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Abstract

In this paper, we propose and experiment with techniques for extreme compression of neural
natural language understanding (NLU) models, making them suitable for execution on resource-
constrained devices. We propose a task-aware, end-to-end compression approach that performs
word-embedding compression jointly with NLU task learning. We show our results on a large-
scale, commercial NLU system trained on a varied set of intents with huge vocabulary sizes.
Our approach outperforms a range of baselines and achieves a compression rate of 97.4% with
less than 3.7% degradation in predictive performance. Our analysis indicates that the signal
from the downstream task is important for effective compression with minimal degradation in
performance.

1 Introduction

Spoken Language Understanding (SLU) is the task of extracting meaning from a spoken utterance. A
typical approach to SLU consists of two modules: an automatic speech recognition (ASR) module that
transcribes the audio into a text transcript, followed by a Natural Language Understanding (NLU) module
that predicts the semantics (domain, intent and slots) from the ASR transcript. The last few years have
seen an increasing application of deep learning approaches to both ASR (Mohamed et al., 2011; Hinton
et al., 2012; Graves et al., 2013; Bahdanau et al., 2016) and NLU (Xu and Sarikaya, 2014; Yao et al.,
2013; Ravuri and Stolcke, 2015; Sarikaya et al., 2014), making them more reliable, accurate and efficient.
This has led to an increasing popularity of feature-rich commercial voice assistants (VAs) – like Amazon
Alexa, Google Assistant, Apple’s Siri and Microsoft’s Cortana. VAs were used in over 3 billion devices
in the world in 2019, and are estimated to reach 8 billion devices by 20231. With a growing number of
users relying on VAs for their day-to-day activities, voice interfaces have become ubiquitous, and are
employed in a range of devices, including smart TVs, mobile phones, smart appliances, home assistants
and wearable devices.

The SLU processing for VAs is often offloaded to the cloud, where high-performance, compute-rich
hardware is used to serve complex machine learning models. However, on-device SLU is growing in
popularity due to its wide applicability and attractive benefits (Coucke et al., 2018; McGraw et al.,
2016; Saade et al., 2018). First, it enables VAs to work offline, without an active internet connection,
allowing their use in remote areas and on devices with poor or intermittent internet connectivity, for
eg. in automobiles. Second, on-device processing reduces latency by eliminating communication over
the network, and results in an improved user experience. And third, processing utterances on the edge
decreases the load on cloud-services, resulting in reduced cloud hardware requirements and associated
costs.

NLU is the task of extracting intents and semantics from user queries. NLU in VAs typically con-
sists of the following sub-tasks - domain classification (DC), intent classification (IC) and named entity
recognition (NER). Prior work has shown the effectiveness of recurrent neural models, that jointly model
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these tasks in a multi-task setup (Kim et al., 2017; Hakkani-Tr et al., 2016; Liu and Lane, 2016a). These
models typically are made up of large word embeddings, sometimes accounting for more than 90% of
the model parameters, and hence require compression for their deployment on resource constrained de-
vices. Generic model compression approaches such as quantization (Hubara et al., 2017) are ineffective
for compressing large word-embeddings, as they do not achieve the required performance at high com-
pression rates. Prior approaches for word-embedding compression (Raunak, 2017; Shu and Nakayama,
2017) tackle comparatively smaller vocabulary sizes and are typically post-processing approaches, where
compression is performed after the downstream task models are trained. Post-processing compression
for large vocabulary sizes is not effective as the compression is lossy and task-agnostic. Under higher
compression rates, post-processing word embedding compression can lead to a significant degradation
in downstream performance.

In this paper, we present a principled approach for compressing neural models targeted to perform
NLU on resource-constrained devices. We tackle a large number of intents and huge vocabularies (∼
200K), which are typical in a large-scale, commercial NLU system. To overcome the limitations of prior
task-agnostic embedding compression approaches, we propose an end-to-end compression technique,
where the compression layers are jointly trained with the downstream task (NLU) model. Joint training
allows for both task-aware compression and compression-aware task learning. Task-aware compression
enables the compression model to learn better reconstructions for words that are more important to the
downstream task. At the same time, compression-aware task learning enables the downstream task
model to adapt itself to the errors in embedding reconstructions. We further combine word embedding
compression with recurrent layer compression using quantization to compress our model to just a few
MB, achieving a compression rate >97% with <4% drop in predictive performance.

2 Related Work

Joint Modeling and Multi-Tasking for NLU: Joint modeling of component NLU tasks, such as IC and
NER, has been an extensive area of research. Jeong and Lee (2008) propose a triangular conditional
random field (CRF) as a unified probabilistic model combining IC and NER. This is further extended
by Xu and Sarikaya (2013), where convolutional neural network based triangular CRFs are used. Other
neural network architectures like recursive neural networks (RNNs) (Guo et al., 2014) and their variants
(Zhang and Wang, 2016; Liu and Lane, 2016a; Hakkani-Tr et al., 2016; Liu and Lane, 2016b) have also
been well explored. However, all these approaches propose to build domain specific models and produce
multiple models, one for each domain. Work by Kim et al. (2017) explores a unified, multi-domain,
multi-task neural model using RNNs (MT-RNN) and was shown to be effective in sharing knowlege
across the component tasks and domains. In contrast, the authors in (Hakkani-Tr et al., 2016) use a
sequence-to-sequence model to output the complete semantic interpretation of an utterance (DC, IC,
NER). In our work, we adapt the multi-task architecture from Kim et al. (2017), and demonstrate its
effectiveness in meeting strict device constraints on compression.

Neural Model Compression: Due to its many practical applications, research on neural model com-
pression has received massive interest in recent years. Existing approaches for general neural model
compression include low-precision computation (Vanhoucke et al., 2011; Hwang and Sung, 2014; An-
war et al., 2015), quantization (Chen et al., 2015; Zhou et al., 2017), network pruning (Wen et al., 2016;
Han et al., 2015), SVD-based weight matrix decomposition (Xue et al., 2013) and knowledge distil-
lation (Hinton et al., 2015). For neural NLP models, however, larger focus has been on compressing
huge word embedding matrices. Embedding compression approaches include quantization (Hubara et
al., 2017), binarization (Tissier et al., 2019), dimensionality reduction and matrix factorization methods
such as PCA (Raunak, 2017) and SVD (Acharya et al., 2019). An alternative post-training compression
approach using deep compositional code learning (DCCL) was also proposed by Shu and Nakayama
(2017). This approach learns compressed embedding representations based on additive quantization
(Babenko and Lempitsky, 2014) and forms the basis of our task-aware compression approach. In con-
trast to Shu and Nakayama (2017), we propose a task-aware compression approach, where embedding
compression is performed during the task model training, instead of as a post-processing step.
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Figure 1: Multi-Domain, Multi-Task Recurrent Architecture for on-device NLU.

3 Method

Problem Setup: NLU consists of three component tasks - Domain Classification (DC), Intent Clas-
sification (IC) and Named Entity Recognition (NER). DC and IC are sentence classification tasks and
determine the domain (e.g. Music) and the intent (e.g. PlayMusic) of the input utterance. NER is a
sequence tagging task, where each word in the utterance is assigned a slot tag (e.g. AlbumName, Song-
Name etc). The combination of the domain, intent and slots represents the semantic interpretation for
the given utterance and is passed on to the downstream application. Our goal is to compress the NLU
models, to fit within extreme disk space constraints with minimal degradation in predictive performance.
Furthermore, low-latency and inference support for the models are desirable.

3.1 NLU Task Model Architecture

Model Architectural Constraints: Our choice of a suitable on-device NLU architecture is largely driven
by hardware resource constraints. First, on-device systems come with a strict memory budget, restricting
our choices to architectures with fewer parameters. Second, the architectures chosen should not only
be amenable to model compression, but should result in minimal degradation in performance on com-
pression. Third, on-device models have rigorous latency targets, requiring fast inference. This restricts
our choices to simpler, seasoned architectures, like LSTMs and GRUs, that require fewer layers and
FLOPs as opposed to the newer computationally intensive transformer-based architectures like BERT.
Moreover, on-device inference engines often lack support for sophisticated layers such as self-attention
layers. Driven by these constraints and relying on the considerable effectiveness of recurrent architec-
tures (Hakkani-Tr et al., 2016; Liu and Lane, 2016a; Zhang and Wang, 2016), we use a multi-domain,
multi-task RNN model (MT-RNN), built using bi-directional LSTMs (Figure 1) for performing NLU.
We train a single neural model that can jointly perform DC, IC and NER for a given input utterance.
Furthermore, in order to reduce inference latency, we use word-level LSTMs as opposed to character or
sub-word based models.

Architecture Details - Our task model, which we call the MT-RNN model, is shown in Figure 1. It
consists of a shared bi-directional LSTM (Bi-LSTM) to extract features shared by all tasks, and task-
specific layers for the classification and tagging tasks. The input to the recurrent layers are pretrained
embeddings and are fine-tuned during training. The input to each of the classification components is
a sentence representation, obtained by concatenating the final states of the forward- and the backward-
LSTM. This is passed on to a fully-connected dense layer with a softmax to predict the domain and intent
for the utterance. The tagging layer produces a slot tag for each word in the utterance. The input at each
time step consists of the forward- and backward-LSTM states for each word and the output is the slot
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tag. We choose the popularly used Conditional Random Fields (CRF) layer for NER. The network is
trained to minimize a joint NLU loss defined as the sum of the cross-entropy losses for IC and DC and
the CRF loss for NER:

LNLU = LDC + LIC + LNER

In the following sections, we describe our approach for compressing the word embeddings and the
recurrent components of our MT-RNN model.

3.2 Word Embedding Compression
Word embeddings have been shown to be the largest components in an NLP model, owing to large vocab-
ulary sizes and floating point parameters, accounting for >90% of the model sizes (Shu and Nakayama,
2017). Hence, compressing embeddings is crucial for reducing NLP model sizes. Our approach is based
on additive quantization (Babenko and Lempitsky, 2014), which has shown great success in compressing
word embeddings, achieving high compression rates (Shu and Nakayama, 2017).

3.2.1 Additive Quantization using Deep Compositional Code Learning
Additive quantization (Babenko and Lempitsky, 2014) aims to approximate vectors by representing them
as a sum of basis vectors, called codewords. Originally proposed for image compression and approxi-
mate nearest neighbor search, this method has recently been used for post-processing word embedding
compression (Chen et al., 2018; Shu and Nakayama, 2017) achieving high compression rates, upwards
of 90%, on modest vocabulary sizes.

Let W ∈ RV×D be the original word embedding matrix, where V denotes the vocabulary size and
D denotes the embedding size. Using additive quantization, the original word embedding matrix is
compressed into a matrix of integer codes as Wc ∈ ZKV×M , where ZK denotes the set of integers
from 1 to K, ZK = {1, 2, . . . ,K}. This is achieved using a set of M codebooks, C1 through CM ,
Cm ∈ RK×D, each containing K codewords of size D. Ck

m is the kth codeword in the mth codebook.
For each word embedding wi in W , the compressed codes can be wci, where

wci = [zi1, z
i
2, . . . , z

i
M ] where zim ∈ ZK, ∀m ∈ {1, 2, . . . ,M}

The original word embedding wi is approximated from the codes and codebooks as w′i by summing
the (zim)th codeword in the mth codebook over all codebooks:

w′i =
M∑

m=1

Czim
m

Shu and Nakayama (2017) propose the deep compositional code learning (DCCL) architecture to learn
discrete codes and codebooks for a given word embedding matrix through an unsupervised autoencoding
task. In this model, a continuous word vector input, wi ∈ RD is first projected into a lower dimensional
space using a linear transformation. This is projected through a second linear layer into M different
K-dimensional vectors. Each of these M vectors is passed through a gumbel-softmax activation to get
M one-hot vectors, rim ∈ R1×K :

rim = σG(fL(wi)) ∀m ∈ {1, 2, . . . ,M}

where fL denotes the linear transformations and σG denotes the gumbel-softmax activation. The
gumbel-softmax activation allows the network to learn discrete codes via gumbel-sampling, while also
making the network differentiable, enabling the backpropagation of gradients (Jang et al., 2016).

These one-hot vectors are converted to integer codes corresponding to the input word embedding. In
order to reconstruct the word embedding, the following operations are performed:

w′i =
M∑

m=1

rim ∗ Cm where rim ∈ R1×K , Cm ∈ RK×D, w′i ∈ R1×D (1)
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Figure 2: Deep Compositional Code Learning Architecture.

Figure 2 provides an overview of the DCCL model. Since the word embedding matrix W can be
reconstructed using just the codes Wc and the codebooks C = [Ci . . . Cm], the original embedding
matrix W with V × D floating point values need not be stored on-device, thus achieving the required
compression. Furthermore, Wc would be an integer matrix requiring only M log2K bits per embedding
and the codebook C requires just M ∗K ∗D ∗ 32 bits on disk, where each floating point element takes
32 bits. By choosing M and K � V , the size of the codes and codebooks can be greatly reduced when
compared to the original embedding matrix.

3.2.2 Task-agnostic Post-Processing Compression

Shu and Nakayama (2017) propose to use the DCCL architecture to perform post-processing embedding
compression, where embeddings are compressed after the downstream task model has been trained. The
task model is first initialized with pretrained word embeddings that are fine-tuned during task model
training to obtain task-specific embeddings. These are compressed using the DCCL architecture trained
on an unsupervised autoencoding task. The input to the autoencoder is the embedding matrix W ∈
RV×D and the model is trained to minimize the average embedding reconstruction loss (denoted by
l(W,W ′)) for words in the embedding matrix:

l(W,W ′) =
1

V

V∑
i=1

(wi − w′i)2

DCCL is shown to outperform other approaches such as parameter pruning and product quantization on
sentence classification and machine translation tasks.

Since compression is performed as a post-processing step after the task model is trained, the compres-
sion algorithm has no information about the downstream task, making the compression task-agnostic and
results in several drawbacks. First, unsupervised post-processing compression treats all words equally
for compression. However, in practice, some words may be more important than others for the down-
stream task. Hence, better reconstructions of more important words may benefit the downstream task.
Second, post-processing compression typically is lossy resulting in a degradation in downstream perfor-
mance since the task model is not adapted to the compression error. We propose a task-aware end-to-end
compression approach which aims to address these issues.
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Figure 3: Task-aware end-to-end compression with the MT-RNN model.

3.2.3 Task-aware End-to-End Compression
Our algorithm improves on the above said approach, by training the DCCL a.k.a. the compression
model, jointly with the downstream task model (Figure 3). End-to-end training allows the compression
model to receive signals about the downstream task, thus adapting the compression to the downstream
task. Intuitively, since the compression model now has the information about how the words are used
in the downstream task (via the downstream loss), it can spend more network capacity in achieving
better reconstructions for more important words. At the same time, the downstream task model also
adapts to the lossy reconstructions learned by the compression model, thus improving on the downstream
performance. We call this task-aware end-to-end compression, where the compression algorithm takes
the downstream task loss into account during embedding compression.

In order to perform task-aware compression with a DCCL model, we replace the original embedding
lookup operations in the task model with layers from the DCCL model a.k.a. the compression layers.
The input to our model is now a sequence of L word embeddings corresponding to words from the input
text utterances. These are passed through the compression layers and are reconstructed, as shown in
equation 1, to obtain a sequence of D dimensional word representations corresponding to each word in
the input. The word representation is then fed to the recurrent layers in the task model and the remaining
network is unchanged. The entire setup is trained end-to-end to minimize the downstream task loss and
the gradients are back-propagated through the entire network, including the compression layers. Further,
the compression layers can be initialized with pretrained model parameters from the task-agnostic DCCL
model, and the NLU layers can be initialized from a trained NLU model.

Training an end-to-end DCCL model is tricky, especially when the number and size of codebooks
is large. The stochasticity introduced by gumbel-sampling can easily stray off the training, leading
to sub-optimal convergence. For these cases, we ground the training by adding the word embedding
reconstruction loss to the downstream task loss as follows:

L = LNLU + Le where Le =
1

N

N∑
i=1

(
wi − w′i

)2
Adding the embedding reconstruction loss not only stabilizes the training, but also provides stronger gra-
dients to the compression layers. Note that unlike task-agnostic compression where all words are treated
equally for compression, the embedding reconstruction loss term in task-aware compression considers
only the words appearing the in the input batch. This ensures that the words that are more frequent in the
training data have better reconstructions, resulting in better downstream performance.

3.3 Recurrent Layer Compression
Quantization (Hubara et al., 2017) is a simple and effective technique for model compression. Quanti-
zation maps each floating point model paramater to its closest representative from a pre-chosen set of
floating-point values. More concretely, the model parameter range is divided into B equally spaced bins
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(or buckets), and each parameter is assigned its closest bin. The bins can be represented by integer in-
dices and require at most log2B bits. For instance, with 256 bins, a 32-bit floating point parameter can
represented by an integer bin index occupying just 8 bits.

We apply post-training 8-bit linear quantization to quantize the recurrent layers of the model. Since
32-bit floating point model parameters are now represented by 8-bit integers, this results in an instant
4× compression. Furthermore, quantization improves model latency, as all the floating point operations
are performed using integers. While more sophisticated compression techniques exist for compressing
recurrent layers, we found that quantization was extremely effective and resulted in no degradation in
performance.

4 Experiments

In this section we describe the datasets used and our experimental setup for model compression. While
our approach is generically applicable to any NLP task that uses word embeddings, we show the effec-
tiveness of our approach on the three NLU tasks – DC, IC, and NER. We show our results on a large
scale commercial NLU system trained across a large number of intents with huge vocabularies.

Dataset. We use annotated live traffic data of a large-scale, cloud based, commercial VA system to train
our NLU models. Utterances from the live traffic are randomly sampled and anonymized to remove
any customer specific information. They are then annotated by skilled annotators for the NLU labels
corresponding to the domain, intent and slot labels for each utterance. The training set chosen for our
experiments contains millions of utterances spanning 5 domains, and over 150 intents and slots. One of
these domains is the ‘Out of domain’ (or OOD) domain, consisting of utterances not supported by the
NLU system. The intent for these utterances is labeled as the ‘OODIntent’ and the words are given the
‘Other’ slot tag. Our held-out test set is prepared by randomly sampling 1 million utterances from the
live-production traffic, following a similar process. In order to facilitate optimization and early stopping,
we also use a validation set of a similar scale.

Evaluation Metrics. We use the following metrics for evaluating the performance on the NLU tasks:
Intent Recognition Error Rate (IRER): This is the ratio of number of incorrect interpretations to the

total number of utterances. A correct interpretation is when the predicted domain, intent and all slots for
an utterances are correct. We compute the IRER only on non-OOD utterances.

Intent Classification Error Rate (ICER): This is the ratio of number of incorrect intent predictions to
the total number of utterances.

Domain Classification Error Rate (DCER): This is the ratio of number of incorrect domain predic-
tions to the total number of utterances.

Slot Error Rate (SER): This is the ratio of number of incorrect slot predictions to the total number of
slots.

False Accept Rate (FAR): This is the ratio of number of out-of-domain utterances falsely accepted
as a supported utterance to the total number of out-of-domain utterances. This metric is mainly used to
evaluate the effectiveness of the model in rejecting out-of-domain (or unsupported) utterances.

Along with the above metrics we also compute the sizes of the word embeddings and the MT-RNN
task model. We only report relative changes in the above metrics compared to the baseline.

NLU Model Training. We train the NLU task model (the MT-RNN model) described in Section 3.1
using the prepared training dataset (Section 4). We initialize the embeddings with FastText (Joulin et
al., 2016) embeddings that have been pretrained on a large corpus of unannotated, anonymized, live
utterances. The model is trained to minimize the NLU loss LNLU as described in Section 3.1 and the
embeddings are fine-tuned during training. The models are trained for a total of 25 epochs, with early
stopping on the validation loss, using Adam optimizer with a learning rate of 0.0001. We further perform
a grid search on a range of hyperparameter values for dropout and variational dropout and select the best
performing model as our candidate model for compression. This model also serves as our uncompressed
baseline.
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Model Type Word Embedding Compression Rate
15× 30× 60× 120×

SVD TAg. +786.94 +794.11 +794.43 +794.42
DCCL TAg. +12.14 +81.67 +280.89 +530.54
DCCL + NLU Fine-tuning TAg. +1.49 +3.78 +6.13 +8.84
SVD TAw. +82.20 +106.06 +161.70 +235.68

Ours TAw. +0.84 +2.45 +4.87 +8.85
Ours – w.o. recons. loss TAw. +5.91 +3.79 +3.72 +5.53
Ours – w.o. pretraining TAw. +7.23 +5.39 +6.30 +8.71

Table 1: Relative percentage IRER change for different word
embedding compression rates.

Figure 4: Average Reconstruction
loss for top frequent words.

Baselines. We compare our proposed approach with the following baselines. We use the abbreviations
‘TAg.’ for ‘Task Agnostic’ and ‘TAw.’ for ‘Task Aware’.

TAg. SVD: In this approach, large embedding matrices are factorized into matrices of much smaller
sizes to produce low-rank approximations of the original embedding matrix, using Singular Value De-
composition (SVD). This is applied as an offline compression method where the embedding matrices are
compressed as a post-processing step.

TAw. SVD: Acharya et al. (2019) propose a task-aware SVD-based embedding compression approach,
where the embedding matrix is first factorized into lower dimensional matrices using SVD. The factors
are then used to initialize a smaller word embedding layer followed by a linear layer, and jointly fine-
tuned with the downstream task model. Stochastic Gradient Descent (SGD) with a learning rate of 0.001
as presented in Acharya et al. (2019) is used for the optimizer.

TAg. DCCL: Task-agnostic compression method proposed by Shu and Nakayama (2017) where the
code learning autoencoder described in Section 3.2 is used to compress word-embeddings from the
trained NLU model. Since it does not perform joint training of the compression layers with the down-
stream task, this serves as an ablation test for our proposed task-aware compression approach.

TAg. DCCL + NLU Finetuning: This is another ablation test for our proposed task-aware com-
pression approach. In this approach, task-agnostic compression is performed as in the previous baseline.
Once compressed in a task-agnostic way, the embeddings are kept frozen and the downstream task model
is fine-tuned to minimize the downstream NLU loss. NLU model fine-tuning is performed with a learn-
ing rate of 0.0001 for 5 epochs.

For all SVD-based approaches, we run experiments over a range of values for nwhere n is the fraction
of components retrained in the low-rank SVD approximation. This produces models of different sizes.
For all DCCL-based baselines, we train the task-agnostic autoencoder model for 300 epochs (approxi-
mately 800k iterations) with a learning rate of 0.0001 using the Adam optimizer. We experiment with
a range of values for hyperparameters M and K where M is the number of codebooks and K is the
number of basis vectors per codebook. Different values of M and K produce models of different sizes.

Implementation details. Our approach is essentially a task-aware version of DCCL (TAw. DCCL).
In our method, the compression layers are initialized with the parameters from the trained autoencoder
model, obtained as a result of task-agnostic post-processing compression. Similarly, the NLU specific
layers are initialized from the trained NLU model. The entire compression model is then trained end-to-
end to minimize the loss function as mentioned in Section 3.2.3. The model is trained with a learning
rate of 0.0001 for 5 epochs. Similar to the above task-agnostic setups, we experiment with a range of
values for M and K. We further explore the following additional setups:

Without pretraining: In this setup, the compression layers and the task model are jointly trained from
scratch and are not initialized from pretrained components. The model is trained to minimize the joint
NLU loss without the embedding reconstruction loss. We use the Adam optimizer with a learning rate
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Compression Performance

Method Type
Model
Compr.

Rate

WE
Compr.

Rate

Rel. IRER
Change (%)

Rel. ICER
Change (%)

Rel. DCER
Change (%)

Rel. SER
Change (%)

Rel. FAR
Change (%)

Uncompressed NA 1× 1× 0 0 0 0 0

SVD TAg. 17.4× 60× +794.43 +1929.50 +2387.46 +1107.66 +2.78
DCCL TAg. 17.6× 64× +280.89 +257.63 +282.29 +291.10 -0.28
DCCL + NLU Finetuning TAg. 17.6× 64× +6.13 +5.53 +5.93 +7.77 +0.06

SVD TAw. 17.4× 60× +161.70 +190.05 +180.76 +169.53 +0.94
Ours TAw. 17.6× 64× +4.87 +4.50 +5.57 +6.13 +0.07
Ours – w.o. Reconstruction Loss TAw. 17.6× 64× +3.72 +3.66 +4.23 +4.86 +0.08
Ours – w.o. Pretraining TAw. 17.6× 64× +6.30 +6.08 +6.70 +7.50 +0.08

Ours + NLU LSTM Quantization TAw. 39.5× 64× +3.69 +3.67 +4.27 +4.91 +0.08

Table 2: This table shows relative performance metrics and model sizes for different baselines and our
proposed approaches. The best models in each category are highlighed in bold.

of 0.0001 and train the model for 25 epochs.

Without embedding reconstruction loss: In this approach, we do not add the embedding reconstruc-
tion loss to the downstream task loss. The models are, however, initialized from pretrained components,
and trained end-to-end for 5 epochs.

5 Results and Analysis

Table 1 summarizes the impact of various word embedding compression approaches on the downstream
IRER metric for a range of compression rates. Compression rate is determined by dividing the uncom-
pressed embedding (or model) size by the compressed embedding (or model) size. We report percentage
relative changes2 to the IRER when compared to the uncompressed baseline. The results presented are
for 300 dimensional embeddings. However, similar trends were observed for 100 dimensional embed-
dings as well.

In general, we find that task-aware approaches perform better than task-agnostic post-processing ap-
proaches. This is because the task-aware end-to-end compression tunes the compression to the down-
stream task, while also adjusting the task model parameters to recover performance due to lossy recon-
structions. From Table 1 we also find that for any given compression rate, our proposed task-aware
DCCL approach has the least degradation in predictive performance when compared to other methods.

Task-aware DCCL outperforms even the best task-agnostic compression baseline (TAg. DCCL + NLU
Fine-tuning) by 39-44% at each of the different compression rates. This shows that the loss signal from
the downstream task helps performance by not only adapting the task model to the compression, but also
by improving compression quality. Moreover, our model at 120× compression rate performs better than
the best baseline even at 60× compression rate. In other words, our models are 2× smaller than even the
best baseline for a similar performance. We also find that the embedding reconstruction loss added to the
downstream task loss helps improve the downstream performance, especially when the compression rate
is lower i.e. when the gumbel-sampling layers are larger or more in number.

In order to understand the importance of task-aware compression, we plot the word embedding recon-
struction loss (Figure 4) for the top most frequent words in our dataset. As seen in Figure 4, the average
reconstruction loss for task-agnostic DCCL remains approximately constant irrespective of frequency of
the words, indicating that all words are treated equally. In contrast, task-aware compression reduces the
average reconstruction loss for more frequent words indicating that the network capacity is spent to learn
better reconstructions for words more important for the downstream task. Note that the model used for
the graph is the task-aware DCCL model without the reconstruction loss term.

We also find that DCCL-based approaches consistently performed better than their SVD counterparts,
in both task-aware and task-agnostic variants. SVD-based approaches do not perform well beyond a

2Absolute numbers are not provided due to commercial confidentiality requirements.
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specific compression rate (+7.99% for 1.7× compression). On investigating, we found that word em-
beddings were full rank matrices, with high singular values for all components, indicating that these
components captured high variance.

Table 2 presents a summary of the performance of the best models for each of the approaches at around
60× embedding compression rate. 8-bit Bi-LSTM quantization helps reduce the size of the recurrent
layers in the models, resulting in a net model compression ratio of 39.5× with a minimal performance
degradation of 3.69% when compared to the uncompressed baseline.

6 Conclusion

In this paper, we present approaches for extreme model compression for performing natural language
understanding on resource-constrained device. We use a unified multi-domain, multi-task neural model
that performs DC, IC and NER for all supported domains. We discuss model compression approaches
to compress the bulkiest components of our models - the word embeddings, and propose a task-aware
end-to-end compression method based on deep compositional code learning where we jointly train the
compression layers with the downstream task. This approach reduced word embeddings sizes to just
a few MB, achieving a word-embedding compression rate of 98.4% and outperforms all other task-
agnostic and task-aware embedding compression baselines. We further apply post-training 8-bit linear
quantization to compress the recurrent layers of the model. These approaches together result in a net
model compression rate of 97.5%, with a minimal performance degradation of 3.64% when compared to
the uncompressed model baseline.

DCCL approaches are complementary to other compression approaches such as knowledge distillation
and model pruning. While our work demonstrates the effectiveness of task-aware DCCL on the classi-
fication and tagging tasks in NLU, the approach itself is generic and can be applied to other NLP tasks
that rely on large word-embeddings. As part of future work, we would like to explore the effectiveness
of task-aware DCCL on NLP tasks such as machine translation and language modeling. We would also
like to explore compression of models with advanced architectures using contextual embeddings.
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