Features

We obtain semantic information for detecting tasks from VerbNet. VerbNet includes multiple verb
classes, and each class is associated with syntactic structures and semantic information. VerbNet pro-
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vides semantic information of each class of verbs using semantic predicates and thematic roles.
1. Thematic Roles. Thematic roles describe the participants involved and their relation with the action.

VerbNet specifies the following thematic roles: AGENT, LOCATION, and THEME. An AGENT is an actor
who carries out the event intentionally. We focus on this role in our algorithm. 2. Semantic Predicates.
Predicates indicate how the participant is involved in the event. 3. Agent Predicates. We refer to a
predicate associated to the AGENT of a verb as an agent predicate. There are 81 such agent predicates
in VerbNet, which indicate how an AGENT is involved in an action. 4. Theme Predicates. THEME

role is the object of the action and has no control over the event. We refer to a predicate associated to
the THEME role of a verb as theme predicates. These predicates provide useful information about the
actions taking place, such as transfer of information, motion, and desire.

Here are some examples of verbs and their associated agent and theme predicates. For the verb send,
the agent predicate is cause, and the theme predicate is motion. Similarly for the verb work, the agent
predicate and theme predicate are work and cooperate, respectively. We examined the usage of each
predicate and shortlisted 29 agent and 38 theme predicates as valid representations of a task. Note that
the two lists are not mutually exclusive, since in some cases a predicate can be associated with the
AGENT and in some cases it can be associated with the THEME of a verb.

To identify a valid task, a verb must be associated with an AGENT, and either one of its agent predi-
cates is from our agent predicates list, or one of its theme predicates is from our theme predicates list. We
check every class associated with that verb in VerbNet and, if any of the classes satisfy our conditions,
the verb represents a task.

2.3 Task Inference

We infer tasks from sentences as follows. First, with a dependency parser, we create a parse tree repre-
sentation of a sentence. Then, we start traversing from root and apply all rules mentioned for each node.
If current word is an adjective, we use the COMP relation associated with the adjective to extract the
verb. Then, we apply rest of the syntactic rules, such as checking the POS, tense, and task performers.
If a verb satisfies these syntactic rules, we check for semantic validation using VerbNet. If the word is
not a valid task but carried out by the agent, we skip all its descendants except COMPs. If the word is a
valid task, we extract it and skip all its descendants including COMP. While skipping descendants from a
node, we do not skip words that have a CONJ relationship with current node. In this way, we can handle
multiple possible tasks in one sentence.

3 Experimental Setup

To evaluate Liṅ, we consider two different datasets, an email dataset and a chat dataset. The email
dataset comprises of 1,000 emails with a total of 6,418 sentences extracted from the Enron corpus Klimt
and Yang [2004]. We extracted 14,132 verb phrases from these sentences, of which 1,910 are labeled as
tasks. The labeling was performed by two independent annotators, who achieved an inter-rater agree-
ment (Cohen’s Kappa) of 0.76, indicating a substantial agreement. They resolved their disagreements
by discussion to produce the final dataset. The chat dataset comprises of 114 dialogues with a total of
300 sentences extracted from a task-oriented chatbot dialogue dataset Eric et al. [2017]. The same two
annotators annotated the dataset with near perfect agreement (Cohen’s Kappa=0.93).

We evaluate Liṅ as well as its syntax and semantics modules as separate models. For baselines,
we adopt the Universal Sentence Encoder Cer et al. [2018] with an SVM classifier, pretrained BERT
Devlin et al. [2019], and FastText Joulin et al. [2017] models. For BERT, we used the pretrained 12-
layer uncased version and fine-tuned it for our labeled dataset. Since we want the models to find the
exact verbs of tasks, a simple binary classification at sentence level would not be a good baseline.
To avoid the sparsity of output classes, we separate the distinct verb phrases (VPs) from sentences
using dependency parsing and then train these models for binary classification of all VPs (whether the
current VP represents a task or not). To make sure that each VP contained only one main verb, we
constructed VPs by including only the immediate descendants of a verb in a parse tree. As a context, we
provided the whole sentence along with current VP as inputs. We split the dataset using five-fold cross
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validation such that 80% was used for training and 20% for testing. The code and dataset can be found
at https://github.com/Parth27/Lin.

4 Evaluation

We adopt accuracy, precision, recall, and F1 score as our metrics. We posit that F1 score is the most
reliable metric here since both the datasets are imbalanced and include a preponderance of negatives.
Table 1 shows the results of the above baselines and Liṅ, as well as two ablations of Liṅ comprising the
syntactic and semantic reasoning alone.

Email Dataset Chat Dataset
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

SVM + USE 89.35% 54.40% 82.42% 65.51% 83.42% 70.09% 72.11% 71.09%
FastText 69.53% 69.95% 68.62% 69.25% 78.80% 71.66% 41.34% 52.43%
BERT 89.17% 74.82% 82.85% 78.58% 92.68% 85.32% 89.42% 87.32%

Liṅ Syntax 93.34% 74.48% 69.80% 72.06% 92.12% 87.12% 84.61% 85.85%
Liṅ Semantics 91.08% 58.62% 93.36% 72.01% 89.40% 74.07% 96.15% 83.68%

Liṅ 95.36% 83.82% 77.29% 80.42% 94.85% 94.73% 86.53% 90.45%

Table 1: Results on our datasets. Each measure is expressed as a percentage.

The results show that Liṅ outperforms the baselines on both datasets. Liṅ outperforms BERT by a
small margin. The difference may not be significant. BERT, trained on the email dataset, performs
relatively well on the chat dataset. One major reason could be the presence of simple sentences in chats
with some similarities to those in emails. BERT may not work as well on a different domain.

Qualitative analysis. We observe a low recall for the Liṅ Syntax model. One major reason is that this
model marks incorrect verbs as tasks, and no long considers their descendants, which may include the
correct tasks. For example, in this sentence, I think we can send the details tomorrow and then arrange a
meeting, the Syntax model marks think as task and does not identify its descendants send and arrange,
which are the actual tasks. This way, the number of false negatives keeps increasing as the Syntax model
keeps ignoring descendants. We observe that Liṅ Semantics achieved a higher recall trading off for a
lower precision. Our syntactic rules help to provide a structure to the entire sentence. Lacking these
rules, Liṅ Semantics considers verbs without considering the context in which they appear, yielding
many false positives. Liṅ Semantics fails on sentences like Try to complete the analysis, where it marks
try and complete both as tasks even though it represents a single task where complete is the main verb.
Note that try could be a task, as in Please try this and get back to me.

We evaluated Liṅ with the trained supervised baseline models on a separate annotated chatbot dialogue
dataset and observed that our unsupervised approach outperforms these baselines. Despite being trained
on the Email dataset, SVM+USE and BERT perform well on the chat dataset. The main reason is that
the chat dataset has very simple sentences with simpler structure. Since we adopt USE for encoding
sentences and VPs, the SVM+USE model does not rely on the vocabulary of training data, and neither
does pre-trained BERT.

Based on the above results, it is clear that Liṅ works well in multiple domains. Liṅ is able to perform
comparably to or better than the state-of-the-art supervised baselines in both the domains we targeted.

5 Conclusion

Identifying the main verbs of tasks in sentences of email or chat can facilitate important downstream
tasks. Our unsupervised approach achieves comparable or more accurate results than supervised base-
lines in domains with available training data. Evaluation on a chat dataset shows that our unsupervised
approach can extend well to unseen domains, which can save time and effort of manual annotations.

https://github.com/Parth27/Lin
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