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Abstract

Word embeddings are trained to predict word cooccurrence statistics, which leads them to pos-
sess different lexical properties (syntactic, semantic, etc.) depending on the notion of context
defined at training time. These properties manifest when querying the embedding space for the
most similar vectors, and when used at the input layer of deep neural networks trained to solve
downstream NLP problems. Meta-embeddings combine multiple sets of differently trained word
embeddings, and have been shown to successfully improve intrinsic and extrinsic performance
over equivalent models which use just one set of source embeddings. We introduce word prisms:
a simple and efficient meta-embedding method that learns to combine source embeddings ac-
cording to the task at hand. Word prisms learn orthogonal transformations to linearly combine
the input source embeddings, which allows them to be very efficient at inference time. We eval-
uate word prisms in comparison to other meta-embedding methods on six extrinsic evaluations
and observe that word prisms offer improvements in performance on all tasks.1

1 Introduction

A popular approach to representing word meaning in NLP is to characterize a word by “the company
that it keeps” (Firth, 1957). This intuition is the basis of famous word embedding techniques such as
Word2vec (Mikolov et al., 2013a) and Glove (Pennington et al., 2014). However, the question of what
company a word keeps — i.e., what should define a word’s context — is open. A word’s context could
be defined via a symmetric window of 1, 2, 5, 10, 20 words, the words that precede it, the words that
follow it, the words with which it shares a dependency edge, etc. Determining the utility of such different
notions of context for training word embeddings is a problem that has attracted considerable attention
(Yatbaz et al., 2012; Levy and Goldberg, 2014a; Bansal et al., 2014; Lin et al., 2015; Melamud et al.,
2016; Lison and Kutuzov, 2017) but there is no conclusive evidence that any single notion of context
could be the best for solving NLP problems in general. Thus, many deep learning solutions for NLP
have yet another hyperparameter to tune: what set of word embeddings should be selected for the input
layer of the model. As NLP tasks become more and more complex, the practice of providing a deep
model with only one notion of a word’s meaning becomes limiting.

Word meta-embeddings address aspects of this problem by proposing techniques for combining multi-
ple sets of word embeddings before providing them into the input layer of a downstream model. Yin and
Schütze (2016) motivated word meta-embeddings by arguing that they are advantageous for the follow-
ing reasons: diversity — combining embeddings trained with different algorithms on different corpora
will allow for more distinct meanings of the words to persist; and, coverage — combining embeddings
trained on different corpora help to better solve the out-of-vocabulary problem. However, they did not
acknowledge that different sets of word embeddings can be diverse even when trained on the same cor-
pus with the same algorithm, so long as their context windows are different. Additionally, due to the
various practical and theoretical similarities between different algorithms (Levy and Goldberg, 2014b;
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Figure 1: Word prisms (§3) during supersense tagging (§4). We display the nearest neighbor to the em-
bedding for the word “apple” in five of the window-based facets (Figure 2, §3.2) used in the downstream
model (§4). We include the ⊥ symbol on the learned transformation, Pf , to indicate its orthogonality.

Levy et al., 2015; Newell et al., 2019), the gains to be found in diversifying at the level of algorithmic
variation are likely to be minimal. With regard to vocabulary coverage, the out-of-vocabulary problem
is at least partially addressed by character n-gram based embedding algorithms such as FastText (Joulin
et al., 2017) and subword-based decomposition techniques that can be applied post-training (Zhao et al.,
2018; Sasaki et al., 2019). Nonetheless, meta-embeddings have been shown to consistently outperform
models that use only a single set of embeddings in their input layer. Our goal is to determine how to best
combine many sets of input embeddings in order to obtain high quality results in downstream tasks.

This work proposes word prisms as a simple and general way to produce and understand meta-
embeddings, visualized in Figure 1. Word prisms excel at combining many sets of source embeddings,
which we call facets. They do so by learning task-specific orthogonal transformations to map embed-
dings from their facets to the common meta-embedding space. This produces a vector space that is more
disentangled than the original space of facet embeddings. It allows the combination of multiple source
embeddings while preserving most information within each embedding set.

To our knowledge, this work is the first to incorporate both explicit orthogonal transformations of
source embeddings and importance weights for source embedding sets that are dynamically learned
with the downstream tasks in the same meta-embedding method. Furthermore, it is the first to explore
combining so many sets of source embeddings (thirteen). We compare the word prisms method to other
standard meta-embedding algorithms (averaging (Coates and Bollegala, 2018), concatenation (Yin and
Schütze, 2016), and dynamic meta-embeddings, DMEs, (Kiela et al., 2018)). Word prisms overcome
the shortcomings of each of these algorithms: (1) in averaging, performance deteriorates considerably
when there are many facets — the orthogonal transformations in word prisms resolve this problem; (2)
concatenation and DMEs are too expensive during inference when there are many facets — word prisms
only need the final meta-embeddings at inference time, making them as efficient as averaging. Our results
demonstrate that neural downstream models using word prisms generally obtain better results than the
other algorithms across six downstream tasks, including supersense tagging, POS tagging, named entity
recognition, natural language inference, and sentiment analysis. In our ablation studies, we find that
our method improves performance on downstream tasks even when the vocabulary is the same across
nine source facets trained on the same corpus that differ only by the definition of context window (see
Figure 2); performance further improves by incorporating four more sets of off-the-shelf facets.
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Figure 2: The eight different context windows with which we trained word embedding facets (note that
the dependency-based facet is not included here). Word wi represents the center of the context windows.

2 Related Work

Pre-trained word embedding algorithms use word cooccurrence statistics from a training corpus to map
words to a low-dimensional vector space such that words with similar meanings are mapped to sim-
ilar points in vector space. However, changing the embedding algorithm, training corpus, or defini-
tion of cooccurrence can have a strong impact on the resulting embeddings. Consequently, word meta-
embedding algorithms have been developed to combine multiple embedding sets.

2.1 Word embedding training and notions of context
Word embeddings are trained to reflect the cooccurrence statistics in the input corpus, which depend
on the specific definition of context being employed. The standard definition in Word2vec (Mikolov
et al., 2013a) and GloVe (Pennington et al., 2014) is a symmetric context window of fixed size around
each word in the corpus. Levy and Goldberg (2014a) explore dependency-based contexts, where the
context of each word is defined as its governor and dependents, along with the corresponding dependency
relation labels. They observe that embeddings trained on smaller context windows and dependency-
based contexts relate words that can be substituted for one another. By contrast, embeddings trained
on larger context windows relate words which address the same topic. Bansal et al. (2014) observe the
same phenomenon. Lin et al. (2015) find that small window sizes work best for POS tagging. Lison
and Kutuzov (2017) evaluate word similarity and word analogy task performance for SGNS embeddings
trained on different window sizes, as well as left-sided and right-sided context windows.

2.2 Word meta-embeddings
Previous work has shown that combining embedding sets can lead to improvements in downstream per-
formance. Melamud et al. (2016) combine embeddings trained with different notions of context via
concatenation, as well as via SVD and CCA, leading to improved performance in multiple downstream
tasks. However, they only combine two embedding sets at a time. Yin and Schütze (2016) introduce the
term “meta-embeddings” and demonstrate that concatenation and singular value decomposition (SVD)
are solid baselines on word similarity, analogy, and POS tagging tasks. They propose 1TON, which
simultaneously learns meta-embeddings and projections from the meta-embedding space to each indi-
vidual source embedding space. Ghannay et al. (2016) apply PCA and autoencoders after concatenating
source embeddings. Zhang et al. (2016) apply a convolutional layer to each source embedding before
concatenating the resulting feature maps. Bollegala et al. (2018) represent the meta-embedding for a
word as a linear combination of the meta-embeddings for its nearest neighbours in each source embed-
ding set. Bao and Bollegala (2018) produce meta-embeddings by either averaging or concatenating the
outputs of encoders which take GloVe and CBOW (Mikolov et al., 2013a) embeddings as input.

Coates and Bollegala (2018) demonstrate that, in certain settings, meta-embeddings produced by aver-
aging can be as performant as concatenated ones. Kiela et al. (2018) propose dynamic meta-embeddings
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(DMEs), which perform attention over the linearly transformed source embeddings. The linear trans-
formations applied to the source embeddings are not constrained to be orthogonal. Their model learns
which source embedding sets are most useful for a particular downstream task and for particular classes
of words. They also present a contextualized version, where attention weights also depend on a word’s
surrounding context, but this provides little to no improvement on their downstream evaluations. By
contrast, we propose a simpler attention mechanism by learning a single importance weight for each
source embedding set, and we apply orthogonal transformations to source embeddings prior to linear
combination. We also experiment with a larger selection of source embeddings, including embeddings
trained with different notions of context.

Orthogonal transformations have previously been employed in the context of mapping monolingual
embeddings for different languages into a common space (Artetxe et al., 2016; Smith et al., 2017; Artetxe
et al., 2018; Conneau et al., 2018; Doval et al., 2018). With these alignment transformations on mono-
lingual space, one can obtain a better cross-lingual integration of the vector spaces. Recent work has also
found that applying orthogonal transformations to source embeddings facilitates averaging (Garcı́a et al.,
2020; Jawanpuria et al., 2020). We expand on this work by incorporating orthogonal transformations
in word prisms, which learn word meta-embeddings for specific downstream tasks. Additionally, we
provide an analysis of source embeddings before and after orthogonal transformation, which leads to
the insight that these mappings cause source embedding sets to be more easily clusterable within the
meta-embedding space.

3 Word Prisms and Meta-Embeddings

In this section we introduce meta-embeddings, word prisms, and the source embeddings they are com-
posed with in this work. A meta-embedding combines pre-trained embeddings from multiple sources
(e.g., from Glove and FastText), which we call facets. We define wf as the embedding of word w in
facet f , for each facet f ∈ {1, ..., F}. The dimensionality of each embedding in a facet is denoted df ,
and the final dimensionality of the meta-embedding is d′. The following equation represents the general
form of all meta-embedding variants and baselines considered in this work:

meta(w) =
F∑

f=1

αf (Pfwf + bf ) s.t. αf ∈ R, wf ∈ Rdf , Pf ∈ Rd′×df , bf ∈ Rd′ . (1)

That is, the meta-embedding for a word w, meta(w) ∈ Rd′ is constructed as follows: first, it is
projected by a linear transformation (learned or fixed) characterized by a matrix Pf and bias bf for
some set of embedding facets. Next, the meta-embedding is a linear combination of the transformed
embeddings scaled by some (learned or fixed) weights, αf . The vocabulary of a word prism is the union
of the vocabularies of its facets. If a word is out-of-vocabulary for a facet f , we assign its representation
wf to be the centroid of the embeddings in the facet.

3.1 Word prisms
Word prisms learn orthogonal transformation matrices Pf and bias vectors bf via back-propagation
to make the space of input facets more well-separated so that the downstream model can learn which
lexical qualities in the facets are most appropriate for the given task at hand. It is desirable to impose
an orthogonality constraint on the transformation matrix because orthogonal matrices preserve the dot
products within the original vector space, which has been shown to be important in studies of multilingual
embeddings (Artetxe et al., 2016). This requires Pf to be square (Pf ∈ Rd′×d′) which further requires the
dimensionality of the facets to all be the same (i.e., each df = d′, without loss of generality2). After each
gradient descent update, we apply the following update rule used by Cisse et al. (2017) and Conneau et
al. (2018), which approximates a procedure that keeps each Pf on the manifold of orthogonal matrices:

Pf ← (1 + β)Pf − β
(
PfPf

T
)
Pf . (2)

2When dimensions are different, simple strategies can be pursued to equalize them. For example, zero-padding short
embeddings (Coates and Bollegala, 2018) or using SVD to compress long embeddings are reliable strategies.
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The orthogonal transformation keeps the L2 norm of the original embeddings the same, since it does not
rescale the vectors. Our preliminary experiments found β = 0.001 is a good option.

Word prisms also learn a linear combination of the projected facets to further adapt to the task at hand.
Indeed, it is necessary to learn the αf separately from Pf since the transformations are orthogonal and
cannot perform rescaling independently. Word prisms learn the facet-level weight coefficients, αf , di-
rectly, where each αf is a floating-point number also learned via back-propagation from the downstream
task signal, initialized to be 1/F for each facet. That is, the parameters in word prisms are learned si-
multaneously with the downstream model for a given task. This approach is advantageous because it
allows the model to assign importance weights to each facet, but it is not bound to do so via a dynamic
attention vector. So, for word prisms, all of the meta-embeddings can be pre-computed for a vocabulary
after training. This means that a word prism model in an inference-only production environment benefits
from low memory complexity, as it does not need to hold all of the original facets in memory, only the
meta-embeddings. Thus, given a vocabulary size V , and number of facets F , the memory complexity
during inference is only O(V ) for word prisms (and the average baseline), but is O(V F ) for DMEs (and
the concatenation baseline).

3.2 Facets

We include 13 various facets into word prisms with the aim of capturing a wide variety of semantic and
syntactic information. To our knowledge, this is the first work on meta-embeddings to explore combining
so many sets of source embeddings. Our collection of facets is diverse in the following two ways: (1) it
incorporates many notions of context using the same algorithm and the same corpus; (2) it incorporates
off-the-shelf embeddings trained on much larger corpora and tuned to knowledge graphs.

We make use of nine different notions of context to train standard PMI-based word embeddings (Levy
and Goldberg, 2014b; Newell et al., 2019), each with a dimension of 300 and vocabulary size of 500,000.
Training is done with the open-source sampling-based implementation of Hilbert-MLE3 (Newell et al.,
2019), which facilitates the use of arbitrarily structured context windows for training. For eight of the
nine notions of context, embeddings are trained on the Gigaword 3 corpus (Graff et al., 2007) combined
with a Wikipedia 2018 dump, which amounts to approximately 6 billion tokens.

We visualize the different window settings for these eight embedding sets in Figure 2. Letting W be the
window size, we trained the following sets of embeddings: W1, W2, W5, W10, and W20. Furthermore,
we trained embeddings using only a Left context of 5 words, and another set of embeddings with only a
Right context of 5 words. Lastly, we trained a set of embeddings with only a Far context window, which
only includes words between 20 and 30 words away, in order to create strong topic-based representations.
We also trained a variant of dependency-based embeddings (Deps) (Levy and Goldberg, 2014a), where
we defined a word’s context to be its governor. We ran the CoreNLP (Manning et al., 2014) dependency
parser on Gigaword 3 to obtain a parsed corpus.

We also experiment with the following off-the-shelf embeddings: GloVe (Pennington et al., 2014);
trained on 840B tokens from the Common Crawl Corpus with 2.2M words in the vocabulary. FastText
(Joulin et al., 2017); trained on 600B tokens from the Common Crawl Corpus with 2M words in the
vocabulary. ConceptNet Numberbatch (Speer et al., 2017); retrofitted (Faruqui et al., 2015) on both
Word2vec (Mikolov et al., 2013b) and GloVe (Pennington et al., 2014) with 516K words in the vocabu-
lary; this facet allows us to incorporate information from knowledge graphs. LexSub (Arora et al., 2020);
GloVe embeddings trained on 6B tokens from Wikipedia 2014 and the Gigaword 5 corpus (Parker et al.,
2011), modified so that they can easily be projected into “lexical subspaces”, in which a word’s nearest
neighbours reflect a particular lexical relation (e.g. synonymy, antonymy, hypernymy, meronymy).

4 Experiments

Our experiments seek to determine if: (1) word prisms offer improvements over the other common
meta-embedding methods; and, (2) if it is desirable to produce meta-embeddings with many different
notions of context from the same corpus. For (1), we pursue a variety of experiments comparing word

3https://github.com/enewe101/hilbert
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prisms to the following meta-embedding methods: the averaging baseline, the concatenation baseline,
and dynamic meta-embeddings (DMEs) (Kiela et al., 2018). For (2), we experiment with several sets of
meta-embedding facet combinations. The first set is FastText and Glove (FG), as is done by Kiela et al.
(2018). The second set is a combination of 13 different facets (All), as detailed in §3.2. In §5 we present
our main results, and in §6 we present an ablation study to determine the impact of other meta-embedding
combinations and the transformation matrices in word prisms.

4.1 Baselines

We will compare word prisms with three baseline algorithms. The first two, averaging and concatenation,
are standard meta-embedding methods often explored in studies on meta-embeddings (Yin and Schütze,
2016; Coates and Bollegala, 2018). The third is dynamic meta-embeddings (DMEs) (Kiela et al., 2018).

Average baseline. Averaging word embeddings is the simplest method to create meta-embeddings.
Assuming each facet dimension df is equal to d′ (as with word prisms), this baseline corresponds to
Equation 1 with the following fixed parameter settings: αf = 1

F , Pf = Id′ , and bf = ~0.
Averaging is a sensible strategy to combine multiple source word embeddings, since, first of all, it

aggregates the information from all the input facets without introducing additional parameters. Sec-
ond, it captures semantic information by preserving the relative word distances within the embedding
spaces (Coates and Bollegala, 2018). However, as we demonstrate later (§5), the quality of this baseline
deteriorates when there are many different facets as the signals start to become too mixed.

Concatenation baseline. Concatenating multiple source embeddings is another trivial way to construct
meta-embeddings. The parameter settings here correspond to Equation 1 when d′ =

∑F
f=1 df , αf = 1,

bf = ~0, and Pf is a fixed selector matrix that places embeddings into their corresponding concatenated
positions; more simply, meta(w) = [w1, . . . ,wF ].

Concatenation can be desirable because it maintains all of the structure of the original embeddings.
However, it is problematic because the dimensionality increases linearly with respect to the number of
facets, requiring more model parameters to be learned at the input layer for downstream model.

Dynamic meta-embeddings. Kiela et al. (2018) introduced DMEs, demonstrating that sentence repre-
sentations can be improved by combining multiple source embeddings with dynamically learned linear
transformations and attention weights. Note that, like with concatenation, it is necessary to maintain all
of the individual facets in memory during inference when using DMEs.

DMEs are encapsulated in Equation 1 via the following parameter settings: d′ is a hyperparameter
for the desired meta-embedding size (set to 256 by Kiela et al. (2018)); Pf and bf are learned via
backpropagation from supervised learning during the current task; the αf are obtained via a self-attention
mechanism on an additional learned parameter vector a ∈ Rd′ : αf = φ(a · (Pfwf + bf ) + b), where φ
is the softmax function and b ∈ R is an additional learned bias parameter.

4.2 Datasets and downstream models

We evaluate meta-embedding methods on a variety of downstream text classification and sequence la-
belling tasks. For text classification, we choose the Stanford Sentiment Treebank binary sentiment anal-
ysis dataset (SST2) (Socher et al., 2013) and the Stanford NLI (Bowman et al., 2015) (SNLI) bench-
mark. For sequence labelling, we select the CoNLL 2003 named entity recognition task (NER) (Tjong
Kim Sang and De Meulder, 2003), POS tagging on the Brown corpus (Brown)4, POS tagging on the
WSJ corpus (WSJ) (Marcus et al., 1993), and Supersense tagging (Ciaramita and Johnson, 2003) on the
Semcor 3.0 corpus (Semcor) (Miller et al., 1993). Supersense tagging is a problem situated between
NER and word sense disambiguation. The task consists of 41 lexicographer class labels for nouns and
verbs with IOB tags, producing 83 fine-grained classes in total. We report the micro F1 score for the
supersense tagging and the NER tagging tasks, discarding the O-tags in the predictions, as is standard
(Alonso and Plank, 2017; Changpinyo et al., 2018). For the rest of the tasks, we report the accuracy on

4Retrieved from the NLTK toolkit: http://www.nltk.org/nltk_data/.

http://www.nltk.org/nltk_data/
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Model Facets Semcor WSJ Brown NER SNLI SST2
Average FG 69.42 ± .1 96.76 ± .02 98.44 ± .02 90.16 ± .2 85.33 ± .3 87.76 ± .5
Concat FG 72.23 ± .2 96.85 ± .04 98.53 ± .02 90.49 ± .1 85.45 ± .3 88.57 ± .3
DME FG 72.15 ± .2 96.81 ± .03 98.53 ± .02 89.49 ± .2 85.57 ± .3 88.10 ± .6
Prism FG 73.51 ± .1 96.91 ± .01 98.58 ± .02 90.70 ± .4 85.82 ± .1 87.80 ± .6

Average All 65.34 ± .3 96.63 ± .01 98.21 ± .03 88.92 ± .3 83.91 ± .1 86.03 ± .9
Concat All 73.95 ± .1 97.02 ± .01 98.63 ± .01 90.55 ± .1 84.03 ± .2 88.15 ± .2
DME All 72.09 ± .1 96.89 ± .01 98.58 ± .02 89.36 ± .3 85.47 ± .1 87.63 ± .6
Prism All 73.82 ± .2 97.04 ± .01 98.65 ± .01 90.74 ± .2 85.71 ± .3 88.45 ± .5

Table 1: Test set results for word prisms and baseline meta-embedding algorithms (concatenation, aver-
aging, and DMEs) on different combinations of input facets (§3.2) — FG is FastText and Glove only, All
is all 13 facets. We report the mean and standard deviation from runs with five different random seeds.
Best result is bold, second best is underlined.

the test set. We use the standard train-validation-test splits whenever they are provided with the dataset.
Otherwise, we split 10% of the training set to be the validation set for hyperparameter tuning.

We use a simple neural model to compare meta-embedding methods. To replicate the models used
by Kiela et al. (2018), we use a single layer BiLSTM with 512 hidden units in SST2 and 1024 hidden
units in SNLI for sentence encoding. The sentence representations are learned by max pooling over
the forward and backward hidden states. We use the following representation for a pair of hypothesis
and premise: [u, v,u ∗ v, |u - v|]. The ∗ operator denotes the element-wise multiplication. The sentence
encoder is followed by a 512 dimensional MLP with ReLU activation. For all the sequence labelling
tasks, we use a 2-layer BiLSTM with 256 hidden units for sequence encoding.

We use standard cross entropy loss for all supervised downstream tasks. The parameters of the down-
stream model and word prisms are learned via back-propagation. We choose the initial learning rate
to be 0.001 for sequence labeling tasks and 0.0004 for text classification tasks with a reduction factor
of 0.1 if there is no improvement on the validation set after 2 consecutive epochs. In all of our ex-
periments, we keep the source embeddings in their original forms without performing normalization.
Counterintuitively, normalizing the source embeddings to have unit norm makes little difference in the
text classification tasks but substantially hurts the performance of the sequence labelling tasks. Previ-
ous work (Schakel and Wilson, 2015) shows the length of the embedding vector encodes the unigram
frequency of the word, which is useful in the sequence labelling tasks.

5 Results

Table 1 presents the main results for this work on four sequence labelling tasks and two text classification
tasks. We compare word prisms to standard meta-embedding baselines (averaging, concatenation) and
dynamic meta-embeddings (DME). In the first four rows, we experiment with FastText and Glove (FG)
as a two-facet combination, while the next four rows use a 13-facet combination (All) detailed in §3.2.

Our first finding is that word prisms almost always offer substantial improvements over DMEs, regard-
less of whether we are using two facets or thirteen. The only exception is in the case of text classification
on SST2 with FG, although the difference is within the margin of error (0.6). Note that Kiela et al.
(2018) report slightly different results than our reimplementation of their system, for FG: 86.2 ± .2 for
SNLI (compared to 85.57 ± .3), and 88.7 ± .6 for SST2 (compared to 88.10 ± .6). These discrepancies
are attributable to random initializations and the different representation of out-of-vocabulary words5.

Our second finding is that concatenation is still a very strong baseline for meta-embeddings. This is
not surprising because it preserves all of the information in the facets, and also introduces more model
parameters, while the other meta-embedding methods seek to compress the information from all the
meta-embeddings. Yet, for 4 out of the 6 tasks, word prisms outperform concatenation, and in the

5While Kiela et al. (2018) uses zero-vectors to represent OOV words, we opted to use the facet-level centroid as it resulted in
better validation performance for most tasks. We found we were unable to exactly replicate their results even with zero-vectors.
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Figure 3: Impact of the linear transformations on the embedding space in dynamic meta-embeddings
(DME) versus word prisms. The K-means score is the adjusted mutual information score for clustering
embeddings into their respective facets, consistent across 5 clustering runs with different random seeds.
Visualized is the TSNE-projected original facet-space versus the facets after projection (i.e., the stacked
wf versus the stacked Pfwf + bf ) in DMEs and word prisms.

other two tasks (Semcor and SST2) word prisms obtain second best results within the margin of error.
Furthermore, note that concatenation is very expensive in the case of including 13 facets, requiring 3900-
dimensional meta-embeddings at inference time, versus only 300-dimensions for word prisms.

Our third major finding is that sequence labelling tasks highly benefit from including all 13 facets,
while the text classification tasks seem generally satisfied with only FG. Work on multi-task learning for
supersense tagging on Semcor (using only a single set of embeddings with similar neural sequence la-
belling models) report results of 62.36 (Alonso and Plank, 2017) and 68.25 (Changpinyo et al., 2018). In
contrast, our word prism model obtains a score of 73.82, indicating that word prisms can offer substantial
improvements to supersense tagging models. Moreover, because supersense tagging is a coarse-grained
version of word sense disambiguation, it is likely the case that word prisms can improve results in that
domain as well. For further comparison, Huang et al. (2015) obtain accuracies of 96.04 and 83.52 on
the WSJ and NER tasks respectively (when using a BiLSTM with only a single set of embeddings as
features) while our word prisms offer improvements to 97.04 (+1.00) and 90.74 (+7.22).

Our results additionally contribute to the findings of Coates and Bollegala (2018) on the difference be-
tween averaging and concatenation for meta-embeddings. When there are 13 facets, we observe a marked
drop in quality for averaging. We posit that this is due to the increased noise pollution in the averaged
vector space because, while it is likely that two sets of random vectors will be generally orthogonal,
when 13 sets of random vectors come into play the “birthday paradox” becomes much more likely to un-
veil itself, and the odds of being well-separated become lower. In Figure 3, we present the vector space
for a subset of the nine window-based embeddings, projected to 2D with TSNE (Maaten and Hinton,
2008). Observe that the embeddings are not very well-separable on their own, as a K-Means clustering
algorithm can only obtain an adjusted mutual information score of 0.635 to cluster them into their cor-
responding facets. We also present the embedding spaces being linearly transformed (i.e., Pfwf + bf ,
see Eq. 1) when trained for supersense tagging. The learned, unconstrained transformations in DMEs
cause the embedding space to become much less well-separated, as the clustering score deteriorates to
0.266. In contrast, the orthogonal transformations for word prisms improve the separatedness of the
embedding space, bumping clustering score to 0.841. This (combined with the improved downstream
results from word prisms) provides evidence of the validity of the “natural clustering” hypothesis for
representation learning (Bengio et al., 2013; Kenyon-Dean et al., 2019); namely, that it is preferable for
neural representations to be well separated (or, disentangled) within their latent spaces.

6 Ablation Studies

We perform two ablation studies to further inspect the impact of the orthogonal transformations and
meta-embedding combination choice in word prisms. We compare the orthogonal transformation in word
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Model Proj. Semcor WSJ Brown NER SNLI SST2
Avg. None 64.86 ± .2 96.53 ± .03 98.02 ± .02 86.33 ± .2 82.76 ± .2 85.55 ± .6
Prism None 70.05 ± .2 96.73 ± .03 98.21 ± .02 87.56 ± .2 82.73 ± .4 85.61 ± .6
Prism Uncon. 71.54 ± .1 96.90 ± .01 98.36 ± .00 87.68 ± .3 83.87 ± .2 86.15 ± .7
Prism Orthog. 72.41 ± .2 96.98 ± .04 98.44 ± .01 88.91 ± .2 83.89 ± .4 86.68 ± .6

Table 2: Ablation study 1: The transformation in word prisms. Test set results for word prisms with
different projection constraints (no transformation, an unconstrained one, and the orthogonal transfor-
mation), taking the nine window-based facets as the meta-embedding combination.

Facets Semcor WSJ Brown NER SNLI SST2
Best-Window 67.55 ± .1 96.60 ± .03 98.17 ± .01 87.54 ± .3 83.08 ± .2 85.82 ± .7
Best-All 70.50 ± .2 96.75 ± .03 98.42 ± .03 90.39 ± .2 85.60 ± .2 87.48 ± 1.0
W1-10 71.67 ± .2 96.86 ± .02 98.36 ± .02 88.39 ± .2 83.88 ± .3 86.52 ± .4
W1-Far 71.78 ± .1 96.89 ± .02 98.36 ± .01 88.54 ± .2 83.69 ± .3 87.39 ± .3
All windows 72.41 ± .2 96.98 ± .02 98.44 ± .01 88.91 ± .2 83.89 ± .4 86.68 ± .6
FG 73.51 ± .1 96.91 ± .01 98.58 ± .02 89.70 ± .4 85.82 ± .1 87.80 ± .6
FGCL 73.51 ± .1 96.98 ± .03 98.63 ± .01 89.83 ± .3 85.68 ± .2 88.90 ± .4
All 73.82 ± .2 97.04 ± .01 98.65 ± .02 90.74 ± .2 85.71 ± .3 88.45 ± .5

Table 3: Ablation study 2: Different combinations of facets in word prisms. Test set results when
using different combinations of input facets in word prisms. First two rows contain only the single best
performing window-based facet (Best-Window) or the best facet overall (Best-All), for the specific task.

prisms to two alternatives: none (i.e., Pf = Id′ , in which case the word prism is only learning the facet-
combination weights αf ), and an unconstrained transformation which does not apply the orthogonality-
imposing update rule detailed in Equation 2. For each experiment, we report the average and standard
deviation across runs performed with five different random seeds.

Ablation study 1. In this experiment we determine the impact of the transformation matrix in word
prisms when isolating the input facets to be the 9 window-based facets trained on the same dataset, with
the same vocabulary, differing only in the definition of the context window. Table 2 presents the results
for this experiment, which furthermore demonstrates the effectiveness of the orthogonal transformation.

Ablation study 2. In this experiment we investigate the impact of different choices of facet combina-
tions for word prisms. We experiment with several different sets of facets: W1-10 denotes window sizes
between 1 and 10 (inclusive) [4 facets]; W1-Far includes the prior facets plus W20 and Far [6 facets];
All windows includes the Left, Right, and Deps with the prior facets [9 facets]. FG denotes FastText
and GloVe, while FGCL denotes FastText, GloVe, ConceptNet, and LexSub. All denotes all 13 of these
facets. The results for these combinations are summarized in Table 3. In the first two rows, we also
include the results for the best-performing (on the held out validation set) single-facet embedding model
for the best window-based facet (Best-Window, out of the 9 window-based facets), and the best overall
single-facet model (Best-All out of all 13 facets). W2 is the best window-based facet for Semcor, WSJ
(tie), Brown, NER, and SST2, while W5 is the best window-based facet for WSJ (tie) and SNLI. GloVe
is best overall for WSJ, Brown, NER, and SST2, while FastText is best overall for Semcor and SNLI.

We note three important takeaways from these results. First, word prisms always perform better than
their single-facet counterparts, even though the single-facet models were selected to be the one that max-
imized validation performance for the specific task. Second, we observe that progressively incorporating
more facets trained solely on different notions of context (i.e., from W1-10 to W1-Far to All windows)
improves results quality substantially for the sequence labelling tasks, while the text classification tasks
(SNLI and SST2) do not benefit as much, although SST2 does seem to prefer the topic-based represen-
tations included by W1-Far. This suggests that NLP practitioners would benefit from training multiple
sets of embeddings with different context windows in their specific problem domains (e.g., on a Twitter
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corpus), where they can expect improvements in results, especially if they are faced with a sequence
labelling problem. Our third takeaway is that FastText and Glove are much better than the window-based
embeddings, although including them all together still improves results in 3 out of the 6 tasks. This is not
surprising since the FastText and Glove embeddings are trained on a corpus with over 600 billion words,
while our window-based embeddings are only trained on a 6 billion word corpus; i.e., 1% of the data of
the former. Thus, our results in this ablation study and the former suggest that training embeddings with
different notions of context on such corpora will lead to even further gains.

7 Conclusion

In this paper, we study a simple and efficient method for constructing meta-embeddings from wide-
ranging facets while preserving individual invariance with orthogonal transformations. The effectiveness
of the proposed word prisms is validated by six supervised extrinsic evaluation tasks. Our word prism
models obtain consistent improvements over dynamic meta-embeddings (Kiela et al., 2018) and the
averaging and concatenation baselines (Coates and Bollegala, 2018) in all six tasks. Analysis of the
transformed embeddings suggests the “natural clustering” hypothesis for representation learning (Bengio
et al., 2013) is important to consider for combining various source embeddings to create performant task-
specific meta-embeddings.

Several future directions present themselves from this work. First, we believe that contextualized
embedding models can benefit from prismatic representations of their input embeddings (Devlin et al.,
2019), and that word prisms can benefit from including contextualized embeddings as facets. Second, we
expect that word prisms can improve performance in other tasks such as automatic summarization, which
often use a single set of word embeddings in their input layers (Dong et al., 2019). Third, we believe that
meta-embeddings and the method behind word prisms can be generalized past word-based representa-
tions to sentence representations (Pagliardini et al., 2018) and may improve their quality, as was recently
demonstrated by Poerner et al. (2019). Lastly, recent work has found simple word embeddings to be
useful for solving diverse problems from the medical domain (Zhang et al., 2019), to materials science
(Tshitoyan et al., 2019), to law (Chalkidis and Kampas, 2019); we expect that word prisms and their
motivations can further improve results in these applications.
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