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Abstract

A fundamental task of fine-grained sentiment analysis is aspect and opinion terms extraction.
Supervised-learning approaches have shown good results for this task; however, they fail to scale
across domains where labeled data is lacking. Non pre-trained unsupervised domain adapta-
tion methods that incorporate external linguistic knowledge have proven effective in transferring
aspect and opinion knowledge from a labeled source domain to unlabeled target domains; how-
ever, pre-trained transformer-based models like BERT and RoBERTa already exhibit substantial
syntactic knowledge. In this paper, we propose a method for incorporating external linguistic
information into a self-attention mechanism coupled with the BERT model. This enables lever-
aging the intrinsic knowledge existing within BERT together with externally introduced syntactic
information, to bridge the gap across domains. Finally, we demonstrate enhanced results on three
benchmark datasets.

1 Introduction

A fundamental task of fine-grained sentiment analysis is aspect and opinion terms extraction. For ex-
ample, in the sentence “The chocolate cake was incredible”, the aspect term is chocolate cake and the
opinion term is incredible. Most of the work related to aspect and opinion term extraction is formulated as
a supervised sequence-tagging task. RNN-based models (Liu et al., 2015) and Transformer-based mod-
els showed promising results in single-domain setups where the training and the testing data are from
the same domain. However, these approaches typically do not scale across different domains, where
only unlabeled data is available for the target domain, since aspect terms from two different domains
are usually semantically different hence separated in the embedding space. For example, frequent aspect
terms in the restaurant domain, like salad and dessert, have little or no semantic relatedness to frequent
aspect terms in the laptop domain, like screen size and battery life. To date, only a handful of approaches
for unsupervised domain adaptation of aspect and opinion term extraction have been proposed.

It has been shown that syntactic information is important for identifying aspect and opinion terms (Hu
and Liu, 2004b; Qiu et al., 2011). A recent line of work, based on non pre-trained models, encodes
dependency-based aspect extraction rules (Ding et al., 2017) or automatically-generated dependency
relations (Wang and Jialin Pan, 2018; Wang and Pan, 2020), as auxiliary supervision for non pre-trained
models. This recent line of work demonstrates effective domain adaptation by incorporating syntactic
knowledge into non pre-trained models during their training step. Subsequently, recent studies (Clark et
al., 2019; Htut et al., 2019) show that pre-trained transformer-based models such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) already exhibit substantial linguistic knowledge. In this paper we
examine whether the incorporation of external syntactic knowledge into pre-trained models, contributes
to bridging the gap across domains. For this purpose, we propose an approach for unsupervised domain-
adaptation of aspect and opinion terms extraction based on incorporating linguistic knowledge into a pre-
trained BERT model. Specifically, inspired by Strubell et al. (2018), we incorporate externally-generated
dependency relations into a self-attention mechanism that is coupled with the pre-trained BERT model
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Figure 1: An example of opinionated sentences from two different domains with similar syntactic pat-
terns. Opinion terms are colored green and aspect terms are colored blue.

(Stickland and Murray, 2019), where the external information is introduced during the fine-tuning and
testing stages of the model.

2 Motivation and Background

Formally, the task of aspect and opinion terms extraction can be formulated as a sequence tagging task.
The input is a sequence of tokens X = {x1, x2, .., xn} where the objective is to predict a corresponding
sequence of labels Y = {y1, y2, ..., yn} with yi ∈ {BA, IA,BO, IO,N}, where BA, BO, IA and
IO represent a beginning of aspect/opinion and inside of aspect/opinion, respectively, and N represents
all other tokens. The goal of unsupervised domain adaptation is to predict the token-level labels yTi of
unlabeled target domain sentences DT = {(xTi )}, given a set of labeled sentences from a source domain
DS = {(XS

j , Y
S
j )}.

It was observed that aspect and opinion terms maintain often-occurring syntactic patterns (Hu and Liu,
2004b; Qiu et al., 2011). Consider for example, a sentence from the laptop domain ”The display is abso-
lutely wonderful” and a sentence from the restaurant domain ”The cheesecake was simply wonderful”.
In the first sentence, an NSUBJ dependency relation exists between the opinion term (’wonderful’) and
the aspect term (’display’). Assuming that the pattern aspect-NSUBJ-opinion is frequently observed in
the laptop domain, then the term cheesecake can be extracted as an aspect term in the restaurant domain
(Figure 1). This domain-independent trait of the syntactic structure can be leveraged for transferring
knowledge from a labeled source domain to an unlabeled target domain. Based on this notion, Ding et
al. (2017) proposed using dependency-based aspect extraction rules as auxiliary supervision for an RNN
network. However, this method depends on the quality of manually-crafted rules. Wang and Jialin Pan
(2018) addressed this issue by automatically encoding dependency relations into the hidden represen-
tations of words, thus shifting the representations of different aspect terms having similar dependency
relations, close to each other. Wang and Pan (2020) have further enhanced this model by integrating
a conditional domain-adversarial network that encodes both word features and syntactic parent relation
types.

Analyses of pre-trained transformer-based models like BERT reveal substantial syntactic information
captured within their attention mechanisms; however, those analyses also show that for many syntactic
relations BERT only slightly improve over a simple baseline (Clark et al., 2019; Htut et al., 2019). Our
goal is to design a neural network model that leverages both the information captured in the pre-trained
model, and externally introduced syntactic information, to bridge the gap between the source and target
domains.

3 The Proposed Model

The basis for our model is a pre-trained BERT-base model (Devlin et al., 2019) with a fully con-
nected sequence tagging classifier on top. Inspired by the work of Strubell et al. (2018), we incorpo-
rate dependency relations into a self-attention mechanism denoting a syntactically-aware attention head.
Our approach differs from previous approaches which modify an existing self-attention head within a
transformer-based model and train it from scratch. Our method modifies the BERT function by adding
syntactically-aware self-attention heads in parallel to the BERT model (Stickland and Murray, 2019),
and introduce the syntactic knowledge during the fine-tuning and testing stages. This leaves the original
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Figure 2: Coupling a syntactically-aware self-attention with a multi-head self-attention layer in a BERT
model.

pre-trained model intact, enabling the model to utilize both the external linguistic information that is in-
corporated into the model and the intrinsic knowledge gained during the pre-training stage of the model.
We refer to this model as syntactically-aware extended attention layer (SA-EXAL).

Multi-Head Self-Attention. The basis of our implementation is BERT’s multi-head self-attention
mechanism (Vaswani et al., 2017), which consists of I scaled dot-product attention heads. For each
attention head i, the hidden token representations hl ∈ Rd×T , at the input of layer l, are projected to
key, query and value representations Ki, Qi and Vi of dimensions T × dk, where T is the number of
tokens in the input sequence and dk = d/I . Attention head i denotes attention weights that are a distinct
distribution of every input token over all other tokens in the sequence:

Ai = softmax(
QiK

T
i√

dk
) (1)

The output of attention head i is denoted by Mi = AiVi, where Mi is a T × T matrix, in which each
row t, represents a weighted sum of the value representations of all other tokens with respect to token t.
Finally, the outputs of all I attention heads are concatenated and projected through a feed-forward(FF)
network: SA = FF (M1,M2, ...,MI).

Syntactically-Aware Self-Attention. Inspired by the work of Strubell et al. (2018), we incorporate
syntactic information into the self-attention head, forming a syntactically-aware self-attention, by en-
couraging it to attend to specific tokens corresponding to the syntactic structure of the sentence. As in
the original attention-heads, we project hl denoting Kparse, Qparse and Vparse matrix representations of
dimensions T × dk, but unlike the original heads, we also use an external syntactic parser (Dozat and
Manning, 2017) to generate Pparse, a T × T matrix in which each row t represents the probability of
each token in the sentence to be the syntactic head of token t. We encourage this self-attention head to
attend to the syntactic head of each token by performing an element-wise multiplication between Pparse

and the dot product between the key and query matrices:

Aparse = softmax(
(QparseK

T
parse) ∗ Pparse√
dk

) (2)

As in the original heads, The output of the syntactically-aware self-attention head is denoted by:
SAparse = FF (AparseVparse).

Adding Syntactically-Aware Self-Attention to BERT. Inspired by the work of Stickland and Murray
(2019) we modify the BERT(·) function by adding a syntactically-aware self-attention head in parallel to
each self-attention layer of the BERT model (see Figure 2) as follows:

hl+1 = LN(hl + SA(hl) + SAparse(h
l)) (3)

where LN is BERT’s layer normalization function and hl ∈ Rd×T are the T hidden token representations
at the input of layer l. Note that the contribution of the SAparse(h

l) component to the representation of
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each token t in layer l + 1, is mostly the representation of the syntactic head of token t. This shifts the
representations of aspect terms from distinct domains, that syntactically relate to the same opinion term,
closer to each other, thus contributing to bridging the gap between the domains.

4 Experiments

Domain # Sentences Train Dev. Test

(R)estaurant 5,841 4,381 1,460 1,460
(L)aptop 3,845 2,884 961 961
(D)evice 3,836 2,877 959 959

Table 1: Sentence statistics for each domain.

Data & Experimental Setup. Our experimental
setup follows that of Wang and Pan (2020). We con-
duct experiments on benchmark datasets with cus-
tomer reviews from three different domains: restau-
rant, laptop and digital devices. The restaurant do-
main combines reviews from SemEval 2014 (Pon-
tiki et al., 2014) and SemEval 2015 (Pontiki et al.,
2015). The laptop domain contains laptop reviews
from SemEval 2014. Opinion term labels for these domains are obtained from Wang et al. (2016). For
the device domain, we use reviews from Hu and Liu (2004a) pertaining to five different digital products.
Each token in each sentence is labeled as described in section 2. In order to make robust comparisons
and to be comparable with previous work, for each domain we create three random splits of the data with
a train/development/test ratio of 3:1:1 (see Table 1). Since results may vary across random seeds (Dodge
et al., 2020), we repeat each experiment using three different seeds and the final result is reported as the
mean F1 score (and standard deviation) calculated over the three splits and the three seeds.

We adopt the HuggingFace (Wolf et al., 2019) implementation of BERT-base (uncased)1 model as the
basis for all experiments, and open-source our code.2 We fine-tune the model with a learning rate of 5e−5,
a batch size of 16 and a maximum sequence length of 64 tokens, for 10 epochs with an early stopping
mechanism according to the development set. The dependency relations obtained by the Biaffine parser
(Dozat and Manning, 2017) are generated in advance and are introduced to the model during the fine-
tuning as well as during the development/test stages. Following prior work, only exact matches between
the predicted aspect and opinion terms and the gold labels are counted as correct.

Results. Table 2 shows a comparison of our proposed model (SA-EXAL) with notable baseline mod-
els, across different domain transfers. The baselines include:

• CrossCRF (Jakob and Gurevych, 2010): A linear-chain CRF with hand-engineered features (e.g.
POS tags and dependencies).
• Hier-Joint (Ding et al., 2017): An RNN with auxiliary labels derived from manually designed rules

that are based on frequently observed syntactic relations between aspect and opinion terms.
• RNCRF (Wang et al., 2016): A joint recursive neural network and CRF for in-domain aspect and

opinion terms extraction.
• ARNN-GRU (Wang and Pan, 2020): A dependency-tree-based recursive neural network with GRU

which uses an auto-encoder in the auxiliary task to reduce label noise.
• TRNN-GRU (Wang and Pan, 2020): An extension of ARNN-GRU which integrates a conditional

domain-adversarial network that takes both word features and syntactic head relations as input.
• EXAL: A baseline model that shares the same size and structure as the proposed model SA-EXAL

(Section 3) but does not incorporate syntactic information.
Our proposed model (SA-EXAL) shows an advantage over EXAL which demonstrate that although it

was shown that the pre-trained BERT model captures significant linguistic knowledge, informing it with
explicit external dependency relations is effective for transferring knowledge across domains. Specifi-
cally, SA-EXAL outperforms EXAL in 10 out of 12 cases (underlined in the table), including 6.44%,
3.56% and 2.33% improvements for L→ R (AS), R→ L (AS) and R→ D (AS), respectively. We also
note that SA-EXAL outperforms the non pre-trained model baselines in 8 out of 12 cases.

1https://github.com/huggingface/transformers
2https://github.com/NervanaSystems/nlp-architect/tree/libert/nlp_architect/

models/libert
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R → L R → D L → R L → D D → R D → L
Model AS OP AS OP AS OP AS OP AS OP AS OP

CrossCRF∗ 19.72 59.2 21.07 52.05 28.19 65.52 29.96 56.17 6.59 39.38 24.22 46.67
(1.82 ) (1.34) (0.44) (1.67) (0.58) (0.89) (1.69) (1.49) (0.49) (3.06) (2.54) (2.43)

Hier-Joint∗ 33.66 - 33.20 - 48.10 - 31.25 - 47.97 - 34.74 -
(1.47) - (0.52) - (1.45) - (0.49) - (0.46) - (2.27) -

RNCRF∗ 24.26 60.86 24.31 51.28 40.88 66.50 31.52 55.85 34.59 63.89 40.59 60.17
(3.97) (3.35) (2.57) (1.78) (2.09) (1.48) (1.40) (1.09) (1.34) (1.59) (0.80) (1.20)

ARNN-GRU∗ 40.43 65.85 35.10 60.17 52.91 72.51 40.42 61.15 48.36 73.75 51.14 71.18
(0.96) (1.50) (0.62) (0.75) (1.82) (1.03) (0.70) (0.60) (1.14) (1.76) (1.68) (1.58)

TRNN-GRU∗ 40.15 65.63 37.33 60.32 53.78 73.40 41.19 60.20 51.17 74.37 51.66 68.79
(0.77) (1.01) (0.90) (0.66) (0.91) (0.45) (1.06) (1.56) (0.99) (1.03) (1.27) (1.63)

EXAL 44.03 75.01 38.17 63.59 48.23 79.57 41.60 60.71 53.75 70.03 45.75 62.65
(2.11) (1.13) (0.79) (3.53) (2.87) (0.53) (0.54) (5.49) (1.24) (2.46) (1.54) (2.51)

SA-EXAL 47.59 75.79 40.50 63.33 54.67 80.05 42.19 60.19 54.54 71.57 47.72 63.98
(1.88) (1.02) (1.05) (2.63) (2.02) (0.48) (0.54) (3.79) (1.90) (2.86) (2.79) (3.37)

Table 2: Comparison across different baselines in terms of average F1 scores (and standard variations in
parentheses). ∗Results for non pre-trained baselines reported by (Wang and Pan, 2020). The best result
for each dataset is highlighted in bold and the best result between EXAL and SA-EXAL is underlined.

5 Conclusion

We propose a method for incorporating external linguistic information into a self-attention mechanism
coupled with the BERT model. We demonstrate that this model leverages both the intrinsic knowledge
existing within the pre-trained model and the externally introduced syntactic information, to bridge the
gap across domains.
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