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Abstract

Distantly Supervised Relation Extraction (DSRE) has proven to be effective to find relational
facts from texts, but it still suffers from two main problems: the wrong labeling problem and the
long-tail problem. Most of the existing approaches address these two problems through flat clas-
sification, which lacks hierarchical information of relations. To leverage the informative relation
hierarchies, we formulate DSRE as a hierarchical classification task and propose a novel hierar-
chical classification framework, which extracts the relation in a top-down manner. Specifically,
in our proposed framework, 1) we use a hierarchically-refined representation method to achieve
hierarchy-specific representation; 2) a top-down classification strategy is introduced instead of
training a set of local classifiers. The experiments on NYT dataset demonstrate that our approach
significantly outperforms other state-of-the-art approaches, especially for the long-tail problem.

1 Introduction

Knowledge bases (KBs) such as Freebase (Bollacker et al., 2008), DBpedia (Auer et al., 2007), and
NELL (Carlson et al., 2010) currently play an essential role in NLP tasks including information retrieval
and question answering. As current KBs are still far from complete compared with the infinite real-world
facts, relation extraction (RE) which aims to extract relations between two entities in texts and enrich
KBs has attracted a surge of research interest. Most existing supervised RE methods require high quality
labeled data, which is time-consuming and labor-intensive. Therefore, Mintz et al. (2009) propose the
distant supervision (DS) approach to automatically generate a large amount of training data for RE by
aligning KBs with large-scale unlabeled corpora.

Two problems have to be addressed in building an efficient DS model. The main problem, namely
the wrong labeling problem, comes from the assumption of DS. DS is based on an assumption: if two
entities have a relation in KBs, all sentences that contain these two entities will express this relation.
This strong and unrealistic assumption inevitably bring some noise. For example, DS method may
mistakenly label the sentence “Steve Jobs passed away the day before Apple unveiled iPhone 4s in late
2011” with the relation business/company/founders. Secondly, although DS method can automatically
generate large-scale training data, this training data can only cover a limited part of relations. Nearly
70% of the relations are long-tail and still suffer from data deficiency in the widely used New York
Times (NYT) dataset. To alleviate the wrong labeling problem, Riedel et al. (2010) and Hoffmann et al.
(2011) propose the multi-instance learning (MIL) framework, which assigns a label to a bag of sentences
containing a common entity pair. Based on the MIL framework, many efforts (Zeng et al., 2015; Lin
et al., 2016; Du et al., 2018; Ye and Ling, 2019) have been devoted to identifying valid sentences from
labeled bags. However, they ignore the hierarchical relation information. For example, the relations
in Freebases are labeled as shown in Figure 1 (LEFT). Considering the correlations among relations,
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Figure 1: Illustration of the relations. Left: an example in Freebases. Right: the corresponding class
hierarchy.

relations can also be naturally organized as a class hierarchy (Han et al., 2018)–typically like a tree
shown in Figure 1 (RIGHT). Each layer in the relation hierarchies has its semantic information. Han et
al. (2018) and Zhang et al. (2019) take advantage of this relation hierarchies and propose a hierarchical
attention scheme to simultaneously solve the noise problem and achieve state-of-the-art performance in
extracting long-tail relations. Nevertheless, they are based on a flat classification approach without fully
exploring the informative relation hierarchies.

To leverage the inherent hierarchical structure of relations, we formulate DSRE as a hierarchical clas-
sification task, which extracts relations in a top-down manner. Intuitively, coarse-grained relations in the
top level are easy whereas fine-grained relations in the bottom layer are harder to classify. In this way,
we can preferentially extract the relation in the top level and then use the top-level relation to boost the
performance of the relation in the bottom level. There exist two challenges when conducting a hierarchi-
cal top-down classification: capturing specific bag representations in different levels and training large
amounts of classifiers. For the challenge of the bag representation, a bag of sentences expresses differ-
ent relations in different levels. Hence, it is necessary to dynamically adjust the bag representations in
different relation levels. To capture the hierarchy-specific bag representation, we propose a hierarchical
bag representation method, which incorporates the hierarchically-refined selective attention mechanism
to dynamically adjust the bag representation in different levels. For the challenge of massive classifiers,
traditional hierarchical classification methods which adopt the top-down manner need to train a set of
local classifiers (D’Alessio et al., 2000; Clare and King, 2003; Holden and Freitas, 2009). The number of
local classifiers depends on the size of the label hierarchies, making hierarchical classification infeasible
to scale. To handle the massive local classifiers problem, we introduce a top-down classification strategy
which shares most of its parameters in different levels to avoid training massive local classifiers, thus
making our methods available for various relation hierarchies.

We name our approach A Top-Down Classification Strategy for Hierarchical Relation Extraction
(ToHRE). Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to explore the feasibility of the hierarchical classifica-
tion in Distantly Supervised Relation Extraction.

• We design a hierarchically-refined representation method to enhance the bag representation in dif-
ferent relation levels and a top-down classification strategy to avoid training massive local classi-
fiers.

• We conduct thorough experiments on the widely-used NYT dataset and achieve significant improve-
ments over state-of-the-art models, especially for long-tail relations.

2 Methodology

2.1 Overview
Problem Definition Following the MIL setting, we split entire sentences into multiple entity-pair bags
{Bh1,t1 , Bh2,t2 , ...}. Each entity-pair bag Bhi,ti contains m sentences {s1, s2, ..., sm} mentioning both
the entities hi and ti. Each sentence is a sequence of tokens, i.e., s = {w1, w2, ..., wn}, where n is the
length of the sentence. Besides, we define the relation classes as R = {r1, r2, ...}. Given an entity-
pair bag and two corresponding entities, the previous works are all focusing on flat classification, which
directly label the bag with a predicted relation r from pre-defined relation classesR.
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Figure 2: Illustration of hierarchical bag presentation.

To leverage the inherent hierarchical structure of relations to conduct hierarchical relation extraction,
we define a relation hierarchy H = (L,E) as a tree-structured hierarchy with a set of nodes (i.e., rela-
tions) L and a set of edges E indicating the relationship between the parent node and its child node. As
illustrated in Figure 1, the leaf nodes in H are made up of the pre-defined relation classes R. Hence, all
leaf nodes are base-level relations (e.g., /people/person/place of birth). We generate the corresponding
higher-level relations (e.g., /people/person and /people) as their parent nodes. Specifically, for a relation r
in the leaf node, we generate k times to construct its hierarchical chain of parent relations

{
r0, r1, ..., rk

}
,

where ri−1 is the parent relation of ri. It is worth noting that r0 is the virtual root relation and rk is the
base-level relation, namely r.

Different from previous methods, our proposed model aims to explore the relation hierarchy H in a
top-down manner and output relation probability in each relation level. The entity-pair bag along with
the history of parent relations are integrated to predict a relation from pre-defined relation classesR.
Framework Our model consists of two key components: hierarchical bag representation module and
a top-down classification strategy. The hierarchical bag representation module is shown in Figure 2. It
takes an entity-pair bag as input and outputs the bag representations in different relation levels. First,
each sentence in the entity-pair bag is transformed to a matrix with the entity-aware embedding. Then,
a Piecewise Convolution layer (Zeng et al., 2015) is used to obtain the sentence representation. After
that, a hierarchically-refined selective attention is leveraged to select sentences in the bag which actually
expresses the corresponding hierarchical relation and output hierarchy-specific bag representation. The
top-down classification strategy is illustrated in Figure 3. The designed strategy takes the hierarchical
bag representation and corresponding relation embeddings as input to discriminate its child relations,
then walks down the relation hierarchies to predict the next relation until the leaf node. The details of
the two components are introduced in Section 2.2 and Section 2.3 respectively.

2.2 Hierarchical Bag Representation
As mentioned in Section 2.1, the hierarchically-refined representation method aims to obtain bag repre-
sentations in different relation levels. Specifically, given a bag of sentences Bh,t = {s1, s2, ..., sm} and
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two corresponding entitieswh andwt
1, we aim to obtain k-level bag representations

{
r1h,t, r

2
h,t, ..., r

k
h,t

}
.

Entity-Aware Embedding For a sentence s = {w1, w2, ..., wn} in the bag, each word wi is trans-
formed into a low-dimensional dense-vector representation, i.e., [v1, ...,vn] ∈ Rda×n, where da denotes
the dimension of word embedding. Besides, relative position (Zeng et al., 2015) is a crucial feature for
relation extraction model to specify the target entity pair and make the model pay more attention to the
words close to the target entities. For i-th word, the relative position features can be represented by
two dense-vectors pwh

i and pwt
i ∈ Rdb . Previous works concatenate the word embedding and position

embedding for i-th word, i.e., xi = [vi,p
wh
i ,pwt

i ].
In addition to relative position features, Li et al. (2020) verify both the head entity embedding vh and

tail entity embedding vt are vitally important for the relation extraction task. They use a position-wise
gate mechanism to dynamically select features between relative position embeddings and entity embed-
dings. To go a step further, we argue that head entity and tail entity are not equally important in extract-
ing hierarchical relations. To this end, we propose an entity-aware embedding method to dynamically
enhance entity information in word representation. Formally, we denote the head-entity-enhanced em-
bedding as X(h) = [x

(h)
1 ,x

(h)
2 , · · · ,x(h)

n ] ∈ Rdw×n in which x
(h)
i = [vi,vh,p

wh
i ] and dw = db+2×da.

The tail-entity-enhanced embedding is denoted as X(t) in a similar way. Then we use a selective mech-
anism to dynamically select features between X(h) and X(t). The selective mechanism is formulated
as:

α = sigmoid(W(s)X(h) + b(s)) (1)

X = α ·X(h) + (1− α) ·X(t) (2)

in which W(s) ∈ Rdh×dw and bias vector b(s) are parameters, and X = [x1,x2, · · · ,xn] ∈ Rdh×n is
the final input representation for sentence s.

Piecewise Convolution Neural Network We employ the Piecewise Convolution Neural Network
(PCNN) as the sentence encoder to map the aforementioned input representation X into a sentence
representation. Note that, our hierarchically-refined representation method is designed independently of
the sentence encoder. Hence, other neural networks such as RNN can be the alternative and used as the
sentence encoder in our approach. Since previous works show that PCNN can achieve state-of-the-art
performance and give time efficiency, we select it as the sentence encoder in this paper. PCNN mainly
consists of two parts: the convolution layer and piecewise max-pooling.

The convolution layer applies a kernel of window size l to slide over the input representation
[x1,x2, · · · ,xn] and output the dc dimensional hidden embedding h, where h ∈ Rdc×n and dc is the
number of feature maps.

Then, a piecewise max-pooling method (Zeng et al., 2015) is applied on the hidden embeddings. The
hidden embedding h is firstly divided into three parts

{
h(1),h(2),h(3)

}
by the position of head and

tail entities. After that, we perform max-pooling on each part respectively and concatenate the pooling
results to get the final embedding u:

u = [max(h(1)),max(h(2)),max(h(3))] (3)

where u ∈ R3dc is the final sentence representation.
Hierarchically-Refined Selective Attention Given a bag of sentences Bh,t = {s1, s2, ..., sm}, we

already achieve the sentence embeddings Uh,t = {u1,u2, ...,um} through input representation and
PCNN encoder. For a relation r ∈ R, we generate its k-level chain of parent relations

{
r0, r1, ..., rk

}
. In

this section, we aim to identify valid sentences in different relation levels and obtain hierarchy-specific
bag representations, i.e.,

{
r1h,t, r

2
h,t, ..., r

k
h,t

}
We propose a hierarchically-refined selective attention mechanism to identify valid sentences in k-

level relation hierarchies. Specifically, the bag presentation of j-level (1 ≤ j ≤ k) relation level is
1For a clear demonstration, we omit indices of examples.
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formulated as:

rjh,t =
m∑
i=1

βjiui, u1, ...,um ∈ Uh,t (4)

Here βji is the hierarchically-refined attention weight for i-th sentence in j-th relation level, which is
further defined as:

βji =
exp(eji )∑m

g=1 exp(e
j
g)

(5)

where eji is referred as a query-based function which scores how well the input sentence ui and the j-th
level of predicted relation r matches. We denote qrj as layer-wise query vector associated with j-th level
of relation r to compute eji :

eji = uiAqrj (6)

where A is a weighted diagonal matrix. Finally, the hierarchical bag representation
{
r1h,t, r

2
h,t, ..., r

k
h,t

}
is obtained. Different from works of Han et al. (2018) and Zhang et al. (2019), we directly employ
bag representations of different levels as critical features for hierarchical relation extraction instead of
concatenating them to conduct flat classification.

2.3 Top-Down Classification Strategy

In this section, a novel top-down classification strategy for DSRE is proposed to explore the relation
hierarchy H step by step. We first define some notations used and then introduce the novel strategy in
detail.

Definition For each relation in the hierarchyH , the relation embedding l ∈ RC is randomly initialized
and updated during training. In level j, we define the current parent node as rj and the child nodes of rj

as C(rj). Furthermore, an embedding matrix consists of C(rj) is denoted as Cj ∈ R|C(rj)|×C .
Top-Down Manner The proposed top-down manner starts from the virtual root node and goes down

one level on the hierarchy and stops at a leaf node. Notably, only the ground-truth hierarchical relations
are visited during the training phase, e.g., for a bag labeled with relation r, only the nodes in its hierar-
chical chain

{
r0, r1, ..., rk

}
are visited. While in the testing phase, the proposed top-down manner visits

each node in the relation hierarchy H and outputs local probabilities for each node.
Local Classification Strategy In each level j, we aim to conduct local classification, which outputs

the probability distribution of C(rj), i.e., the child node probabilities of rj . Traditional methods train a
set of massive classifiers for each node or each parent node in relation hierarchy H , making them infea-
sible to scale. Inspired by (Mao et al., 2019), who propose a top-down supervised method to pre-train a
reinforcement learning model for hierarchical classification, we design a local classification strategy for
DSRE which calculates the matching score between the hierarchical bag representation and the candidate
embedding matrix.

Specifically when conducting local classification in level j, the embedding of current relation lj and
the bag representation rj+1

h,t are concatenated and projected to a hidden state vector sj ∈ RC via a two-
layer feed-forward network. Then the candidate embedding matrix Cj is multiplied with the hidden
state vector sj to obtain the local probability p(rj+1|rj , rj+1

h,t , θ), i.e., the ground-truth child relation
probability of rj . The aforementioned process is formulated as:

sj = ReLU
(
W 1

l ReLU
(
W 2

l [lj ; r
j+1
h,t ]

))
(7)

p(rj+1|rj , rj+1
h,t , θ) = softmax(Cjsj) (8)

2.4 Training and Testing

Here we introduce the learning and optimization details of our model. During the training pro-
cess, we minimize the cross entropy loss function. Given the collection of entity-pair bags B =
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Figure 3: Illustration of the top-down classification strategy.

{Bh1,t1 , Bh2,t2 , ...} and corresponding labeled relations {r1, r2, ..., }, We defined the hierarchical loss
as followings:

J(θ) = −
1

|B|

|B|∑
i=1

k−1∑
j=0

log p(rj+1
i |rji , r

j+1
hi,ti

, θ) + λ ‖θ‖22 (9)

where λ is a harmonic factor, and ‖θ‖22 is the regularizer defined as L2 normalization. All models are
optimized using stochastic gradient descent (SGD).

In the testing phase, we output the final probability of relation r for Bh,t by multiplying the probabili-
ties of its hierarchical chain of parent relations:

p(r|Bh,t) =

k−1∏
j=0

p(rj+1|rj , rj+1
h,t , θ) (10)

3 Experiments

3.1 Dataset and Evaluation Metrics

We evaluate our proposed model on the New York Times (NYT) dataset (Riedel et al., 2010), which
has been widely used for distantly supervised relation extraction (Zeng et al., 2015; Lin et al., 2016;
Zhang et al., 2019). This dataset is constructed by aligning relation facts in Freebase with the New York
Times corpus. There are 52 actual relations and a special NA relation indicating that there is no relation
between two entities. Specially, we put NA relation as a leaf node in H and directly link it to the virtual
root node.

Following the previous works from Zeng et al. (2015) and Lin et al. (2016), we evaluate our model
using the held-out evaluation. In the held-out evaluation, the relations extracted from test data are auto-
matically compared with those in Freebase. It is an approximate measure of the model without requiring
costly human evaluation. We report the precision-recall (PR) curves, top-N precision (P@N) and accu-
racy of Hits@K in our experiments.
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Hyper-Parameter Value

Word Dimension da 50
Position Dimension db 5
Window Size l 3
Sentence Embedding Size dh 300
Relation Embedding Size C 50
Learning Rate λ 0.5
Dropout Probability 0.5
Batch Size 160

Table 1: Detailed hyper-parameters. Figure 4: Precision-recall curves.

3.2 Setup

We use the pre-trained word embeddings released by Lin et al. (2016)2 for initialization. The vocabulary
contains the words which appeared more than 100 times in the NYT corpus. We apply the dropout
strategy (Srivastava et al., 2014) to the hidden state vector sj to prevent overfitting. Besides, we pre-train
the PCNN before training our hierarchical classification model. Table 1 shows all the hyper-parameters
used in our experiments.

3.3 Overall Performance

Precision-Recall Curves We compare the precision-recall curves of our model with several major base-
lines to evaluate the overall performance in Figure 4. We report the results of previous RE models which
adopt the PCNN architecture as sentence encoder: the original PCNN and its variants with different
attention-based modules. More specifically, +ONE (Zeng et al., 2015) indicates the original PCNN un-
der MIL setting; +ATT (Lin et al., 2016) is a plain selective attention over sentences; +ATT+SL (Liu et
al., 2017) combines the ATT scheme with soft-label method to solve the bag-level noise; +HATT (Han
et al., 2018) leverages relation hierarchies to calculate a coarse-to-fine grained attention, which is the
principal baseline of our work; ToHRE is the abbreviation of our proposed framework.

As shown in Figure 4, our model achieves the best result among all attention-based models. Even
compared with PCNN+HATT, our model achieves higher precision over most part of the entire range of
recall. It indicates the ability of our proposed model to handle the noise problem in the RE task.

P@N To further verify the effectiveness of our proposed model, we compare our model with previous
state-of-the-art approaches on the Top-N precision. We briefly introduce these SOTA models: RESIDE
(Vashishth et al., 2018) utilizes the available side information from knowledge bases, including entity
types and relation alias information; DISTRE (Alt et al., 2019) is a Transformer which combines an
attentive selection mechanism for the multi-instance learning scenario; PCNN+BAG ATT (Ye and Ling,
2019) combines both intra-bag and inter-bag attentions to cope with the noisy sentence and noisy bag
problems in DSRE and achieve the SOTA performance in terms of top-n precision metric. The evaluation
results are shown in Table 2. It can be observed that: (1) ToHRE outperforms previous methods in most
cases from P@100 to P@2000 indicating that our model have a consistent performance. (2) ToHRE has
the highest precision in P@100, which is critical to some NLP tasks like Knowledge Base Completion
that need convincing prediction at top-100 to obtain high-quality relational triple.

3.4 Evaluation Result for Long-tail Relations

To demonstrate the improvements in performance for long-tail relations, we follow the work from Han
et al. (2018) to evaluate our model on a subset of test dataset in which all the relations have fewer than

2https://github.com/thunlp/OpenNRE.
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Approach P@100 P@200 P@300 P@500 P@1000 P@2000 Mean

PCNN+ATT† 73.0 68.0 67.3 63.6 53.3 40.0 60.9
PCNN+HATT‡ 81.0 79.5 75.7 68.0 58.7 42.1 67.5

RESIDE† 81.8 75.4 74.3 69.7 59.3 45.0 67.6
DISTRE† 68.0 67.0 65.3 65.0 60.2 47.9 62.2

PCNN+BAG ATT‡ 88.0 81.0 80.7 72.6 60.3 45.0 71.3

ToHRE w/o EW 81.2 80.1 76.8 75.7 61.9 46.4 70.4
ToHRE 91.5 82.9 79.6 74.8 63.3 48.9 73.5

Table 2: Precision evaluated automatically for the top rated relation instances. † indicates the baseline
results reported in (Alt et al., 2019) and ‡ indicates the baseline results given by our implementation.

Training Instances <100 <200
Hits@(Macro) 10 15 20 10 15 20

PCNN+ATT <5.0 7.4 40.7 17.2 24.2 51.5
PCNN+HATT 29.6 51.9 61.1 41.4 60.6 68.2
PCNN+KATT 35.3 62.4 65.1 43.2 61.3 69.2

ToHRE 62.9 75.9 81.4 69.7 80.3 84.8

Table 3: Accuracy (%) of Hits@K on relations with training instances fewer than 100/200.

100/200 training instances. The Hits@K metric is introduced for evaluation. For each entity pair, the
evaluation requires its corresponding golden relation in the first K candidate relations recommended
by the models. Following previous work, we select K from {10,15,20} and report the macro average
Hits@K accuracies for these subsets. We compare our model with PCNN+HATT (Han et al., 2018)
which is the first work to evaluate the long-tail relations under such settings and PCNN+KATT (Zhang et
al., 2019), which follows Han et al. (2018) and achieves the SOTA performance in the long-tail relation
extraction. From the evaluation results in Table 3, we can observe that ToHRE improves previous SOTA
approach by a large margin, i.e., 27.6% and 26.5% in the aspect of Hits@10 under different training
instances and has consistent performance on Hits@15 and Hits@20 settings. The result indicates that
relation hierarchies have been better exploited in our hierarchical classification framework than previous
methods. Although ToHRE has improved performance on the long-tail relation extracting, the results of
all methods are far from satisfactory, which requires more sophisticated models to handle this problem.

3.5 Ablation Study

We conduct an ablation study to verify the effectiveness of the entity-aware word embedding module.
To this end, we denote ToHRE w/o EW as using the position-aware word embedding (Zeng et al., 2015)
instead of the proposed entity-aware embedding. From the corresponding P@N results shown in Table 2,
we observe that the prediction result has an obvious drop without using the entity-aware word embedding,
especially has a 10.3% decreases in top-100. It indicates that the proposed entity-aware word embedding
methods can successfully capture the corrections between each word and two corresponding entities.

3.6 Case study

In this section, we conduct a case study to show the predicting process of our framework. Table 4 shows
the predicted score in different relation levels for B1 and B2. The B1 contains two sentences where the
second sentence does not express the labeled relation /location/country/administrative divisions. How-
ever, we can observe that our model predicts high scores to all relation levels despite the noisy sentence,
which shows that our hierarchically-refined selective attention can alleviate the noise problem in differ-
ent levels. The B2 is labeled with the relation /people/person/religion which has few training instances.
The previous flat models can not extract such relations due-to data deficiency. However, our model can
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Bag Bag of Sentences with Labeled Relation P1 P2 P3

B1

Sen1. Barzin ... died at her home in Paris, France on november 27. 0.97 0.98 0.95
Sen2. His interrogation led to arrests algeria, italy and France, where

mr.majrar’s ... armored car depot in Beauvais, north of Paris.
Relation. /location/country/administrative divisions

B2
Sen. Muhammadu buhari, also a northern Muslim ... people’s party. 0.77 0.97 0.28
Relation. /people/person/religion

Table 4: A case study where the entities are mark in bold. P1, P2 and P3 show the predicted relation
probability in level1, level2 and level3 respectively.

successfully extract the data-rich relations in top-level, i.e., /people and /people/person. Even though we
have a low score in base-level relation /people/person/religion, we combined it with the high score of
top-level to assign the bag with an overall probability.

4 Related Work

4.1 Distantly Supervision Relation Extraction

Distant supervision proposed by Mintz et al. (2009) is an efficient approach that automatically generates
large-scale training data for the RE task. However, the training data generated by DS usually contain
amounts of wrongly labeled sentences and suffer from the long-tail problem. To alleviate the wrong
labeling problem, Riedel et al. (2010) and Hoffmann et al. (2011) propose a MIL framework, where
training sentences are arranged in bags and a label is provided for a bag of sentences instead of each
sentence individually. This framework is well-suited for the DS setting and thus many works adopt this
framework to select informative sentences from the noisy bags. For example, Zeng et al. (2015) propose
PCNN to automatically extract features from sentences and select the most important sentence. Attention
mechanisms (Lin et al., 2016; Du et al., 2018; Lei et al., 2018; Yuan et al., 2019; Ye and Ling, 2019) are
investigated to assign high attention to informative sentences. Reinforcement learning (Zeng et al., 2018;
Feng et al., 2018; Qin et al., 2018) is adopted to filter the noisy sentences. As for solving the long-tail
problem in DS, Han et al. (2018) leverage relation hierarchies to calculate a coarse-to-fine attention for
better extracting long-tail relations. Zhang et al. (2019) take advantage of the knowledge from data-rich
relations at the head of distribution to boost the performance of the data-poor relations in the tail.

However, most previous works formulate DSRE as a flat classification problem which has not fully
exploited the inherent hierarchical structure of relations. Indeed, hierarchical classification has been
widely used in other tasks, such as text classification (Gopal and Yang, 2013; Peng et al., 2018; Mao
et al., 2019), question answering (Qu et al., 2012) and online advertising (Agrawal et al., 2013) and
demonstrates its efficiency for hierarchical structure. It is notable that in some works, such as works
from Mao et al. (2019) and Silla and Freitas (2010), the flat classification is also regarded as a special
circumstance of hierarchical classification where only the label at the leaf node is predicted. But in
order to distinguish our model from previous works, we consider flat classification and hierarchical
classification as two independent methods in this paper. To the best of our knowledge, we are the first to
conduct hierarchical classification for the DSRE task.

4.2 Local Approach vs. Global Approach for Classification

We summarize hierarchical classification methods into two categories based on how the hierarchy is
explored: local and global approaches. Local approaches explore the hierarchy in a top-down manner
by training a set of local classifiers for each node (D’Alessio et al., 2000), or each parent node (Holden
and Freitas, 2009), or each level in the hierarchy (Clare and King, 2003). The disadvantage of local
approaches is that the number of local classifiers depends on the size of the label hierarchy, which makes
them infeasible to scale. The global approaches (Kiritchenko et al., 2005; Cai and Hofmann, 2004) train
a single classifier for all classes in the hierarchy. Compared with the local classifier, less research on the
global classifier has been investigated due to the complexity of the problem (Silla and Freitas, 2010).
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5 Conclusion

In this paper, we take advantage of the inherent hierarchical structure of relations and propose a top-
down classification strategy with a hierarchical bag presentation. In this way, we formulate the DSRE as
a hierarchical classification task. The experimental results indicate that our proposed model outperforms
previous state-of-the-art flat methods, especially for long-tail relations. In the future, we plan to explore
the following directions: (1) incorporating entity information from external knowledge graphs to enhance
the hierarchical bag representation; (2) utilizing more sophisticated training strategies for the long-tail
relation problem.
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