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Abstract

Detecting out-of-domain (OOD) input intents is critical in the task-oriented dialog system. Dif-
ferent from most existing methods that rely heavily on manually labeled OOD samples, we focus
on the unsupervised OOD detection scenario where there are no labeled OOD samples except
for labeled in-domain data. In this paper, we propose a simple but strong generative distance-
based classifier to detect OOD samples. We estimate the class-conditional distribution on feature
spaces of DNNs via Gaussian discriminant analysis (GDA) to avoid over-confidence problems.
And we use two distance functions, Euclidean and Mahalanobis distances, to measure the confi-
dence score of whether a test sample belongs to OOD. Experiments on four benchmark datasets
show that our method can consistently outperform the baselines.

1 Introduction

Task-oriented dialog systems such as Google’s DialogFlow or Amazon’s Lex have become omnipresent
to let people interact with machines using natural language. Detecting unknown or OOD (Out-of-
Domain) intents from user queries is an essential component that aims to know when a query falls
outside their range of predefined supported intents. Correctly identifying out-of-scope cases is thus
crucial in deployed systems—both to avoid performing the wrong action and also to identify potential
future directions for development. Different from traditional text classification tasks, the exact number
of unknown intents in practical scenarios is hard to estimate by domain experts and lack of real OOD
examples always leads to poor prior knowledge about these unknown intents. These characteristics make
it challenging to identify OOD samples in the task-oriented dialog system.

We classify the existing methods of detecting OOD intents into two main categories, supervised and
unsupervised OOD detection. Supervised OOD detection (Scheirer et al., 2013; Fei and Liu, 2016;
Kim and Kim, 2018; Larson et al., 2019; He et al., 2020c; Zheng et al., 2020) represents that there
are extensive labeled OOD samples in the training data while unsupervised OOD detection (Breunig et
al., 2000; Bendale and Boult, 2016; Hendrycks and Gimpel, 2017; Shu et al., 2017; Lee et al., 2018;
Ren et al., 2019; Lin and Xu, 2019) means few or no labeled OOD samples except for labeled in-domain
data. Unsupervised OOD detection makes it more complicated to identify unknown intents due to unseen
and diverse semantic expressions. Besides, in the practical scenario, collecting large-scale OOD data is
usually difficult and expensive compared to in-domain predefined intent data, especially when dealing
with the rapidly evolving open-world environment. In this paper, we focus on the latter OOD setting,
unsupervised OOD detection.

For supervised OOD detection, classical methods such as (Fei and Liu, 2016; Larson et al., 2019),
form a (m + 1)-class classification problem where the (m + 1)-th class represents the unseen intents.
Further, Zheng et al. (2020) uses labeled OOD data to generate an entropy regularization term to enforce
the predicted distribution of OOD inputs closer to the uniform distribution. The critical drawback is that
collecting OOD data is usually labor-intensive and they do not guarantee similar semantics. Typically,
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Figure 1: The architecture of our proposed method. We first extract intent representation by a intent clas-
sifier pre-trained on in-domain data. Then, we use distance functions in latent space to detect unknown
intents for test.

these OOD samples should barely be classified to the same intent class for their unconstrained expres-
sions. For unsupervised OOD detection, (Hendrycks and Gimpel, 2017; Shu et al., 2017) simply use a
threshold on the in-domain classifier’s probability estimate. (Ren et al., 2019; Gangal et al., 2020) pro-
poses a likelihood ratio method to effectively correct for confounding background statistics. Lin and Xu
(2019) employs an unsupervised density-based novelty detection algorithm, local outlier factor (LOF)
to detect unseen intents. However, such deep neural networks with the softmax classifier are known to
produce highly overconfident posterior distributions even for such abnormal OOD samples (Guo et al.,
2017; Liang et al., 2017; Liang et al., 2018).

In this paper, we propose a simple generative distance-based classifier to detect OOD samples. Our
method can be applied to any pre-trained softmax neural classifier without re-training and avoid the
issue of overconfident predictions. Specifically, we first estimate the class-conditional distribution on
feature spaces of DNNs via Gaussian discriminant analysis (GDA). Then we use two distance functions,
Euclidean and Mahalanobis distances, to measure the confidence score of whether a test sample belongs
to OOD. Our contributions are three-fold: (1) We propose a generative distance-based classifier for OOD
detection. (2) Apart from traditional Euclidean distance, we introduce Mahalanobis distance under GDA
to takes into account the correlations between features and get better results. (3) Experiments conducted
on four benchmark OOD datasets show the effectiveness of the proposed method.

2 Approach

Fig 1(a) shows the overall architecture of our proposed method. We first train an intent classifier on
in-domain data and then use a generative distance-based OOD detector to identify unknown intents for
test. Fig 1(b) shows the difference between Euclidean and Mahalanobis distances in latent space.

2.1 Neural Intent Classifier
For a fair comparison, we adopt the same network architecture BiLSTM (Mesnil et al., 2015; Liu and
Lane, 2016; Weiran and Chunyun, 2016; Goo et al., 2018; Xu et al., 2019; Haihong et al., 2019; Xu et al.,
2020; He et al., 2020b; He et al., 2020a) as (Lin and Xu, 2019). We train the BiLSTM on the in-domain
data and employ the pre-trained classifier as a feature extractor. Specifically, we also replace the softmax
loss of BiLSTM with LMCL (Nalisnick et al., 2019) which transforms softmax loss into cosine loss by
applying L2 normalization on both features and weights:

LLMC = 1
N

∑
i− log e

s·(cos(θyi,i)−m)

e
s·(cos(θyi,i)−m)+

∑
j 6=yi

es·cos θj,i
(1)

where N denotes the number of training samples, yi is the ground-truth class of the i-th sample, s is the
scaling factor, m is the cosine margin. For test, we simply use the pre-trained model to extract intent
representations without re-training like supervised OOD detection.
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2.2 Generative Distance-Based OOD Detector

In this section, we first describe the basic concept of GDA as a representative discriminative classifier.
Then we dive into the details of how to estimate the class-conditional distribution on feature spaces of the
pre-trained neural intent classifier via GDA. Finally, we introduce two distance measurements, Euclidean
and Mahalanobis distances, to measure the confidence score of whether a test sample belongs to OOD.

In contrast to the discriminative softmax classifier, the generative classifier (Murphy, 2012) defines the
class-conditional distribution P (x|y) and class prior P (y) in order to indirectly define the posterior distri-
bution by specifying the joint distribution P (x, y) = P (y)P (x|y). GDA is a popular generative classifier
by assuming that the class conditional distribution follows the multivariate Gaussian distribution and the
class prior follows Bernoulli distribution: P (x | y = c) = N (x | µc,Σc) , P (y = c) = βc∑

c′ βc′
, where

µc and Σc are the mean and covariance of multivariate Gaussian distribution, and βc is the unnormalized
prior for class c.

Let x ∈ X be an input and y ∈ Y = 1, ..., C be its label. Section 2.1 gives a pre-trained softmax

neural classifier: P (y = c | x) =
exp(w>c f(x)+bc)∑
c′ exp(w>c′f(x)+bc′)

, where wc and bc are the weight and the bias

of the softmax classifier for class c, and f(∆) denotes the output of the penultimate layer of DNNs.
Assuming that a class-conditional distribution follows the multivariate Gaussian distribution, we use the
pre-trained features of the softmax neural classifier f(x) to estimate the parameters of the generative
classifier. Following GDA, we compute the empirical class mean and covariance of training samples
{(x1, y1) , . . . , (xN , yN )}:

µ̂c =
1

Nc

∑
i:yi=c

f (xi) , Σ̂ =
1

N

∑
c

∑
i:yi=c

(f (xi)− µ̂c) (f (xi)− µ̂c)> (2)

where Nc is the number of training samples with label c.
Distance Functions: Euclidean vs Mahalanobis Using the above class-conditional Gaussian distri-

butions, we estimate the confidence score M(x) using distance functions between test sample x and the
closest class.

• Euclidean Distance: M(x) = maxc− (f(x)− µ̂c)> (f(x)− µ̂c)

• Mahalanobis Distance: M(x) = maxc− (f(x)− µ̂c)> Σ̂−1 (f(x)− µ̂c)

Compared to Euclidean, Mahalanobis distance can unitless and scale-invariant, and takes into account
the correlations between features. The distance metric corresponds to measuring the log of the probability
densities of the test sample. Experiments confirm that OOD samples can be characterized better in the
representation space of DNNs. In contrast, posterior output distribution of traditional softmax-based
discriminative classifier is always susceptible to label-overfitted issues (Hendrycks and Gimpel, 2017;
Liang et al., 2018) where OOD samples may get high confidence from the output probability distribution.

3 Experiments

3.1 Setup

SNIPS ATIS CLINC-Full CLINC-Imbal
Vocabulary size 11241 938 6240 5725
Avg utterance length 9 11 9 9
Intents 7 18 150 150
Training set size 13084 4978 15000 10525
Development set size 700 500 3000 3000
Testing Set Size 700 893 4500 4500

Table 1: Full statistics of the OOD datasets.
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Snips ATIS CLINC-Full CLINC-Imbal
% of known intents 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%
MSP 0.0 6.2 8.3 8.1 15.3 17.2 0.0 21.3 40.4 0.0 27.8 40.4
DOC 72.5 67.9 63.9 61.6 62.8 37.7 - - - - - -
DOC(softmax) 72.8 65.7 61.8 63.6 63.3 38.7 - - - - - -
LOF(softmax) 76.0 69.4 65.8 67.3 61.8 38.9 91.1 83.1 63.5 88.4 77.6 57.5
LOF(LMCL) 79.2 84.1 78.8 68.6 63.4 39.6 91.3 83.3 62.8 88.7 78.9 56.7
GDA+Euclidean distance 85.6 85.6 82.9 77.9 75.4* 43.7* 91.1 84.2 64.5 91.1 81.2 60.8
GDA+Mahalanobis distance 89.2* 87.4* 83.2 78.5* 72.8 42.1 91.4 84.4 65.1* 91.5 81.5 61.3*

Table 2: Macro f1-score of unknown intents with different proportions (25%, 50% and 75%) of classes
are treated as known intents on SNIPS and ATIS datasets. * indicates the significant improvement over
all baselines (p < 0.05).

Datasets We perform experiments on four public benchmark OOD datasets, including SNIPS (Coucke
et al., 2018), ATIS(Tür et al., 2010), CLINC-Full, and CLINC-Imbal (Larson et al., 2019). We show the
detailed statistics of these datasets in Table 1. SNIPS is a personal voice assistant dataset which contains
7 types of user intents across different domains. ATIS dataset contains recordings of people making
reservations with 18 types of user intent in the flight domain. CLINC-Full and CLINC-Imbal both
contain 150 intents across 10 domains. CLINC-Full is balance, containing 150 samples for each intent
and CLINC-Imbal has fewer training samples for each intent and is imbalance.

Baselines We compare our methods with the following state-of-the-art baselines using macro f1-scores
of OOD intents. MSP (Maximum Softmax Probability) (Hendrycks and Gimpel, 2017) applies a thresh-
old on the maximum softmax probability where the threshold is set as 0.5. DOC and DOC(softmax) are
proposed by (Shu et al., 2017) to solve open-world classification. LOF(softmax) and LOF(LMCL) use
local outlier factor to detect unknown intents. Similar to (Lin and Xu, 2019), we vary the number of
known classes in the training set in the range of 25%, 50%, and 75% classes and use the other classes as
OOD. We provide a more comprehensive comparison and implementation details of these models in the
Appendix.

Implementation Details To conduct a fair comparison, we follow a similar evaluation setting as (Lin
and Xu, 2019). In each experiment, we randomly sample a set of classes among all classes in the dataset,
regarding them as in-domain classes and the rest as out-of-domain classes. We use train samples from
only in-domain classes to train the feature extractor and use test samples both from in-domain and out-
of-domain classes for OOD sample detection. We vary the proportion of in-domain classes at 25%, 50%,
and 75% of all classes. For each proportion, we re-run the experiment 10 times (each with a different set
of in-domain classes) and report the average F1-score on OOD sample detection.

We use the pre-trained GloVe embeddings (Pennington et al., 2014) as the word embedding matrix.
For the BiLSTM encoder, we set the dimension of hidden states to 128 and use a dropout rate of 0.5. For
LCML, we set the scaling factor to 30 and the cosine margin to 0.35. We use Adam optimizer (Kingma
and Ba, 2014) to train our model and use a learning rate of 0.003. We train our model up to 200 epochs
with an early stop of patience 20.

3.2 Results and Discussion

Main results Table 2 displays the experiment results. Our method consistently outperforms all baselines
in all settings. Compared to LOF, our method improves the macro f1-score on SNIPS by 10.0%, 3.3%,
and 4.4% in 25%, 50%, and 75% setting respectively. We also observe similar improvements on ATIS
and CLINC datasets. The results confirm the effectiveness of our generative approach. Besides, the
f1 scores of OOD intents rapidly drop as the number of known intents increases. The reason is that
extensive classes of known intents will lead to overlapping with OOD classes in semantics, which causes
poor performance. Still, results show that our method is more robust to class overlapping. We can
also see our method better handles data imbalance comparing the average improvements on CLINC-Full
(1.2%) with CLINC-Imbal (3.3%) since CLINC-Imbal is a more imbalanced dataset than CLINC-Full.
Although we only focus on unsupervised OOD detection methods, we still choose supervised methods
for comprehensive comparison in the Appendix, both on OOD intent classes and in-domain classes.

Visualization Fig 2 shows the visualization of learned features on Euclidean and Mahalanobis spaces
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Figure 2: Visualization of learned features on Euclidean and Ma-
halanobis spaces using SNIPS dataset.
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using t-SNE (Maaten and Hinton, 2008). We can see that Mahalanobis re-scales pre-trained features
to unit variance and takes into account the correlations of different feature dimensions and has a larger
intra-class margin than Euclidean distance.

Effect of labeled in-domain data size Fig 3 shows the effect of different sizes of in-domain data.
We choose LOF, N+1 classification (treating OOD as (N + 1)-th class) and our method for comparison.
All the methods achieve better performance along with the increase of in-domain data. We hypothesize
that more labeled in-domain data can train a better feature extractor. Besides, our method outperforms
LOF with a large margin in the few-shot scenario (only a few labeled in-domain samples), even close to
supervised N+1 classification. It proves our method is more robust to the feature extractor than LOF.

% of known intents 50 75
Macro f1-score overall seen unseen overall seen unseen
GDA+Mahalanobis distance 80.2 80.1 84 79.4 79.6 65.7
N+1 classification(2000) 64.6 64.6 67.7 65.7 65.7 66.6
N+1 classification(4000) 45.3 44.9 77.7 46.3 46.1 78.9

Table 3: Comparison between our unsupervised OOD detection method and supervised N+1 classifica-
tion.

Unsupervised OOD vs Supervised OOD Table 3 shows the comparison between our method and
N+1 classification, where 2000 and 4000 represent the number of labeled OOD samples of training data.
We can see that for the overall f1-score, our method outperforms N+1 classification. Besides, although
more labeled OOD data can facilitate unseen intent detection, it undermines the performance of seen
intent classes. It is dangerous in a practical scenario. Another drawback of supervised OOD detection
is re-training when new OOD samples are added to the dataset. Collecting OOD data is labor-intensive
and expensive.

4 Conclusion

In this paper, we focus on the unsupervised OOD detection and propose a simple but strong generative
distance-based classifier to detect OOD samples. We combine the advantages of DNNs and Gaussian
discriminant analysis (GDA) to avoid previous over-confidence problems and apply Mahalanobis dis-
tance to measure the confidence score. Experiments show that our method achieves better performance
and is more robust to data imbalance and poor feature extractor as well as the few-shot scenario.
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A Appendix

A.1 Settings
Baselines We compare our method with the following state-of-the-art methods on the performance of
detecting OOD samples:

1. Maximum Softmax Probability (MSP) A method proposed in (Hendrycks and Gimpel, 2017),
which simply utilizes the maximum probability from softmax distributions as the confidence score
and sets a threshold for out-of-distribution detection. If a sample has a lower confidence score than
the threshold, it will be regarded as an out-of-distribution sample.

2. Deep Open Classification (DOC) A method proposed in (Shu et al., 2017) to solve the open-world
classification problem. It replaces softmax with sigmoid activation function at the final layer and
computes the confidence threshold for each class to further tighten the decision boundary of the
sigmoid function.

3. DOC (softmax) A variant of DOC, which replaces the sigmoid activation function with the softmax
at the final layer.

4. LOF (LCML) A method proposed in (Lin and Xu, 2019). It first uses Large Cosine Margin Loss
(LCML) (Wang et al., 2018) to train a feature extractor, and then uses a density-based novelty detec-
tion algorithm Local Outlier Factor (LOF) (Breunig et al., 2000) for out-of-distribution detection.

5. LOF (softmax) A variant of LOF (LCML), which replaces LCML with the normal softmax loss to
train the feature extractor.

A.2 Case Study
Table 4 displays the case study of our method vs softmax+threshold. For case #1, ”add to my playlist
all funked up this track”, softmax+threshold predicts a wrong intent PlayMusic with a strong confidence
score 0.87. It confirms that samples from OOD may also receive a high detection score if they share
similar patterns and phrases with some in-domain samples, which we call it the label-confident problem
in this paper.
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#1 Sentence: add to my playlist all funked up this track
? Predicted by softmax classifier: PlayMusic with probability: 0.87
? Predicted by our proposed method: OOD sample
Ground truth class: AddToPlayList (out-of-domain class)

#2 Sentence: i want to add michelle heaton to this is chopin
? Predicted by softmax classifier: PlayMusic with probability: 0.86
? Predicted by our proposed method: OOD sample
Ground truth class: AddToPlayList (out-of-domain class)

#2 Sentence: i m looking for a movie called salvage mice
? Predicted by softmax classifier: SearchScreeningEvent with probability: 0.87
? Predicted by our proposed method: OOD sample
Ground truth class: SearchCreativeWork (out-of-domain class)

#2 Sentence: show me the movie operetta for the theatre organ
? Predicted by softmax classifier: SearchScreeningEvent with probability: 0.87
? Predicted by our proposed method: OOD sample
Ground truth class: SearchCreativeWork (out-of-domain class)

Table 4: OOD detection examples from SNIPS dataset, where the in-domain classes includes PlayMusic
and SearchScreeningEvent. The [GREEN] and [RED] highlight indicate correct and incorrect predic-
tions, respectively.


