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Abstract

We tackle implicit discourse relation classification, a task of automatically determining semantic
relationships between arguments. The attention-worthy words in arguments are crucial clues for
classifying the discourse relations. Attention mechanisms have been proven effective in high-
lighting the attention-worthy words during encoding. However, our survey shows that some
inessential words are unintentionally misjudged as the attention-worthy words and, therefore, as-
signed heavier attention weights than should be. We propose a penalty-based loss re-estimation
method to regulate the attention learning process, integrating penalty coefficients into the compu-
tation of loss by means of overstability of attention weight distributions. We conduct experiments
on the Penn Discourse TreeBank (PDTB) corpus. The test results show that our loss re-estimation
method leads to substantial improvements for a variety of attention mechanisms.

1 Introduction

The goal of pairwise sentence-level discourse analysis is to determine the relation that is held by a pair
of arguments (Prasad et al., 2008), where an argument generally stands for a narrative sentence. Implicit
discourse relation classification is a challenging subtask. It is required to determine the relation on
the condition that the explicit connective (i.e., a syntactic conjunction) is not given. For example, the
arguments in Figure 1 are a pair of semantically-related arguments, where the possible connective “but”
that may signal the comparison relation has been omitted.

Argument 1 (Arg1): Robert S. Enrlich resigned as chairman, president and chief executive. 

Argument 2 (Arg2): Mr. Enrlich will continue as a director and a consultant. 

Ground-truth relation: Comparison (sub-relation—concession) 

Omitted connective: but 
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Attention distribution for Arg1 

(existing attention mechanism) 

Attention distribution for Arg2 

(existing attention mechanism) 

Attention distribution for Arg1 

(after penalty) 

Attention distribution for Arg2 

(after penalty) 

Figure 1: Example of arguments, connective and relationship, as well as attention weight distributions

Detecting the content words that imply correlations between arguments contributes to the relation
determination (Marcu and Echihabi, 2002). We refer such kind of content words to attention-worthy
words, such as the words shown in bold in Figure 1. The current attention mechanisms have been
proven effective in recognizing and utilizing attention-worthy words. They generally assign heavier
weights to attention-worthy words conditioned on either internal (Lin et al., 2017) or external context
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Attention Models Functions (α) Parameters (θ)
Self α = softmax(Ws2tanh(Ws1 [H1, H2]

T ) Ws1 , Ws2

Interactive (for H1) α = softmax(tanh(H1Wη1Φ([H2, cls]) + bη1)) Wη1 , bη1
Interactive (for H2) α = softmax(tanh(H2Wη2Φ([H1, cls]) + bη2)) Wη2 , bη2
Multi-layer α = softmax(Ws,ktanh(Wa,kH1 +Wb,k(Mk ⊗ e))) Ws,k, Wa,k

Mk = tanh(Wm,k[R
1
k−1, R

2
k−1, R

1
k−1 −R2

k−1,Mk−1]) Wb,k, Wm,k

Table 1: The equations of different attention mechanisms as well as parameters (where, Φ denotes the
non-linear transformation and cls is a special classification token in BERT, k(k = 1, 2, 3) is the attention-
layer number, the memory vector M is used to preserve the information of previous layer, Mk ⊗ e is the
operation that repeatedly expands the dimensions of encoder states).

(Ma et al., 2017). Benefiting from the positive effects of the heavily weighted attention-worthy words on
representation learning, the existing attention-based neural networks obtains considerable performance
gains for discourse relation classification.

However, our survey shows that some of inessential words are highlighted with heavier weights by the
attention mechanisms. As a result, the attention weight distributions fall into the over-smooth transition
state (as shown in Figure 1). This makes it difficult to sensitively perceive the effects of attention-worthy
words or even misleads the encoder during encoding. To solve the problem, we propose to estimate
attention-oriented penalty coefficients by means of overstability of attention weight distributions. On
the basis, we integrate the penalty coefficients into the loss measurement process (Section 2), so as to
optimize the parameters of attention mechanisms by backward propagation of penalty. Briefly, we aim
to use penalty coefficients to obtain distinguishable attention weights. In Figure 1, we show the jagged
attention weight distributions obtained after using our penalty coefficients. We carry out experiments on
PDTB v2.0 (Prasad et al., 2008), a corpus that comprises a large-scale pairwise argument instances, along
with pre-annotated implicit relation tags. The test results show that our method substantially improves
the attention-based discourse relation classification (Section 3).

2 Approach

We utilize BERT (Devlin et al., 2019) as the baseline encoder, and connect it with a multi-layer percep-
tron (MLP) to form the discourse relation classifier. In addition, we reproduce three attention mecha-
nisms, including self (Lin et al., 2017), interactive (Ma et al., 2017) and multi-layer (Liu and Li, 2016)
attention mechanisms. On the basis, we couple them with the baseline (BERT) encoder. Similarly, they
are also connected with a MLP respectively for discourse relation classification. It is noteworthy that the
attention mechanisms mentioned above have been carefully studied on PDTB v2.0. Though, they were
built over some slightly weak word embeddings. For fair comparison, we choose to couple them with
the pre-trained BERT encoder. BERT is fine-tuned in all of our experiments.

Assume that a certain neural attention mechanism is defined as F(H1, H2, θ), we tend to optimize θ.
In the equation, H1 and H2 denotes the encoder states of a pair of arguments which are obtained using
the pre-trained BERT, and θ stands for the shorthand of all parameters of the attention mechanism. We
specify the parameters of all the considered attention-based computational models in Table 1. We opti-
mize θ by re-estimating the loss J(θ) using penalty coefficients. The penalty coefficients are measured
by means of mean deviations among different attention weights. Backward propagation is used as usual
to tune the parameters in θ conditioned on the re-estimated loss. The loss J(θ) is calculated as follows:

J(θ) =
1

n

n∑
i=1

L(y(i), ŷ(i))− χ(θ); L(y(i), ŷ(i)) = −
C∑
j=1

P (y
(i)
j ) log(P (ŷ

(i)
j )) (1)

χ(θ) = λ[(σ1)
2 + (σ2)

2] (2)

where, C denotes the relation class number, P(ŷ(i)j ) stands for the probability that the relation class is
predicted as the i-th class, σ1 denotes the scalar deviation value that is calculated over the attention
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Systems COM CON EXP TEM
Bert (Baseline) (Devlin et al., 2019) 45.67 56.46 73.84 37.01
+ Self (Lin et al., 2017) 46.66 56.75 73.40 38.94
+ Self + Penalty 50.45 58.27 75.45 39.02
+ Interactive (Ma et al., 2017) 48.11 57.02 74.66 38.84
+ Interactive (Ours) 48.85 57.96 74.90 39.23
+ Interactive (Ours) + Penalty 49.24 58.46 75.41 40.40
+ Multi-layer (two layers) (Liu and Li, 2016) 47.02 57.97 74.96 39.61
+ Multi-layer (two layers) + Penalty 49.87 58.38 75.33 41.25
+ Multi-layer (three layers) (Liu and Li, 2016) 48.47 58.09 74.27 38.70
+ Multi-layer (three layers) + Penalty 50.11 58.77 76.26 43.26

Table 2: Test results for different attention mechanisms which are coupled with our penalty mechanism.

Model COM CON EXP TEM
Bert (Baseline) (Devlin et al., 2019) 45.67 56.46 73.84 37.01
+ Self (Lin et al., 2017) 46.66 56.75 73.40 38.94
+ Self + Interactive (ours) 49.40 58.48 75.37 39.77
+ Self + Interactive (ours) + Penalty 50.91 58.88 76.35 43.51

Table 3: The test results for the combination of attention mechanisms and shareable penalty mechanism.

weights for H1, while σ2 is calculated for H2, and λ denotes a hyperparameter which is separately set
for different attention mechanisms (section 3). It can be preconceived that a smaller deviation will lead
to a relatively larger loss. In other words, if the attention weight distribution is smooth (corresponding to
a small deviation), the loss will relatively be increased, and as a result, the attention parameters θ will be
dramatically changed by backward propagation.

3 Experimentation

We evaluated our model on the benchmark PDTB v2.0 (Prasad et al., 2008). The four main relation
classes are considered in the experiments, including Comparison (abbr., COM), Contingency (CON),
Expansion (EXP) and Temporality (TEM). We follow the previous work (Ji and Eisenstein, 2015) to
split datasets, using sections 02-20 as the training set, sections 00-01 the development set and sections
21-22 the test set. For comparison purpose, we use F1 as the evaluation metric.

We utilize BERT that outputs word embeddings with the hidden size of 768. There are 12 self-attention
heads considered in BERT. The max length of the input sequence is set to 163, in which the maximum
length N of an argument is set to 80. In addition, the batch size is set to 15, and gradient descent is set
separately: β1=0.9 and β2=0.999. The learning rate is set to 5e-5 and dropout rate is set to 0.1. We set
the hyperparameter λ to 1e-3 for both the multi-layer and self-attention mechanisms, and 1e-2 for the
interactive attention mechanism.

The main test results are shown in Table 2, in which various attention mechanisms are coupled with
our penalty-based loss re-estimation model (penalty mechanism for short). Note that the label of “In-
teractive (Ours)” denotes the reproduced interactive attention mechanism which introduces the special
classification token “cls” (see Table 1) into the encoder state. It can be observed that the proposed penalty
mechanism yields substantial improvements for every attention model. Besides, we combine the self and
interactive attention mechanisms and utilize a shareable penalty mechanism to improve them. The per-
formance is shown in Table 3. It can be found that the F1 scores obtained for all the four relation classes
are increased further. It proves that our penalty mechanism is capable of producing shareable penalty
coefficients for different attention models.

We compare our method to the state-of-the-art. As shown in Table 4, our best model (i.e., the combined
attention models coupled with the shareable penalty mechanisms) outperforms the previous work for the
comparison (COM) and expansion (EXP) relations. In addition, it achieves comparable performance to
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Model COM CON EXP TEM
Zhang et al (2015) 33.22 52.04 69.59 30.54
Qin et al (2016) 41.55 57.32 71.50 35.43
Liu and Li (2016) 36.70 54.48 70.43 38.84
Qin et al (2017) 40.87 54.56 72.38 36.20
Lan et al (2017) 40.73 58.96 72.47 38.50
Dai and Huang (2018) 46.79 57.09 70.41 45.61
Guo et al (2018) 40.35 56.81 72.11 38.65
Bai and Zhao (2018) 47.85 54.47 70.60 36.87
Nguyen et al (2019) 48.44 56.84 73.66 38.60
He et al (2020) 47.98 55.62 69.37 38.94
Our best 50.91 58.88 76.35 43.51

Table 4: Comparison to the State-of-the-art approaches.

that of Lan et al. (2017)’s work for the contingency (CON) relation, which was being at the top of the list
for years. For the temporality (TEM) relation, our method results in less severe performance reduction
when it improves the performance for other three relation classes.

4 Related work

Recently, neural networks have been widely studied for argument representation learning (Zhang et al.,
2015), which is admitted to be the crucial issue for discourse relation recognition. Due to the capacity
of generating low-dimensional continuous representations for arguments, RNNs with Bi-LSTM are used
during encoding. Chen et al (2016) couple Bi-LSTM with a gated relevance model. Liu and Li (2016)
use multi-layer attention computation over the output of Bi-LSTM. Meanwhile, Liu et al (2016) build
a multi-task learning framework with Convolutional Neural Network (CNN) for argument encoding.
By contrast, Lan et al (2017) integrate Bi-LSTM into the multi-task framework and couple it with the
attention mechanism. Guo et al (2018) utilize the interaction mechanism to weight the representations
emitted by Bi-LSTM, and perform a deeper encoding by tensor network. Dai and Huang (2018) use
Bi-LSTM to bring paragraph-level contextual information into argument representations.

In addition, Qin et al (2016) build a hybrid neural model which couples two gated CNNs to extract
both word-level and semantic-level convolutional features. Further, Qin et al (2017) integrate generative
adversarial networks into multi-task learning network. Hereafter, Bai and Zhao (2018) establish multi-
task network using multi-layer gated CNNs. The network is additionally coupled with residual networks
and interactive attention mechanisms. Nguyen et al (2019) enhance Bai and Zhao (2018)’s multi-layer
CNNs-based multi-task learning by minimizing the divergence between connective-level embeddings
and relation-level embeddings. He et al (2020) develop a joint learning architecture which updates both
geometric and semantic features during encoding.

5 Conclusion

Our experiments demonstrate that the utilization of penalty coefficients for loss re-estimation can effec-
tively strengthen the attention-based implicit discourse relation classification. Nevertheless, our survey
shows that some attention-worthy words fails to be effectively perceived by the current attention mecha-
nisms. More importantly, the semantics of such kind of attention-worthy words can be well-encoded only
through the understanding of related common sense. Therefore, in the future, we will utilize common-
sense knowledge graph to enhance the attention modeling method.
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