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Abstract

Automatic Language Identification (LI) or Dialect Identification (DI) of short texts of closely
related languages or dialects, is one of the primary steps in many natural language processing
pipelines. Language identification is considered a solved task in many cases; however, in the
case of very closely related languages, or in an unsupervised scenario (where the languages are
not known in advance), performance is still poor. In this paper, we propose the Unsupervised
Deep Language and Dialect Identification (UDLDI) method, which can simultaneously learn
sentence embeddings and cluster assignments from short texts. The UDLDI model understands
the sentence constructions of languages by applying attention to character relations which helps
to optimize the clustering of languages. We have performed our experiments on three short-
text datasets for different language families, each consisting of closely related languages or
dialects, with very minimal training sets. Our experimental evaluations on these datasets have
shown significant improvement over state-of-the-art unsupervised methods and our model has
outperformed state-of-the-art LI and DI systems in supervised settings.

1 Introduction

Automatic Language Identification (LI) and Dialect Identification (DI) has become a very crucial part of
natural language processing (NLP) pipelines and is part of tasks such as language modelling, categorization
and analysis of code-mixed datasets. Many researchers have carried out experiments in these domains
both in speech and texts starting from House and Neuburg (1977). Unsupervised LI is an under-explored
area, but is highly useful as it can exploit the large amount of unlabelled data and, more importantly, can
be employed when the languages to be identified are not known in advance. However, unsupervised LI for
short texts is a very difficult task, for which performance is still comparatively poor. Zhang et al. (2016)
have explored unsupervised language identification but this does not work well with closely related short
texts. Zaidan and Callison-Burch (2014) have worked on the identification of Arabic dialects. Ciobanu et
al. (2018) studied German dialect identification. These works are mostly supervised works. The task is
even harder when it comes to unsupervised DI.

These previous works have generated some questions: What is the best way to construct sentence
embeddings and how to cluster them efficiently for short texts when there is no labelled training data?
How to address the hard task of DI and LI for closely related languages in an unsupervised way without
any manual intervention? In this paper, we address these problems by taking inspiration from iterative
clustering (Xie et al., 2016) and self-attention-based sentence embeddings from Lin et al. (2017). Both
of the papers have shown good results on unsupervised clustering and sentence embeddings for a single
language dataset whereas our goal is to design a system which can work on different short texts of closely
related languages and understand every distinct feature. Our system takes different n-gram character
features of a sentence and computes attention weights based on their importance in sentence construction.
We then fine-tune sentence embeddings with an iterative clustering process with the help of the Stochastic
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Gradient Descent (SGD) and backpropagation. We call the system Unsupervised Deep Language and
Dialect Identification (UDLDI).

One of the main challenges of the model is to get sentence embeddings. As we do not have any labels
here, we cannot use typical loss functions to update character-to-sentence embeddings. Further, as the
datasets are short text small datasets, there is much less scope to learn features to construct efficient
sentence embeddings. To overcome this challenge we propose a loss function which considers the
probability distribution of assigning sentences in each cluster and tries to maximize the unique sentence
assignments in each cluster. These sentence embeddings define the initial cluster centre assignments,
which we then fine-tune with the iterative clustering learning process. Our method is tested against three
different datasets consisting of under-resourced and closely related languages, the language families
and/or varieties in question being South African, Dravidian and Swiss German. The South African dataset
consists of languages from different language families, some of which are similar. We have achieved
good results on each dataset and the results are better than other base results. We have also compared our
sentence-embedding model to supervised LI and DI methods which outperformed other state-of-the-art
models. The robustness of the model is, it does not require any manual intervention and it works well for
short texts in any dataset consisting of closely related languages, for any language family.

Our contributions are: (1) the mentioned UDLDI model for language and dialect identification in short
texts of closely related languages, (2) efficient sentence embedding construction for short texts, and (3)
efficient clustering of closely related languages with a very small dataset.

2 Related Work

There are some LI and DI models which work efficiently for short texts and closely related languages
on different datasets (Hammarström, 2007; Medvedeva et al., 2017). Jauhiainen et al. (2019) have
described different LI and DI models. Language identification of closely related languages are explored in
Malay-Indonesian languages (Ranaivo-Malançon, 2006), Indian languages (Murthy and Kumar, 2006),
South Slavic languages (Tiedemann and Ljubešić, 2012; Ljubešic and Kranjcic, 2014; Ljubešić and
Kranjčić, 2015). Zampieri and Gebre (2014) made a LI system which can identify 27 languages.

There is some research on LI for short texts. Vatanen et al. (2010) explored an LI method based on n-
gram character sequences for messages that are 5-21 characters long. Bergsma et al. (2012) have explored
LI for Twitter data. King and Abney (2013) used Conditional Random Fields (CRF) (Lafferty et al., 2001)
to build word-level LI method. Giwa and Davel (2013) have investigated LI in terms of code-switching.
These methods are all supervised and this does not allow them to exploit the large amount of unlabelled
data and situations where the languages are not known in advance. Unsupervised LI is a challenging task.
Selamat and Ching (2008) used Fuzzy ART NNs for clustering of documents written in Arabic, Persian,
and Urdu. In Fuzzy ART, they have shown how to update clusters dynamically. Amine et al. (2010)
used a character n-gram representation for text. Later k-means algorithm followed by particle-swarm
optimization is applied to cluster the languages which results in different small clusters. Shiells and Pham
(2010) worked on unsupervised tweet LI with the Chinese Whispers algorithm of Biemann (2006) and
Graclus clustering. Elfardy and Diab (2012) deal with code-switching identification between Modern
Standard Arabic (MSA) and dialectal Arabic. Wan (2016) used word-level k-means clustering for LI and
clustered languages based on co-occurring words. Poulston et al. (2017) used word2Vec word embeddings
and k-means clustering to make their LI model. Rijhwani et al. (2017) researched short-text tweets for
unsupervised language detection which mainly focuses on seven languages. These algorithms work well
for some specific languages and long texts.

There is some research on dialect identification (DI). DI has been explored in Serbo-Croatian dialects
(Zečević and Vujicic-Stankovic, 2013), English varieties (Simaki et al., 2017), Dutch dialects (Trieschnigg
et al., 2012), German dialects (Hollenstein and Aepli, 2015), Mainland–Singaporean–Taiwanese Chinese
(Huang and Lee, 2008), Arabic dialects in social media (Huang, 2015), Portuguese varieties (Zampieri and
Gebre, 2012). One of the more famous dialect identification systems is an Arabic dialect system which
was given much emphasis in 2015 (Zampieri et al., 2015). But most of these works deal with supervised
dialect identification. Our model bridges the gap between DI and unsupervised learning.



1608

Figure 1: Unsupervised deep LI and DI model. The left-hand side shows the architecture design of the
UDLDI mechanism; the sentence embedding mechanism is explained on the right-hand side

3 Unsupervised Deep Language and Dialect Identification (UDLDI)

Unsupervised Deep Language and Dialect Identification (UDLDI) clusters the short texts of closely related
languages in an efficient way using character-to-sentence embeddings with self-attention, based on an
unsupervised loss function and an iterative clustering method (refer to Figure 1). The model uses an
unsupervised loss function to build the character-to-sentence embeddings. The iterative clustering process
fine-tunes the sentence embedding and enhances the cluster assignment.

3.1 Sentence Embedding

The sentence-embedding model has two parts. The first one is an n-gram character-level CNN and the
second one is a self-attention mechanism, which gives the weighted summed features of sentences based
on n-gram (n ∈ {2,3,4,5,6}) characters. The attention weights are then multiplied with the feature vectors
of the CNN to get the sentence embedding. The different character-level features are achieved with the
help of 1-dimensional CNN (Zhang et al., 2015). The sentence embeddings are then fed into a dense layer
to get the language level probability distribution of the sentence.

The 1-dimensional CNN accepts the input sequence as a character sequence. If a sentence has m
characters then the input sequence would be S = [w1,w2, ...,wm], where wi is a character in the sentence
(including spaces). The one-dimensional convolution implements 1-dimensional filters which slide over
the sentences as a feature extractor. Let the filters have a shape of 1 × k where k is the filter size. Filter
sizes are the same with different n-grams. Let xi ∈ Rd denote the d-dimensional character embedding of
the i-th character considering the character vocabulary size is n. For each position j in the sentence, we
have a window vector wj with k consecutive character vectors, as denoted in Equation 1.

wj = [xj , xj+1, ....., xj+k−1] (1)

The 1-dimensional k-sized filters slide over the window vector wj to create the feature map s where
s ∈ Rm−k+1 and m is the input size. Each element sj of the feature map for window vector wj is produced
according to Equation 2,

sj = a(wj ⋅m + bj) (2)

where vector m is a filter for convolution operation, bj is the bias for the j-th position and a is the non-linear
function. The new feature representation F after rearranging will be represented as F = [s1, s2, ..., sn],
where n is the number of convolution filters, si is the feature map generated with i-th filter and F ∈
R(m−k+1)×n.
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To understand the different n-gram feature representation of the sentences, multiple k-sized filters are
used which is represented as Fk where k ∈ {2,3,4,5,6}.

We aim to get sentence embeddings from different n-gram representations. We have achieved this by
getting the weighted summation of T elements of new feature representation F. We perform this for each
Fk separately. To achieve this, we use a self-attention mechanism. The attention mechanism takes the
feature representation as input and gives a as an output weight vector, as shown in Equation 3,

a = softmax(tanh(Wh ⋅ F T + bh)) (3)

where Wh is the weight matrix and bh is the bias for the attention mechanism. The use of softmax is to
ensure that the summation of attention weights (a1, a2, .., aT ) are non-negative and sum up to 1. Then we
sum up the elements of feature representation F according to the weight vectors provided by a to get a
vector representation r of the input sentence by Equation 4,

r =
T

∑
i=1

ai ⋅ Fi (4)

where ai is the attention weights for each element of the feature representation, and ⋅ is the element-wise
product between elements.

Different n-gram representations carry different weighted sentence embeddings. To capture all the
representations, the final representation is a concatenated vector r = [r2, r3, r4, r5, r6] (where n-grams
∈ {2,3,4,5,6}), which is then passed to the fully connected layer to get the probability distribution of there
being one language or dialect.

The sentence embeddings are used in two phases. The first phase is the pre-training phase which can be
obtained as described in section 3.2; the second phase is the fine-tuning of sentence embeddings based on
self-training with the clustering algorithm, described in section 3.3.

3.2 Dense Layer and Loss function
The sentence embeddings r ∈ RN×M are passed to a fully connected (FC) layer which gives the output
z ∈ RN×K and then a softmax layer (p ∈ RN×K) returning the probability distribution of all classes, as per
Equation 5,

pij =
exp(zij)

∑K
t=1 exp(zik)

(5)

where K is the number of languages or dialects and pij gives the probability that sample i belongs to class
j (j ∈ {1,2,...,K}).

The loss function maximizes the same feature sentence assignment to one language. It can be considered
as maximizing cluster purity based on the probability distribution. The loss function can be computed by
means of Equation 6,

Lu =
N

∑
i=1

i
max
j=1

pij −
N

max
i=1

i

∑
j=1

p2ij (6)

where N is the batch size. In contrast to existing loss functions, our loss function does not depend
on entropy-based calculation as there is no label. Instead the loss function is trying to maximize the
probability distribution function based on the feature assignments on each class (or cluster) and minimize
the maximum summation of the squared probability distribution of all the languages assigned to one class.
The maximization of the probability function ensures the best possible assignment of the features in each
individual classes. But in this process, there is a chance of biased feature assignments (for the datasets
where features of data points are very near in distance) to a single class. To overcome this trivial situation,
the model is penalised with the maximum summation of the feature assignments over all samples. This
stabilizes the system by assigning features to different classes in the best possible way.

After training the character embeddings and sentence embedding we cluster the dataset. Xie et al.
(2016) have shown in the Deep Embedding for Clustering (DEC) architecture how to use clustering as
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self-training (Nigam and Ghani, 2000) and how to fine-tune the mapping and do the clustering. The
DEC framework uses the idea of parameterized non-linear mapping from the data space X to a lower-
dimensional feature space Z to optimize a clustering objective. It uses stochastic gradient descent (SGD)
via backpropagation on the clustering objective to learn the mapping, which is parameterized by a deep
neural network. In our case, we have made use of this iterative clustering process to fine-tune the sentence
embeddings, which improve the clustering.

3.3 Self Training and Clustering
The initialization of this phase starts by obtaining initial cluster centroids ujkj=1 by applying the cluster
algorithm to the sentence embeddings from the pre-training phase, where k is the set of cluster centres.
The self-training phase has the following two steps: (i) the soft assignment between sentence embedding
and initial cluster centroids, and (ii) fine-tuning sentence embeddings and cluster centroids using the
auxiliary target distribution.

As a first step, we calculate the soft assignment between the cluster centroid uj and sentence embedding
zi based on Student’s t-distribution (Maaten and Hinton, 2008) with a single degree of freedom (α = 1),
as per Equation 7,

qij =
(1 + ∥zi − uj∥2)

−1

∑j′ (1 + ∥zi − uj′∥2)
−1

(7)

where zi ∈ {Z} and qij can be considered as the probability of assigning sample i to cluster j.
The second step involves refining the cluster learning from their high confidence assignments with the

help of an auxiliary target distribution (Xie et al., 2016). The auxiliary target distribution (pij) helps to
improve cluster purity and puts more emphasis on data points assigned with high confidence. The pij can
be calculated by means of Equation 8,

pij =
q2ij/∑i qij

∑j′ (q2ij/∑i qij′)
(8)

where ∑i qij is the frequency of the soft clusters.
The training loss is then designed based on KL divergence loss between the soft assignments qi and the

auxiliary distribution pi, as shown in Equation 9.

L =KL (P ∣∣Q) =∑
i
∑
j

pij log
pij

qij
(9)

4 Experimental Setup

4.1 Data
We have taken three different datasets for the training and testing of our model, for the following
languages/dialects.

South African languages. This dataset was used by Duvenhage et al. (2017) and consists of short
texts for 11 South African languages, many of which are related; these are the Nguni languages (zul,
xho, nbl, ssw), Afrikaans (afr) and English (en), the Sotho languages (nso, sot, tsn), tshiVenda (ven) and
Xitsonga (tso). The texts are on average 15-20 characters long. We have taken 15,000 samples for training
and 5,000 for testing.

Dravidian languages are under-resourced languages spoken mainly in the southern part of India. This
dataset contains the languages Tamil (ISO 639-3: tam), Telugu (ISO 639-3: tel), Malayalam (ISO 639-3:
mal) and Kannada (ISO 639-3: kan) (Chakravarthi et al., 2018). They have different orthographies with a
unique script for each language (Chakravarthi et al., 2019). The training set contains a total of around
14,000 instances and the test set contains a total of 3,000 instances.

Swiss German. This dataset is based on the ArchiMob corpus (Samardžić et al., 2016) and is used for
dialect identification. It contains transcriptions of 34 interviews with native speakers of various German
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dialects spoken in Switzerland. The subset used for German Dialect Identification contains 18 interviews
(14 for training and 4 for testing) from four Swiss German dialect areas, i.e., Basel, Bern, Lucerne, and
Zurich, with each interview being transcribed using the ‘Schwyzertutschi Dialäktschrift’ writing system
(Dieth, 1986). The training set contains a total of around 14,000 instances and the test set contains a total
of 3,638 instances.

4.2 Evaluation Metric
We have used the standard cluster performance evaluation process. The number of clusters is set to
the same number as the original number of classes in the data and evaluated with unsupervised cluster
accuracy, as shown in Equation 10,

ACC =maxm
∑n

i=1 1(li =m(ci))
n

(10)

where li is the ground truth label, ci is the cluster assignment produced by the algorithm and m ranges
over all possible one-to-one mappings between clusters and labels.

The number of clusters is also an evaluation process in case of unsupervised clustering. The accuracy
is determined with the same number of clusters as the ground truth data. But in general, the number of
clusters also needs to be optimised and evaluated. It is evaluated by Normalized Mutual Information
(NMI). The NMI is useful for comparing the clustering results with different cluster numbers. It is shown
in Equation 11,

NMI(l, c) = I(l, c)√
H(l)H(c)

(11)

where l is the ground truth label and c is the predicted cluster. I is the mutual information and H is entropy.
When data is partitioned perfectly, the NMI score is 1, and when l and c are independent, it becomes 0.

4.3 Training Details
We implemented our model using pytorch1 and used the SGD (Stochastic Gradient Descent) optimizer.
The starting learning rate for the South African, Dravidian and Swiss German datasets was hand-tuned
to 1e-4, 5e-3 and 2e-3, respectively, based on training data convergence during training time. We have
used LambdaLR2 as the learning rate scheduler which varies based on the filter numbers of convolution
network. The convolution networks have 128 filters each and it has 1 stride. The number of neurons in the
feed-forward network is 1024. We have used k-means clustering (MacQueen, 1967). For initial cluster
centroid detection on batches, we have used minibatch k-means clustering3. The weight decay is 0.01 and
the momentum is 0.9. For supervised learning, we have used Cross-Entropy loss 4.

5 Results and Discussions

We have compared our results with various baselines, both for supervised and unsupervised setup, which
are provided in Table 1 and Table 2.

Unsupervised setup. The model is compared with one of the most well known unsupervised clustering
methods Auto-encoder based k-means clustering. The sentences are projected in a latent space Z from
the feature space X and then clustered it applying k-means. Our second baseline model is fasttext5 word
embeddings and k-means. The sentence embedding is the average of word embeddings. We have also
compared our experimental results with the LSTM sentence-embedding model (Lin et al., 2017) along
with the DEC framework (Table 1). Our model performed substantially better than other state-of-the-art
models, achieving 37% accuracy (16.82% improvement upon the LSTM model) for the South African

1https://pytorch.org
2https://pytorch.org/docs/stable/optim.html
3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

MiniBatchKMeans.html
4https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html
5https://fasttext.cc/docs/en/unsupervised-tutorial.html
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Model South African Dataset Dravidian Dataset Swiss German Dataset

AE + Kmeans 19.04% 51.00% 14.00%
Fasttext +Kmeans 21.00% 67.94% 20.00%
LDA (Zhang et al., 2016) 21.56% 69.34% 19.00%
Skip-Thought (Kiros et al., 2015) + Kmeans 24.67% 71.00% 20.35%
AE + DEC (Xie et al., 2016) 25.00% 74.97% 22.35%
LSTM (Lin et al., 2017) + DEC 31.67% 81.50% 26.00%
UDLDI 37.00% 82.00% 30.00%

Table 1: Accuracy of different models for unsupervised LI and DI

Model South African Dataset Dravidian Dataset Swiss German Dataset

BRNN (Kocmi and Bojar, 2017) 89.00% 93.50% —
NB+Lex (Duvenhage et al., 2017) 96.00% 97.34% —-
CLUZH (Clematide and Makarov, 2017) — — 67.00%
MAZA (Malmasi and Zampieri, 2017) — — 68.00%
tearsofjoy (Zampieri et al., 2019) — — 75.00%
LSTM (Lin et al., 2017) 96.67% 98.51% 68.67%
CharCNN (Zhang et al., 2015) 98.00% 96.56% 66.09%
UDLDI 99.01% 99.34% 81.00%

Table 2: Accuracy of different models for supervised LI and DI

dataset. It has also achieved 82% accuracy (.6% improvement upon the LSTM model) in the Dravidian
dataset. For the Swiss German dataset, 30% accuracy (15.83% improvement upon the LSTM model) was
achieved; the latter DI task can be considered one of the toughest tasks to perform, as the dialects are very
similar. It means that the model is well capable of identifying important character n-gram features in
sentence construction. Details about the attention weights distribution are discussed in the section 5.1.

Supervised setup. Table 2 shows different baseline models including previously submitted systems in
the Swiss German DI shared tasks. Our model has outperformed all the state-of-the-art methods achieving
99%, 99.34% and 81% accuracy for the South African dataset, Dravidian dataset and Swiss German
dataset, respectively. Though it has outperformed both the LI and DI method, significant efficiency can be
observed in DI which has outperformed the highest performing system (Zampieri et al., 2019) by 8%.

5.1 Discussion and Analysis

To analyze sentence embeddings we will take reference of the Swiss German DI which can be considered
one of the hardest tasks. The dialects are very closely related from four different parts —Basel (BS),
Bern (BE), Lucerne (LU), and Zurich (ZH). Some of the sentence constructions are very similar to each
other. For example we can take two sentences of Bern and Lucerne which are “aber dää ı̀sch emaal dä”
and “aber dää ı̀sch seer schträng ggsı̀ı̀ mit öis” respectively. In the sentence constructions, we can see
the first three words are exactly the same consisting of the same characters even though they represents
two different dialects. Without extensive morphological and linguistic knowledge, it is very difficult to
separate sentences spoken by people from these regions. Character n-grams represents distinct features of
sentences of a particular region. Our model is also able to identify dialectal (pronunciation) variants for an
inflected form of a verb. We can see this in Figure 2. There are two sub-columns under the “Text” column
which consist of different sentences formed with the same verb in different contexts. The red colour is
the importance degree of the attention weight and light blue is a less important part. The English word
“have” has different forms in different dialects. For example, in case of BE, it is written as “hei” whereas
in LU it is written as “hend”. The verb form is used in different contexts in different sentences. In the first
example in the Text1 column, a sentence is shown with words “mir hei” which means “we have”. But
the “mir” word is the same in different dialects. Our model has given less attention weight to this word
whereas the highest attention weight is given to “hei”. The character n-gram considered space as well. So
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Figure 2: Attention visualization of dialect-specific words pointed out by the model

in the Text2 column, though the sentence does not contain the word “mir”, depending on the “hei” word
with space, the sentence is classified as BE. Here the word “söimer” is also given the highest attention
weight as the word only appeared in BE. The same can be observed in other sentences as well for other
dialects. Conjunctions like “und” (“and”) are very common in sentences and are often written the same.
As shown in Figure 2, this word occurs both in BS and ZH, and as such has very low significance in terms
of dialect identification. Consequently, our model has assigned it a low attention weight.

As Scherrer et al. (2019) have pointed out, the ArchiMob corpus shows variation on different levels.
Not only are different lexical items pronounced and hence written differently across dialects, the data
additionally incorporates intra-speaker variability (i.e., slight variation in the pronunciation of the same
word by the same speaker) and even shows transcriber-related variation. These factors may overestimate
the distinctive features as identified by the model. Moreover, the attention weights in our model may
point to yet another type of variability, namely, idiosyncratic features of certain speakers such as the
repetition of words (idiolect). In Figure 3a dialects are compared with each other in pairs. The word
“ùùnd” (standard German “und”) in the second example is common in both LU and BS. But in the case
of LU, the word followed by “ùnd” whereas in case of BS it followed by other words, so the character
attention distribution gives the highest attention weights to the n-gram “ùnd ùn”. Though the word “ùnd”
(like “und”) has very low significance in dialect identification as an individual word, in the Swiss German
dataset this n-gram is a distinctive feature, although probably being more indicative of idiolect than dialect.
The n-gram “im va” carries very little distinctiveness in case of LU, so it has the lowest attention score.

(a) The attention visualization for the Swiss German dataset (b) Error analysis for the Swiss German dataset

Figure 3: The left-hand side shows the model attention visualization process for dialect identification; the
right-hand side displays error examples in dialect identification due to similar sentence constructions

There are possibilities of very small differences in sentence construction for DI or LI. Our model
efficiently captures these differences. In Figure 3a the character n-gram “u nä” exists in BE. Even in word
“nächer”, the first two letters are “nä”, which leads to the n-gram “u nä”. In case of BS, the construction is
different and n-gram “u nä” does not exist. Thus in the case of BE, the highest attention weight is assigned
to “u nä” which makes the sentence embedding more robust and efficient.
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5.2 Error analysis in the model

The UDLDI works efficiently in comparison to other state-of-the-art methods. However, there are some
challenges. As can be seen in Figure 3b, the sentence construction “a de gränze” can be found both
in Zurich and Bern region. Though the sentences consist of other words, our methods are unable to
differentiate between sentence-level features as the character n-grams are also common in different
dialects; for example, the word “gsii” also exists in the Lucerne region. This leads to an insufficient
attention weights distribution for common character n-grams. The same is true for the word sequence
“aber es isch”. These lead to biased clustering. This observation is supported by the NMI score of the
clustering.

Figure 4: NMI Score vs Number of Clusters graph

Figure 4 shows that the NMI is highest when the number of clusters is 3 (blue line). We suspect that
in the case of overlapping word sequences with a non-distinctive right context, the model is wrongly
classifying sentences as belonging to the same cluster (dialect). We can compare this with Dravidian
dataset. The graph shows that the NMI score is highest for 4 clusters (red line), which is equal to the
number of languages present in the dataset. Though the Dravidian languages are very similar, they
have different orthographies with a unique written script for each language. Thus the model can easily
identify the script, directly captured by linguistic features on the character level. The somewhat unstable
characterisation of the number of clusters as shown in the NMI graph for Swiss German dataset may to
some extent be caused not only by linguistic features transcending one dialect area, but also, as mentioned
in 5.1, by intra-speaker variation, transcriber-related variation and idiolect.

6 Conclusion

In this paper, we propose a novel character attention based unsupervised deep language and dialect
identification (UDLDI) model for short texts of closely related languages. We have performed our
experiments on three different language families and outperformed other state-of-the-art models both as a
supervised and an unsupervised model. We have also achieved promising results for dialect identification
which is considered to be one of the hardest tasks in NLP. Our experiments show that UDLDI is capable
of doing language or even dialect identification irrespective of language families. The results in Section
5.1 show that the model is able to correctly identify some of the verbs which are distinguishable in
different dialects. We have also shown that, based on NMI, our unsupervised model is correctly predicting
the number of languages that are present in a dataset, opening up interesting applications to large-scale
multilingual dataset processing.

Our future work will be the improvement of clustering efficiency for closely related languages and
dialects. Though the model has outperformed other state-of-the-art models, there is a lot of scope to



1615

improve the unsupervised learning model. In this model, for example, co-occurrence of words in different
contexts has not yet been considered. In the future, we will aim to capture word contexts along with
n-grams in sentence embeddings.
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Tanja Samardžić, Yves Scherrer, and Elvira Glaser. 2016. ArchiMob - A Corpus of Spoken Swiss German. In
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pages
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Andjelka Zečević and Stasa Vujicic-Stankovic. 2013. The mysterious letter J. In Proceedings of the Workshop
on Adaptation of Language Resources and Tools for Closely Related Languages and Language Variants, pages
40–44.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification.
In Advances in neural information processing systems, pages 649–657.

Wei Zhang, Robert AJ Clark, Yongyuan Wang, and Wen Li. 2016. Unsupervised language identification based on
Latent Dirichlet Allocation. Computer Speech & Language, 39:47–66.


