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Abstract

Aspect-based sentiment analysis (ABSA) aims to determine the sentiment polarity of each spe-
cific aspect in a given sentence. Existing researches have realized the importance of the aspect
for the ABSA task and have derived many interactive learning methods that model context based
on specific aspect. However, current interaction mechanisms are ill-equipped to learn complex
sentences with multiple aspects, and these methods underestimate the representation learning of
the aspect. In order to solve the two problems, we propose a mutual enhanced transformation
network (METNet) for the ABSA task. First, the aspect enhancement module in METNet im-
proves the representation learning of the aspect with contextual semantic features, which gives
the aspect more abundant information. Second, METNet designs and implements a hierarchical
structure, which enhances the representations of aspect and context iteratively. Experimental re-
sults on SemEval 2014 Datasets demonstrate the effectiveness of METNet, and we further prove
that METNet is outstanding in multi-aspect scenarios.

1 Introduction

Aspect-based sentiment analysis (ABSA) aims to determine the orientation of sentiment expressed on
each aspect in a sentence (Liu, 2012). For instance, in the sentence “Although the service is not that
great, I still like the food”, the user mentions two aspects “service” and “food” and expresses negative
sentiment and positive sentiment respectively. The ABSA task consists of two subtasks including aspect
extraction and aspect sentiment classification (Zhang et al., 2018). In this paper, we assume that the
aspects are given and only focus on the aspect sentiment classification task. In ABSA task, multiple
aspects could appear in one sentence. When predicting the sentiment of current aspect, words related to
other aspects with different sentiment tendencies maybe become noises. Therefore, how to effectively
model the semantic relationship between given aspect and context words is an important challenge.

The traditional methods mainly rely on manually designed features, which is labor-intensive, and this
representation method almost reaches its performance bottleneck (Ma et al., 2017). Boosted by the
recent development of deep learning techniques, some studies utilize attention mechanism to solve the
above problems well, and many neural attention models have been proposed (Wang et al., 2016; Tang et
al., 2016b; Chen et al., 2017; Ma et al., 2017). In these works, the model generally obtains the aspect
representation first and then applies attention mechanism to extract the context features related to the
given aspect for sentiment prediction. However, the attention mechanism has some drawbacks. When a
sentence contains multiple aspects with different sentiment tendencies, opinion modifiers of other aspects
are noise information for the current aspect. But, it is hard for the attention mechanism to differentiate
opinion modifiers of multiple aspects, which directly affects the final prediction result. For example, in
the sentence “I like coming back to Mac OS but this laptop is lacking in speaker quality compared to my
$400 old HP laptop”, the attention mechanism should pay more attention to the opinion word “like” with
positive sentiment tendency for aspect “Mac OS”. However, the attention mechanism tends to involve
irrelevant opinion words, such as “lacking” with negative sentiment tendency, which interferes with the
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sentiment prediction of aspect “Mac OS”. To this end, some researchers put forward many works (Li et
al., 2018; Ran et al., 2019) to overcome the shortcomings inherent in attention mechanism for the ABSA
task. However, most of these works are devoted to designing complex neural networks to improve the
representation learning of the context. Few works focus on how to improve the representation learning
of the aspect. In recent work, Yang et al. (2019) learns the effective representations of aspect and context
alternately with an iteration mechanism and finally obtains more accurate prediction results.

In order to make the aspect play a better role in the ABSA task, we propose the mutual enhanced
transformation network (METNet). METNet improves the representation learning of the aspect and
extracts more effective context features based on enhanced aspect representation. Inspired by TNet (Li
et al., 2018) and Coattention-MemNet (Yang et al., 2019), METNet utilizes the hierarchical structure
to learn the representations of aspect and context iteratively, and we name each computational layer as
Bidirectional Enhancement Transformation (BET) layer. Each BET layer has three parts, including a
bidirectional LSTM, an aspect enhancement module, and the aspect-specific transformation (AST) units.
Specifically, BET learns the context dependency of sentence by a bidirectional LSTM first. Then, the
aspect enhancement module utilizes the extracted context features to improve the aspect representation.
After that, the AST units fuse the aspect information into each context word to obtain a sentence-level
context representation. Contexts and aspects passing through multiple BET layers are eventually fed into
a sentiment feature extractor. Since GCAE (Xue and Li, 2018) adds aspect information when extracting
sentiment features, which further strengthens the connection between aspect and context. We replace the
feature extractor from CNN to GCAE. Moreover, in order to help GCAE extract sentiment features more
accurately, we utilize relative position information to scale the input of GCAE.

The main contributions of this work are summarized as follows: (1) We propose an aspect enhance-
ment module which utilizes the extracted context features to enhance aspect representation. The en-
hanced aspect representation is utilized to obtain the more effective context representation. (2) Based on
the aspect enhancement module, we propose the mutual enhanced transformation network (METNet) for
aspect-based sentiment analysis which learns the representations of aspect and context alternately and
iteratively. Experimental results confirm the effectiveness of METNet, and METNet is outstanding in
multi-aspect scenarios.

2 Related Works

The traditional methods (Boiy and Moens, 2009; Kiritchenko et al., 2014) for the ABSA task mainly
utilize manually designed features such as sentiment lexicon, n-grams, and dependency information,
which is labor-intensive. Also, the quality of the features directly affects the classification accuracy of
methods.

With the development of deep learning on natural language processing tasks, many neural network
models (Tang et al., 2016a; Wang et al., 2016; Ma et al., 2017; Li et al., 2018; Yang et al., 2019; Ran
et al., 2019) have been proposed. These methods automatically learn sentiment features of sentence and
achieve good results. Tang et al. (2016a) adopted two LSTMs to model the two clauses of given sentence
and then integrated the coding features from the two LSTMs for prediction.

Recently, because attention mechanism can clearly capture the semantic relationship between given
aspect and words in sentence, attention-based neural models have attracted growing interest. Wang et al.
(2016) proposed an attention-based LSTM network. Tang et al. (2016b) adopted an end-to-end memory
network architecture where each computational layer was based on the attention mechanism. Li et al.
(2018) utilized the attention mechanism to generate different aspect representations based on individual
context words and then extracted context features based on tailor-made aspect representations.

Existing methods pay little attention to how to improve the representation learning of the aspect.
Inspired by TNet (Li et al., 2018) and Coattention-MemNet (Yang et al., 2019), we propose the mutual
enhanced transformation network (METNet) for aspect-based sentiment analysis. The main differences
between our method and existing methods are as follows: (1) METNet improves the representation
learning of the aspect. (2) We propose the Bidirectional Enhancement Transformation (BET) component
which can be repeated by the hierarchical structure to obtain more effective representations of aspect and
context.
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3 Model Overview

In this section, we describe our proposed METNet model which is shown in Figure 1. The METNet
model can be roughly divided into three parts, namely the BERT Layer, the Bidirectional Enhancement
Transformation (BET), and the Convolutional Feature Extractor.

Figure 1: The overall architecture of METNet, where the dotted arrows represent the transformation of
aspect, and the solid arrows represent the transformation of sentence.

3.1 BERT Layer
BERT has been successfully applied to process various NLP tasks, such as Question Answer and Dialog
System. The BERT layer uses the pre-trained BERT to generate word representations of sequence.
Suppose that a sentence consists of m words and an aspect contains n words. Then, we can obtain the
vector representation x(0) ={x(0)

1 , x
(0)
2 , . . . , x

(0)
m }∈ Rm×d of the sentence and the vector representation

a ={a1, a2, . . . , an}∈ Rn×d of the aspect by the BERT layer, where d denotes the dimension of the
BERT output layer.

3.2 Bidirectional Enhancement Transformation (BET)
The bidirectional enhancement transformation (BET) layer in Figure 1 is introduced in this section, while
its details are shown in Figure 2. Each BET layer contains three parts, namely a Bi-directional LSTM
Layer, an Aspect Enhancement Module, and a set of Aspect-Specific Transformation (AST) Units. The
BiLSTM layer first generates the contextualized word representations based on the input. Then, the as-
pect enhancement module uses the word representations to enhance the aspect representation. Finally,
the AST units generate the aspect-specific word representations based on the contextualized word repre-
sentations and the enhanced aspect representation. Details are described below.

Bi-directional LSTM Layer: As mentioned earlier, we first use BERT to encode sentence. BERT’s
model architecture is a multi-layer bidirectional Transformer encoder (Devlin et al., 2019). Yan et al.
(2019) analyzed the shortcomings of the Transformer, that is, the Transformer weakened the directional
information and relative position information of the text. However, the relative position information of
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the text is important for the ABSA task. Therefore, we set up a BiLSTM after BERT to learn the context
dependency of the text.

As shown in Figure 1, we repeat the BET layer by the hierarchical structure. The input of the BiLSTM
layer in the bottom BET layer is the context representation outputted by BERT, and the input of the
BiLSTM layer in the next BET layer is from the outputs of AST units in the previous BET layer.

We formulate the word representation outputted by the BiLSTM as h(i) ={h(i)
1 , h

(i)
2 , . . . ,h

(i)
m }. The

forward LSTM outputs a set of hidden states
−→
h(i) ={

−→
h

(i)
1 ,
−→
h

(i)
2 , . . . ,

−→
h

(i)
m }∈ Rm×dh , where dh de-

notes the number of hidden units. Similarly, the backward LSTM also outputs a set of hidden states
←−
h(i) ={

←−
h

(i)
1 ,
←−
h

(i)
2 , . . . ,

←−
h

(i)
m }∈ Rm×dh . Finally, we connect two hidden state lists to obtain the word repre-

sentation h(i) ={h(i)
1 ,h

(i)
2 , . . . ,h

(i)
m }∈ Rm×2dh , where h

(i)
j = [

−→
h

(i)
j :
←−
h

(i)
j ] ∈ R2dh .

(a) Architecture of the l-th BET layer. (b) Details of the AST unit.

Figure 2: Architecture of the l-th BET layer and details of the AST unit.

Aspect Enhancement Module: Before introducing this module in detail, we first introduce how to ob-
tain the initial aspect representation. Specifically, we feed the aspect vector a ={a1, a2, . . . , an}∈ Rn×d

outputted by BERT into another BiLSTM and then apply the average pooling method to the obtained
hidden state vectors ha ={ha1,ha2, . . . ,han}∈ Rn×2dh . Finally, we can get the initial aspect representation
v

(0)
a ∈ R2dh , as shown in Figure 1.
Take the bottom BET layer as an example to introduce the aspect enhancement module in detail.

First, based on the contextualized context representation h(1) outputted by BiLSTM, we use the average
pooling layer to obtain a vector v

(1)
h ∈ R2dh , namely the contextual vector. Then, we use a basic feature

fusion method, the point-wise addition, to fuse contextual vector into the initial aspect representation,
which can be formulated as v

(1)
a = v

(0)
a + v

(1)
h ∈ R2dh . This is an enhancement operation on the aspect.

By analogy, the final aspect representation is v
(L)
a = v

(L−1)
a + v

(L)
h ∈ R2dh , and we unfold this formula

as follows:
v(L)
a = v(0)

a + v
(1)
h + v

(2)
h + . . .+ v

(L)
h (1)

where v
(i)
h ∈ R2dh , i ∈ [1, L] represents the contextual vector in the i-th BET layer. From Eq.1, we can

see that the aspect representation is gradually strengthened by different contextual vectors in multiple
BET layers.

As shown in Figure 2, the aspect vector v
(l)
a , l ∈ [1, L− 1] has two directions, one is AST units in the

same BET layer, and another is the aspect enhancement module in the next BET layer.
Aspect-Specific Transformation (AST) Unit: As mentioned earlier, one direction of the aspect vec-

tor v
(l)
a is AST units in the same BET layer. The role of AST units is to generate aspect-specific word

representations. The AST unit uses a structure similar to the CPT module in TNet proposed by Li et al.
(2018).
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The AST unit takes the aspect vector v
(l)
a and the word representation h

(l)
i as inputs, where h

(l)
i is

the i-th word-level representation outputted by the BiLSTM layer. v
(l)
a is the enhanced aspect vector.

Specifically, the concatenation of v
(l)
a and h

(l)
i is fed into a fully connected layer to obtain the i-th aspect-

specific word representation h̃
(l)
i :

h̃
(l)
i = g(W̃[h

(l)
i : v(l)

a ] + b̃) (2)

where g(∗) is a non-linear activation function, and “:” denotes vector concatenation. W̃ and b̃ are weight
matrix and bias respectively.

There is an information protection mechanism to ensure that the context dependency information
captured from BiLSTM will not be lost. This information protection mechanism strengthens the trans-
mission and use of features and can be formulated as:

x
(l)
i = h

(l)
i + h̃

(l)
i (3)

where x
(l)
i is the output of the AST unit.

3.3 Convolutional Feature Extractor
In this subsection, we will introduce a feature extractor for extracting sentiment features which is a gated
convolutional network (GCAE) proposed by Xue and Li (2018). GCAE differs from vanilla CNN. The
ReLU gate in GCAE receives the aspect information to control the propagation of sentiment features,
which further enhances the connection between aspect and context.

Also, Chen et al. (2017) introduced position information, which makes the model pay more attention
to sentiment modifiers that are closer to the current aspect, thereby improving the classification accuracy
of the model in multi-aspect scenarios. Inspired by this work, a variable pi is introduced in our model
to measure the relative position information between the i-th word in the context and the current aspect.
Specifically, the calculation of pi is as follows1:

pi =

 1− (k+n−i)
C i < k + n

1− i−k
C k + n ≤ i ≤ m

0 i > m

(4)

where k is the index of the first aspect word, C is a pre-specified constant, and n is the length of the
aspect. Then, we multiply pi as the weight by the word representation outputted by the i-th AST unit in
the L-th BET layer:

xi = pi ∗ x
(L)
i (5)

Then, we feed X ={x1, x2, . . . , xm} and the final aspect vector v
(L)
a into the above gated convolutional

network to generate a feature map c:

ai = relu(WaXi:i+k−1 + Vav
(L)
a + ba) (6)

si = tanh (WsXi:i+k−1 + bs) (7)
ci = si × ai (8)

where k is the kernel size, and Wa, Va, ba, Ws, and bs are learnable parameters. × denotes element-
wise multiplication. Then, we apply max pooling (Kim, 2014) and obtain the sentence representation z
by employing s kernels:

z = {max (c1) , . . . ,max (cs)} (9)

Finally, we pass z to a fully connected layer for sentiment prediction:
1As we perform sentence padding, it is possible that the index i is larger than the actual length m of the sentence.
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ŷ = softmax (Wfz + bf ) (10)

where Wf and bf are learnable parameters.

3.4 Model training

METNet can be trained in an end-to-end manner within a supervised learning framework to optimize all
the parameters notated as Θ. Cross entropy with L2 regularization is used as the loss function, which is
defined as:

L = −
O∑
i=1

yi log (ŷi) + λ(
∑
θ∈Θ

θ2) (11)

where yi denotes the ground truth, and ŷi is the estimated probability for each sentiment. O stands for
the number of sentiment polarities. λ is the coefficient for L2 regularization.

4 Experiments

4.1 Experimental Setup

Datasets: We evaluate the proposed METNet on three benchmark datasets: Restaurant and Laptop
datasets are from SemEval 2014 (Pontiki et al., 2014); Twitter dataset is a collection of tweets, introduced
by Dong et al. (2014). In these three datasets, each review corresponds to an aspect and a sentiment
polarity. We consider three types of sentiment polarity, including positive, negative, and neutral. The
detailed statistics of datasets are shown in Table 1.

Datesets Positive Negative Neutral Total

Laptop Train 994 870 464 2328
Test 341 128 169 638

Restaurant Train 2164 807 637 3608
Test 728 196 196 1120

Twitter Train 1561 1560 3127 6248
Test 173 173 346 692

Table 1: Statistics of datasets.

Parameters Setting: We use the Bert-base-uncased pre-trained model which contains 12 layers and
its hidden layer dimension is 768. All the weight matrices are given the initial value by sampling from
the uniform distribution U(-0.1,0.1). We adopt the dropout strategy after BERT, and the dropout rate is
set to 0.5. The coefficient for L2 regularization is set to 10−4. The number of hidden units of BiLSTM
dh, the constant C, and the size k and number s of the convolution kernel are set to 384, 40, 3, and 50,
respectively. We train the model with the Adadelta (Zeiler, 2012) optimizer and set learning rate as 1.

4.2 Compared Methods

To justify the effectiveness of our METNet, we compared it with the following methods.
SVM (Kiritchenko et al., 2014): It is a traditional support vector machine based model with extensive

feature engineering.
AE-LSTM (Wang et al., 2016): AE-LSTM is an attention-based LSTM network, which uses the

attention mechanism to calculate the correlation between aspect and words in sentence.
ATAE-LSTM (Wang et al., 2016): ATAE-LSTM is an extension of AE-LSTM. Considering the

importance of aspect for sentiment prediction, ATAE-LSTM adds aspect embedding to the input of the
model.

IAN (Ma et al., 2017): IAN interactively learns attentions in the context and aspect and generates the
representations for context and aspect separately.
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MemNet (Tang et al., 2016b): MemNet contains multiple computational layers that share parameters.
Each layer is a model based on content attention and location attention and assigns weights to each
context word to obtain a sentence representation.

Cabasc (Liu et al., 2018): Cabasc uses two attention enhancement mechanisms to flexibly model the
word order information, the aspect information, and the correlation between the word and the aspect.

TNet-LF (Li et al., 2018): TNet-LF proposes to dynamically compute the importance of each aspect
word based on each context word rather than the whole sentence.

TNet-ATT(+AS) (Tang et al., 2019): TNet-ATT(+AS) is developed based on TNet-LF. TNet-
ATT(+AS) proposes an algorithm that can automatically mine attention supervision information, thereby
improving the model’s insufficient learning of low-frequency words with sentiment polarity.

IARM (Majumder et al., 2018): IARM generates independent aspect-aware sentence representations
for all aspects in a sentence to help predict the sentiment polarity of current aspect.

HGMN (Ran et al., 2019): HGMN distills out aspect-specific effective text spans in sentence instead
of only the aggregated contextual representation based on attention score.

Coattention-MemNet (Yang et al., 2019): Coattention-MemNet learns the key features from the
aspect and context alternately with an iteration mechanism.

Models Laptop Restaurant Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

SVM 70.49 - 80.16 - 63.40∗ 63.30∗

AE-LSTM 68.90 - 76.60 - - -
ATAE-LSTM 68.81# 63.11# 77.68# 64.89# 67.49# 65.19#

MemNet 70.33∗∗ 64.09∗∗ 78.16∗∗ 65.83∗∗ 68.50∗∗ 66.91∗∗

IAN 72.57# 66.73# 78.48# 67.55# 70.81# 67.86#

Cabasc 75.07 - 80.89 - 71.53 -
TNet-LF 75.08# 69.78# 80.18# 70.06# 74.68 73.36

TNet-ATT(+AS) 77.62 73.84 81.53 72.90 78.61 77.72
IARM 73.80 - 80.00 - - -
HGMN 76.67 72.22 82.33 73.34 73.70 72.89

Coattention-MemNet 72.90 - 79.70 - 70.50 -
METNet w/o aspect
enhancement module 78.06 73.88 81.34 71.50 73.12 71.25

METNet 78.37 74.93 82.50 73.92 74.42 73.00

Table 2: Experimental results (%). The best results are in bold. The results with symbol “#” are repro-
duced under the same conditions with the original paper. Those starred (*) results are from Dong et al.
(2014) and starred (**) results are from Li et al. (2018). Other results are retrieved from the original
papers.

Table 2 statistics the performance of each model on three datasets. The main evaluation metrics are
Accuracy and Macro-averaged F1-score.

4.3 Experimental Results and Analysis

Analysis of METNet: We compare the classification accuracy of METNet with all baselines, and the
main results are shown in Table 2. As we can see from the results, METNet outperforms all baselines
on Laptop and Restaurant datasets. TNet-ATT(+AS) achieves the best result on Laptop dataset among
all baselines due to its progressive self-supervised attention learning approach. HGMN achieves the
best result on Restaurant dataset among all baselines due to its hierarchical gate mechanism. METNet
achieves 0.75% and 0.17% accuracy improvements on Laptop and Restaurant datasets compared with
TNet-ATT(+AS) and HGMN, which indicates the effectiveness of METNet. METNet did not perform
well on Twitter dataset. The reason may be that METNet is not suitable for Twitter dataset that is
composed of single-aspect sentences.
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In addition, in order to highlight the advantages of METNet in multi-aspect scenarios, we conduct
further experiments and introduce the relevant experimental results of IARM from the original paper.
Specifically, we first delete the single-aspect samples in the Laptop testset and Restaurant testset and
mark the new datasets as Laptop* and Restaurant*. Then, we apply the trained TNet-LF and METNet to
Laptop* and Restaurant* datasets and present the results in Table 3. We find that METNet achieves sig-
nificant accuracy improvements, which indicates the effectiveness of METNet in multi-aspect scenarios.

Models Laptop* Restaurant*
Accuracy Macro-F1 Accuracy Macro-F1

TNet-LF 74.80 67.34 80.31 69.35
IARM 74.10# - 80.48# -

METNet w/o aspect enhancement module 76.38 72.50 81.03 69.97
METNet 77.95 73.80 82.59 73.92

Table 3: Experimental results (%) on Laptop* and Restaurant* datasets. The best results are in bold. The
results with symbol “#” are retrieved from the original paper.

Effects of Aspect Enhancement Module: We validate that the aspect enhancement module is effec-
tive for the ABSA task by comparing METNet and METNet w/o aspect enhancement module. Note that
METNet w/o sth represents METNet with sth removed, that is, METNet w/o aspect enhancement mod-
ule is the version where METNet removed the aspect enhancement module. In order to prove the above
point, we conduct ablation experiments. The results are shown in Table 2. Compared with METNet
w/o aspect enhancement module, METNet achieves 0.31%, 1.16%, and 1.30% accuracy improvements
on Laptop, Restaurant, and Twitter datasets respectively, which proves the effectiveness of the aspect
enhancement module.

On the basis of the above, we also conduct a set of experiments to examine the importance of the
aspect enhancement module in multi-aspect scenarios. We apply the trained METNet w/o aspect en-
hancement module to Laptop* and Restaurant* datasets and then record and analyze the experimental
results. In Table 3, METNet achieves 1.57% and 1.56% accuracy improvements on Laptop* and Restau-
rant* datasets compared with METNet w/o aspect enhancement module, which effectively proves the
importance of aspect information in multi-aspect scenarios. We also observe in Table 3 that METNet
w/o aspect enhancement module outperforms TNet-LF and IARM, which may benefits from the BET
layer we designed and the application of GCAE.

Number of layers Laptop Restaurant Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1 78.21 74.29 82.23 73.37 73.84 72.30
2 78.37 74.93 82.50 73.92 74.42 73.00
3 77.90 74.10 82.23 73.25 74.28 72.62
4 77.27 72.47 81.43 71.47 74.13 72.51

Table 4: Impact of BET Layer Number.

Impact of BET Layer Number: As our METNet involves multiple BET layers, we investigate the
effect of the layer number LN. Specifically, we conduct experiments on Laptop, Restaurant, and Twitter
datasets and vary LN from 1 to 4. In Table 4, we can see that METNet achieves the best results when
LN is 2. We also have tried to set the LN larger, and the classification accuracy basically becomes worse,
which is probably because more parameters increase the training difficulty.

4.4 Case Study
We pick some test examples from the testset to evaluate the performance of METNet further and present
several example sentences in Table 4. In the sentence (5) and (6), the sentiment of aspects is determined
by related opinion words, and the proposed METNet can make correct predictions even without using
the attention mechanism. Moreover, METNet is better at handling long and complex sentences with
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multiple aspects compared with ATAE-LSTM and TNet. For example, sentence (1), (6), (7) are typical
long reviews and involve multiple aspects. In this statement, METNet makes correct predictions on all
aspects. Because compared with ATAE-LSTM and TNet, METNet has the aspect enhancement module
which gives aspect with rich semantic information and enhances the connection between aspect and
context. In addition, we find METNet, ATAE-LSTM and TNet perform poorly on sentences (2), (3). In
this statement, the difficulty of prediction comes from the comparison between aspects. It is the inference
based on implicit semantics, which is still quite challenging for neural network models.

Sample Sentences ATAE-LSTM TNet METNet
(1) Would you ever believe that when you
complain about over an hour waitN, when
they tell you it will be 20-30 minutes, the
managerN tells the bartenderO to spill the
drinksO you just paid for?

N, N, N, O N, N, N, O N, N, O, O

(2) New hamburger with special sauceP is
ok - at least better than big macN!

O, P N, N P, P

(3) PriceN was higher when purchased on
mac when compared to priceP showing
on pc when I bought this product.

N, N N, N N, N

(4) Great foodP but the serviceN was dreadful! P, P P, N P, N
(5) They really provide a relaxing, laid-back
atmosphereP. P P P

(6) Not only did they have amazing,
sandwichesP, soupP, pizzaP etc, but
their homemade sorbetsP are out of this world!

P, P, P, P N, P, P, P P, P, P, P

(7) This is one great place to eat pizzaP more
out but not a good place for take-out pizzaN. P, P P, N P, N

Table 5: Some test examples and predictions of ATAE-LSTM, TNet, and METNet. The aspects are
underlined with the true labels given as subscripts. The notations P, N, and O represent positive, negative,
and neutral respectively. Incorrect predictions are highlighted in red color.

5 Conclusion

In this paper, we present an end-to-end solution, a mutual enhanced transformation network (METNet),
to solve the issue of insufficient aspect representation learning in ABSA task. First, we propose Bidirec-
tional Enhancement Transformation (BET) component to improve the representation learning of aspect,
which meanwhile achieves alternative learning of aspect and context. Secondly, METNet uses a hier-
archical structure to iteratively learn aspect and context to obtain better representations. Experimental
results demonstrate the effectiveness of METNet for aspect-based sentiment analysis. Especially, MET-
Net performs well in both single-aspect scenarios and multi-aspect scenarios. As future work, we will
consider how to use sentiment lexicon and attention mechanism to further improve aspect representation
learning.
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