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Abstract

Learning on large text corpora, deep neural networks achieve promising results in the next word
prediction task. However, deploying these huge models on devices has to deal with constraints
of low latency and a small binary size. To address these challenges, we propose a fast word
predictor performing efficiently on mobile devices. Compared with a standard neural network
which has a similar word prediction rate, the proposed model obtains 60% reduction in memory
size and 100X faster inference time on a middle-end mobile device. The method is developed as
a feature for a chat application which serves more than 100 million users.

1 Introduction

As a self-supervised learning task, next word prediction based on deep neural networks obtains robust
performance by learning on large text corpora. Given a textual context as input, these models shown in
Figure 1(a) encode the text to generate a probability distribution over a vocabulary for the next word.
Although various neural networks have been developed for efficient computation and performance, the
word embedding layer and softmax layer are still essential parts in these architectures. However, this
approach faces a bottleneck for deploying on mobile devices that is the huge number of parameters in
the word embedding matrix and softmax layer. For a vocabulary of N words and a word embedding of
dimension D, the word embedding matrix takes N ×D parameters and the softmax layer takes H ×N
where H is the dimension of encoded text. Yu (2018), for instance, proposed a recurrent neural network
with N = 15K, and D = H = 600, so the word embedding matrix and softmax layer have 18M
parameters in total. This cost has limited the applicability of deep neural networks on mobile devices for
word prediction, word completion, and error correction tasks.

Wikipedia Social text
Vocabulary’s size 1,364,714 897,846
Num of Bigrams 14,507,901 9,868,026
Avg num of accompanied words for one-grams 10.7 11
Avg num of accompanied words for bi-grams 5.1 4.9

Table 1: Statistics on 150 million tokens.

Various approaches have been proposed for deep neural compression. Matrix factorization (Nakkiran
et al., 2015; Lu et al., 2016; Mehta et al., 2020) is applied to weight matrices to reduce model parameters
while weight tying (Pappas et al., 2018; Pappas et al., 2018) shares the parameters of the embedding
layer with those of the output classifier. In addition, network pruning and sharing are also efficient
for reducing network complexity. For instance, Srinivas (2015) and Han (2015) explored the redundancy
among neurons and propose to keep only the most the relevant parameters. Recently, Yu (2018) proposed
an on-device word predictor employing shared matrix factorization and distillation to optimize memory
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and computation. These methods achieve promising results in memory reduction but limited efficiency
in time constraint, especially on low-resource devices.

Figure 1: Approaches for word prediction

As we analysed the bottleneck, computation complexity primarily depends on vocabulary’s size N ,
word embedding dimension D, and hidden dimension H related to the embedding matrix and softmax
layer. Designed as a lookup table, the former have constant complexity, while the latter’s operation is
fully matrix multiplication. Therefore, our proposed approach is to reduce this softmax layer’s compu-
tation. According to our analysis on 150 million tokens from Vietnamese Wikipedia text and social text
listed in Table 1, the number of words frequently accompanied with each n-gram is quite small. This fact
motivates us to design a model to consider candidate words for a given context instead of looking at all
words in vocabulary for predicting the next word.

In this work, we propose an approach which takes a contextual text and list of candidate words as
input, and output the probability distribution over these words via the attention mechanism (Vaswani
et al., 2017). This architecture shown in Figure 1(b) decreases significantly the number of softmax
layer’s parameters and performs faster due to the attention operation’s parallelization. In addition, our
proposed model keeps the contextual words and potential words in the same embedding space which
is recommended for learning language models (Press and Wolf, 2017). On middle-end devices (e.g.,
Samsung Galaxy A8 - 2016), the proposed model takes a smaller binary memory of 2.1MB (vs. 4.9MB)
and faster inference time of 0.4ms (vs 41.2ms) while achieving a similar word prediction rate compared
with a conventional neural model.

The next section describes in detail the model’s architecture, how to obtain a list of candidate words for
a given context, and the mechanism to construct training samples for efficiently learning and diminishing
bias.

2 Proposed Method

2.1 N-gram potential words
Given a context, the way to obtain candidates for word prediction is a key factor to our model’s per-
formance. Through the statistics listed in Table 1, a tri-gram model is suitable for obtaining potential
words. Experimental results shows that for a given bi-gram, next words belong to the top five accom-
panied words in 98% cases. Obviously, more grams (i.e., 4-grams, 5-grams) are employed, candidates
are more fitted. However, storing these grams requires a bigger memory space which could exceed the
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conventional model’s. For that reason, we choose the tri-gram model to query candidates for a given
context. To optimize the tri-gram model’s size, tri-grams with frequency less than a threshold T = 0.01%
are filtered out; and candidates for these cases are randomly selected from the top frequent words in vo-
cabulary. According to our evaluation, the difference in word prediction rate between the tri-gram model
and the filtered one is minor.

2.2 Training samples
A straightforward approach of taking the n-gram potential words as candidates faces some drawbacks (i)
bias in position since candidate lists are sorted by frequency; (ii) sensitive to uncommon words as the
model learns local information (i.e., comparison between potential words) but lack of global information
(i.e., comparison with other words). To address these challenges, some globally frequent words are
added to the list of potential words to diversify comparison instead of only potential words. It also helps
to avoid bias in the most frequent words. Then, the candidate lists are randomly permuted to remove
position dependence in prediction. To enhance the ability of word comparison, negative samples, where
the next word is not in the candidate list, are added.

2.3 Model architecture
Given a context W c = {wc

1, w
c
2, ..., w

c
n} and candidate words W p = {wp

1, w
p
2, ..., w

p
k}, our model em-

beds each one-hot word wi ∈ RV into a low dimension vector ei ∈ RD via the shared matrix factorization
(Yu et al., 2018) as follows:

ei = wi ×WV×r ×Wr×D (1)

Then, the context is encoded into a context embedding vector eC ∈ RD via a sentence embedding layer;
and the attention a ∈ Rk (Vaswani et al., 2017) are computed between the query ec and the keys epi for
generating a probability distribution p(wp

i |W c) over the candidate words as follows:

ec = Embed([ec1, e
c
2, ..., e

c
n]) (2)

ep = [ep1, e
p
2, ..., e

p
n] (3)

a = Attention(ec, ep) (4)

p = softmax(Wa+ b) (5)

where W ∈ R(k+1)×k and b ∈ Rk+1 are a weight matrix and bias respectively. Instead of an output
p ∈ Rk, one slot is added to the output for negative sample prediction.

3 Experiment

According to the statistic shown in Table 1 and experimental results, we choose k = 10 including
five words from the tri-gram model and five frequent words mentioned in Section 2.2. For the model’s
configuration, we empirically select n = 15, r = 10, D = 100 and a fully connected layer for embedding
sentences. We collect 1.3B Vietnamese tokens for training and 130M Vietnamese tokens for evaluation
from our social platform. We use top 50K frequent words as a vocabulary and replace out-of-vocabulary
words with <UNK>. To improve the performance of models with matrix factorization, we employ the
TA knowledge distillation (Mirzadeh et al., 2020) with r = 50 for the TA model. We use a Samsung
Galaxy A8 version 2015 for evaluation.

3.1 Model evaluation
In Table 2, we report the comparison between the proposed approach and some baselines (i.e., N-gram,
Tying weight (TW), and TW + Matrix factorization) in terms of inference speed per sample, model
size and word prediction rate (WPR) which is a percentage of correct words prediction. Although com-
pression methods help reduce model size, they show no improvement in computation time. Our Fast
Prediction model achieves significant reduction for speed while remaining a competitive WPR. We ob-
serve that parameter reduction via matrix factorization hurts the conventional model’s WPR (from 0.43
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to 0.31). Our Fast Word Prediction, by contrast, lessens that effect via employing candidate words for
narrowing learning space.

WPR Speed (ms) Model Size
N-gram 0.36 0.05 1,5MB
Tying weight (Press and Wolf, 2017) 0.43 41.16 4,9MB
Tying weight + Matrix Factorization (Yu et al., 2018) 0.31 39.68 0.6MB
Fast Word Prediction 0.44 0.36 4.9MB∗ + 1.5MB+

Fast Word Prediction + Matrix Factorization 0.41 0.4 0.6MB∗ + 1.5MB+

Table 2: Performance comparison of our models and baselines. (∗), and (+) denote the size of neural
networks and N-gram models respectively.

3.2 Candidate words evaluation
In this section, we evaluate various ways to construct a list of candidate words for a given context as
follows:

• Potential (P): top 5 words from the tri-gram model. For context being out of the tri-gram model,
the potential words are selected randomly from the vocabulary.

• Potential + Random (PR): add more 5 words randomly selected from the vocabulary.

• Potential + Frequent (PF): add more 5 words randomly selected from the top frequent words.

P PF
Potential 0.39 0.38
Potential + Random 0.4 0.39
Potential + Frequent 0.42 0.44

Table 3: Word Prediction Rate of three ways to obtain candidate words.

We evaluate these approaches on two validation sets: (i) samples constructed by P; (ii) samples con-
structed by PF. The experimental results in Table 3 support the claim mentioned in Section 1 that the
approach PF prevents models from being biased towards frequent words compared with P and PR.

4 Conclusion

We have proposed an efficient approach for on-device word prediction. By making use of candidate
words, TA distillation and matrix factorization, the model requires less parameters and computation
while achieving a competitive performance. The model takes 2.1MB in memory and outputs a result in
0.4ms on the middle-end device. To optimize the model and keep it from being bias, we build a list of
candidate words including potential words and frequent words. This approach of using candidate words
is promising for enhancing user experience via personalizing the candidate list.
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