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Abstract

We present scalable Universal Dependency (UD) treebank synthesis techniques that exploit ad-
vances in language representation modeling which leverage vast amounts of unlabeled general-
purpose multilingual text. We introduce a data augmentation technique that uses synthetic
treebanks to improve production-grade parsers. The synthetic treebanks are generated using a
state-of-the-art biaffine parser adapted with pretrained Transformer models, such as Multilin-
gual BERT (M-BERT). The new parser improves LAS by up to two points on seven languages.
The production models’ LAS performance improves as the augmented treebanks scale in size,
surpassing performance of production models trained on originally annotated UD treebanks.

1 Introduction

Dependency parsers are important components in many NLP systems, such as language understand-
ing, semantic role labeling and relation extraction (Marcheggiani and Titov, 2017; Zhang et al., 2018).
Universal Dependencies (UD) (Nivre et al., 2020; Zeman et al., 2018) are becoming a widely accepted
standard among many NLP practitioners for definition of syntactic structures and treebanks. However,
production parsers require custom tokenization policies and Part of Speech (PoS) tagging, mostly dic-
tated by supported downstream applications. In addition, parsers in production environments require fine
balancing of demands for model accuracy, service performance, response time and constraints on hard-
ware resources, making the design of an industrial-grade parser a challenge. Hereby, we introduce data
augmentation techniques to improve production parsers without violating their architectural constraints.

Since their early inception, advances in language representation modeling lead to major improvements
in many NLP tasks (Wang et al., 2018; Moon et al., 2019). Representations trained on various language
modeling objectives, ranging from context free embeddings (Pennington et al., 2014; Mikolov et al.,
2013), to deep context aware representations (Peters et al., 2018; Le and Mikolov, 2014; Devlin et al.,
2018), were trained on massive amounts of unlabeled multilingual text, greatly enabling transfer learning
opportunities for NLP tasks. Particularly, models such as BERT (Devlin et al., 2018), ALBERT (Lan et
al., 2020), RoBERTa (Liu et al., 2019) and XLM (Lample and Conneau, 2019) employ a masked lan-
guage modeling objective (Taylor, 1953) on a bidirectional self-attention encoder (Vaswani et al., 2017)
enabling such models to utilize both left and right context for each word representation. Pretrained mul-
tilingual BERT (M-BERT) was used for dependency parsing in (Kondratyuk and Straka, 2019) aiming to
create a single multilingual model. This work, in contrast, shows that parsing performance for a partic-
ular language can considerably be improved when adapting the biaffine-attention parser (Qi et al., 2018)
with a selected set of pretrained Transformer models while training on multilingual subsets of selected
language family treebanks. We then use this novel parser to project synthetic treebanks, which are used
in a teacher-student technique to improve the accuracy of a fast production parser.

Our approach can generally be described as a form of model compression which was introduced by
(Bucilu et al., 2006), and later reformulated and generalized as neural network knowledge distillation by
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Figure 1: Transformer enhanced biaffine-attention Parser (TBAP).

(Hinton et al., 2015). However, instead of using a large number of ensemble for a teacher model, we use
a deep neural network parser augmented with a large transformer-based pretrained model creating a new
parser that advances the current state of the art. Since the pretrained transformer model can be trained
on large amounts of unlabeled monolingual and multilingual data of various domains and languages, the
teacher model gains improved generalization performance that is facilitated by both cross-lingual and
cross-domain transfer learning. Our student model is a non-neural net based model that is designed to be
fast and efficient in production environments.

Conventionally, parsers are trained on human annotated treebanks, which can be both costly and lim-
ited in quantity. Certain languages may not have enough annotation resources, have very small amount of
data, or data that carries non-commercial licenses. In other cases, the data may be available in a specific
topical domain resulting in models that perform poorly on unrelated domains. In addition, annotation
errors can be common in some treebanks. To address these data challenges, we use cross-lingual transfer
learning and pretrained deep contextualized representations to create a novel parser that helps generate
synthetic data. We describe a production parser trained on these data, whose performance increases as
the synthetic data size surpasses that of human annotated data.

2 System Description

The aim of our system is to produce synthetically labeled treebanks in order to significantly improve
the accuracy of a production parser. The synthetic data will be generated using a different parser that is
higher in quality. We create a new parser using two key components: the deep biaffine-attention parser
(Qi et al., 2018) and a pretrained Transformer model. Not only does such a setup improve the parsing
accuracy, as shown in Section 3, the incorporation of Transformer models facilitates greater degree of
generalization and domain adaptation. In the sections below, we detail the training data augmentation
process as well as the new parser architecture.

2.1 Transformer Enhanced Biaffine-Attention Parser
Figure 1 shows the architecture of the Transformer enhanced Biaffine-Attention Parser (TBAP). The
Transformer provides contextualized word representations for each input sentence to the BiLSTM layer
of the biaffine parser. First, a tokenized input sentence is passed through the Transformer. The Trans-
former further breaks word tokens into subword tokens. This is done in order to significantly reduce the
size of the fixed vocabulary representation in the output prediction layer (Sennrich et al., 2016) overcom-
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Figure 2: The data augumentation process for training a production parser.

ing the open-vocabulary problem. We then take the sum of the last four encoder layers of the Transformer
as the output representation, which is comprised of the contextualized subword representations of the in-
put sentence. Afterwords, two operations are performed on the Transformer’s output. Subword token
representations (also referred to as WordPiece tokens for BERT) are merged back into word-based rep-
resentations. Merging the subword representations can either be done by averaging, maxpooling, or
simply taking the first subword of each word. A forward Fully Connected (FC) layer is then applied to
the merged subword representations, resulting in a sequence of representations aligned for each word of
the tokenized input sequence.

The TBAP is trained on available treebanks. This is a process where the Transformer itself is fine-tuned
by allowing backpropagation to flow through it during training. Alternatively, freezing the Transformer
layers while training can help in speeding up the training process with some drop in performance.

2.2 Data Augmentation Process

Figure 2 outlines the stages of multilingual treebank generation. Initially, the TBAP is trained with
available treebanks. Depending on the type of Transformer model used, two training approaches can be
followed, monolingual and multilingual. Monolingual training can be applied when monolingual Trans-
former models are used. Pretrained monolingual Transformer models are available for certain languages,
such as English, German, French, Chinese, Japanese as well as others. Performance can particularly be
improved for these languages due to both the abundance and specialization of their monolingual data.
Multilingual Transformer models, such as Multilingual-BERT (M-BERT) are trained on more than 100
languages. When using M-BERT, both monolingual as well as multilingual treebanks can be used to
train the parser. Low resource languages can particularly benefit from cross-lingual transfer learning.

2.3 Fast Production Parser

Our production parser should meet rigid criteria regarding runtime speed; thus, we choose the arc-eager
algorithm (Nivre, 2004) trained with features similar to those used by Chen and Manning (2014). To
maintain UD compatability for existing downstream tasks, the tokenization and PoS tagging should not
be modified even if they do not completely follow the definitions from UD. As shown in Figure 2, the
dependency parser takes the tokenizer and PoS tagger’s results as input in order to produce UD-based
syntactic structures.
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UD Parser Transformer Model LAS

en ewt

SNLP 89.50
TBAP BERT-base-en 91.36

BERT-large-en 92.38
Multilingual-BERT 91.14
Albert-xxlarge 92.12
Roberta-large 91.02
XLM 91.56

de gsd
SNLP 86.16
TBAP BERT-base-de 87.92

Multilingual-BERT 87.35

Table 1: LAS results for monolingual and multilin-
gual Transformer models.

M-BERT Multilingual
UD SNLP TBAP Treebanks

nl alpino 93.76 94.01 de gsd, en ewt

fr gsd 92.13 93.54
it isdt 92.61 94.66 es gsd, pt bosque

pt bosque 90.49 91.08 it isdt, es gsd

es gsd 89.94 91.72 it vit, pt bosque

Table 2: LAS comparison SNLP and TBAP.

UD Tags No-Tags
fr gsd 72.30 84.90
pt bosque 62.59 75.47

Table 3: TBAB LAS for unmatched tags.

3 Experiments

In this section, we show results demonstrating the improved performance of the new TBAP architecture
on seven languages. We also show the effectiveness of the treebank synthesis technique when used in
the augmented training of a production parser.

3.1 Transformer Enhanced Biaffine-Attention Parser (TBAP)
The TBAP is implemented by combining two key components, a pretrained Transformer model and the
Biaffine-attention parser. The interface to the pretrained Transformer models was obtained from the
Hugging Face’s Transformers library (Wolf et al., 2019). The implementation of the biaffine-attention
parser was obtained from the open-source StanfordNLP (SNLP) library (Qi et al., 2018). The FC and the
subwords merge layers were added between the Transformer and the biaffine parser. We have adapted the
dependency parser component to be connected to the pretrained transformers and left other components
of the SNLP pipeline unchanged. In fact, since the synthetic data is being preprocessed by the production
parser’s tokenizer and tagger, we only needed to adapt the UD parser and disable the other modules in
the pipeline. Other modifications were performed on the UD parser to make it more suitable for our
task such as changing the internal dimensions of the embeddings layers, adjusting the vocabulary data
structures to make them suitable for multilingual training, and controlling which UD features can be used
when training the UD parser. The PyTorch1 library is used to implement the TBAP code.

We use the standard UD treebanks v2.6 in our evaluations of the TBAP models. The UD v2.6 desig-
nated devset of each treebank is used as a tune-set for early stopping criterion during training. The UD
v2.6 testset of each treebank is used for Labeled Attachment Score (LAS) results in the tables below.
All models generated from UDs are for evaluation purposes. In most cases, we re-trained the SNLP
(unmodified) parser in order to obtain improved baseline scores over the existing pretrained models.

Table 1 shows the LAS results of TBAP with various Tranformer models compared with the baseline
SNLP parser. Since we only modified the dependency parser, we compute scores based on gold sen-
tences, tokens and tags. Table 1 shows that TBAP with any of the used Transformer models improves
LAS over the baseline parser. Also the best results are observed when using a Transformer model trained
monolingually on the corresponding language. This can be attributed to the larger amount of monolin-
gual text used to train the monolingual Transformer. Also in monolingual language models, the subword
splitting models are improved, which results in less splitting and consequently improved contextual rep-
resentations. For English, BERT large outperforms the base one. Table 2 shows LAS results for training
on different language UDs using M-BERT TBAP. M-BERT TBAP consistently outperforms the baseline
SNLP parser.

In the typical case where the synthetic data will be used to train a different production parser, it will be
first preprocessed by the production parser; that is sentence segmented, tokenized, and PoS tagged by the

1https://pytorch.org
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Figure 3: LAS against the size of synthetic
training corpora. The filled symbols (e.g. N,
F) denote the results with the corresponding
UD corpora.

UD Corpus Synthetic
UD Size LAS Size LAS

es gsd 14.2k 80.0 190k 82.7
fr gsd 14.4k 78.3 200k 81.3
it isdt 13.0k 78.8 300k 81.6
en ewt 12.5k 75.9 200k 80.2
pt bosque 8.3k 75.9 300k 77.5
nl alpino 12.3k 71.7 300k 76.7
de gsd 13.8k 67.2 200k 71.5

Table 4: Results of the production parser for seven
languages on UD 2.6 testsets. Comparing training
data by number of sentences and LAS (F1) for both
the original UD and the larger synthetic corpora.

production parser’s own pipeline. This preprocessing is required so that the parser’s output is compatible
with other downstream NLP tasks. This means that the preprocessing will not necessarily be consistent
with the treebank from its corresponding language. In order to improve the robustness of the synthetic
data under different preprocessing requirements, the M-BERT TBAP must be trained without relying on
such predicted tags. Table 3 shows the effect of removing the tags while training the M-BERT TBAP
for synthetic data generation. As expected the overall LAS consequently drops; however, the no-tags
model’s scores shows less of an impact for the preprocessed testset.

3.2 Augmented Training of the Production Parser
We retrained the production parser using the synthetic data generated by the methods above. Table 4
shows the results of seven language parsers, evaluated on the testsets of the UD corpus (v2.6) of the
corresponding language. Parsers trained with the larger synthetic data showed higher LAS than those
trained with the smaller manually created UD corpus data.

Figure 3 shows LAS against the size of training corpora. All languages show similar trends between
parsing accuracy and corpus size; larger synthetic corpora compensate for the smaller size of the UD
corpora, except for English, French and German in which the synthetic data performs nearly equally
with the same size of the original UD training data.

4 Conclusion and Future Work

We presented a data augmentation approach for UD parsing that improves fast production parsers accu-
racy and overcomes critical treebank limitations. A new Transformer enhanced biaffine parser is used to
generate scalable synthetic data. We showed that utilizing deep contextualized representations pretrained
on massive multilingual corpora can be used to considerably improve parsing accuracy. In the future, we
plan to extending our method to generate synthetic data for additional languages.
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