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Abstract

We recognize the task of event argument link-
ing in documents as similar to that of in-
tent slot resolution in dialogue, providing a
Transformer-based model that extends from
a recently proposed solution to resolve refer-
ences to slots. The approach allows for joint
consideration of argument candidates given a
detected event, which we illustrate leads to
state-of-the-art performance in multi-sentence
argument linking. 1

1 Introduction

Given an event recognized in text, we are con-
cerned with finding its associated arguments. Sig-
nificant work has focused at the level of single
sentence contexts, such as in semantic role label-
ing (SRL; Gildea and Jurafsky, 2000; He et al.,
2017; Ouchi et al., 2018, inter alia). Unfortunately
even perfect performance in SRL will be limited
by the existence of arguments outside the sentence
boundary, leading to prior work (Das et al., 2010;
Silberer and Frank, 2012; Ebner et al., 2020) on
an alternative paradigm variously called implicit
role resolution or argument linking, where an event
trigger (e.g. “attack”) evokes a set of roles (e.g. AT-
TACKER, TARGET) to be filled, and they are linked
to explicit argument mentions found in text. In ar-
gument linking, possible candidate arguments are
first detected, then linked to specific roles of de-
tected events. This bears similarity to coreference
resolution, where document-level context can be
aptly utilized. For an example, see Figure 1.

This formulation is similar to the resolution of
referring expressions in conversational dialogues
(Çelikyilmaz et al., 2014), where a current utter-
ance is considered to invoke an intent (e.g. BUY-
BOOK), accompanied by a number of slots (e.g.

1 Our code can be found at https://github.com/
wanmok/joint-arglinking.

Dialogue Events

Intent type Event type
BUY-BOOK ATTACK

Slot key Role type
NAME, AUTHOR ATTACKER, TARGET

Slot value Argument
1984, George Orwell Russia, Ukraine

Table 1: Mapping between terminologies in intent slot
resolution and event argument linking, with examples.

NAME, AUTHOR, PUBLISHER, etc.). Even more
than in event argument linking, in dialogue sys-
tems the sentence-level (utterance-level) context
often fails to contain all salient arguments (slots):
slots from previous rounds of dialogue may often
be relevant to the current intent.2

We propose a novel model for joint modeling of
potential arguments inspired by Chen et al. (2019)
for slot-filling in dialogue systems, which proposed
to jointly predict spans that are relevant to the in-
tent of the current round of dialogue. Over detected
arguments, a Transformer (Vaswani et al., 2017) en-
coder is placed upon the event trigger and potential
arguments to jointly learn the relations between the
event trigger and its arguments. The input to this
Transformer is no longer tokens but spans: given
the Transformer output of each span, a classifica-
tion loss is utilized to perform argument role classi-
fication. We demonstrate this leads to state-of-the-
art performance on the RAMS argument linking
dataset introduced by Ebner et al. (2020),3 show-
ing the benefits of joint modeling when linking
arguments to roles of events.

2 E.g., from Chen et al. (2019): What’s the weather in San
Francisco? ... Any good Mexican restaurants there?

3 https://nlp.jhu.edu/rams.

https://github.com/wanmok/joint-arglinking
https://github.com/wanmok/joint-arglinking
https://nlp.jhu.edu/rams
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2 Background

Implicit role resolution Palmer et al. (1986)
treated unfilled semantic roles as special cases of
anaphora and coreference resolution. Starting from
the SemEval 2010 Task 10: Linking Roles (Rup-
penhofer et al., 2010), there have been more re-
cent modeling efforts on this task. Chen et al.
(2010) approached this with their SRL system SE-
MAFOR (Das et al., 2010), casting the task as ex-
tended SRL by admitting constituents (potential ar-
guments) from context larger than sentence bound-
aries. Silberer and Frank (2012) considered the
problem as an anaphora resolution task within the
discourse context. Ebner et al. (2020) similarly con-
sidered the task as related to anaphora resolution,
and introduced a new dataset, RAMS, for exploring
non-local argument linking. See O’Gorman (2019)
and Ebner et al. (2020) for further background.

Event extraction In event extraction there are
historically three subtasks: detecting event triggers,
detecting entity mentions, and then argument role
prediction, where relations between mentions and
triggers are predicted in accordance to the event
type’s predefined set of roles under a closed ontol-
ogy. Prior work has proposed pipeline system of
the subtasks (Ji and Grishman, 2008; Li et al., 2013;
Yang and Mitchell, 2016, inter alia), or as a joint
model over the three tasks (Nguyen and Nguyen,
2019; Lin et al., 2020, inter alia). Our work could
be seen as a version of argument role prediction,
but which operates beyond sentence boundaries.

Frame-based SLU In dialogue systems, seman-
tic frame based spoken language understanding
(SLU) is one of the most commonly applied
SLU technologies for human-computer interaction.
Such systems often output an interpretation of di-
alogues represented as intents and slots (Wang
et al., 2011). Çelikyilmaz et al. (2014) and Bapna
et al. (2017) proposed models to resolve refer-
ences to slots in the dialogue, tracking conversa-
tion states across multiple dialogue turns. Dhingra
et al. (2017) augmented such methods with external
knowledge bases (KBs) to create a multi-turn dia-
logue agent which helps users search KBs. Chen
et al. (2019) proposed joint models over potential
slots in dialogue to output which contextual slots
should be carried over to the most recent utterance.
Our approach is inspired by this work, by drawing
analogies between concepts in SLU (intents / slots)
and those in IE (events / arguments) (see Table 1).

3 Problem Formulation

Following Ebner et al. (2020) we consider argu-
ment linking as the task of choosing amongst
detected mention span candidates given detected
event trigger spans. Given a document 3 =

(F1, · · · , F=) where each F8 is a word, entity men-
tion set " (candidate arguments) containing men-
tions <8 = 3 [;8 : A8] ∈ " where ;8 and A8 demar-
cates the left and right boundary (both inclusive),
and a event trigger span C = 3 [;C : AC ], an argument
linking model predicts the role (or absence) of each
mention with respect to the event.

An event ontology can be formulated as a set of
event types T , where each type 4 ∈ T is associated
with a set of roles '(4),4 while other roles are non-
permissible. We denote the union of all roles for
all event types, plus an empty Y role (a dummy
role denoting an argument is not part of the event
structure) as R =

⋃
4∈T '(4) ∪ {Y}.

4 Approach

Argument and trigger representation We com-
pute a fixed-length vector with dimension 3 for
each argument and trigger span as their representa-
tions. To compute this, we first pass the document
through a pre-trained contextualizing model (BERT
(Devlin et al., 2019) here).5 We split documents
into sentences and feed each sentence to BERT for
encoding. Each token F8 might be split into more
than 1 subword units—in this case we take the av-
erage of these subword representations so that each
token F8 has 1 vector representation w8 ∈ R3tok ,
following Zhang et al. (2019).

For an argument span < = (F;, · · · , FA ), we
follow Lee et al. (2017) to generate a span em-
bedding.6 The span embedding m for mention
span < comprises of three parts, the representa-
tion of its left boundary, its right boundary, and a
learned pooling over the tokens in the span. This
learned pooling utilized a global attention query
vector q ∈ R3tok , and computes the weighted sum
of all tokens with respect to the attention scores
derived from q:

08 =
exp qTw8∑A

9=;
exp qTw 9

; c =
A∑
8=;

08 · w8 , (1)

4 For example, in the ACE 2005 dataset, '(ATTACK) =
{ATTACKER, TARGET, INSTRUMENT, TIME, PLACE}.

5 Documents are chuncked into max-length 512 segments
while respecting sentence boundaries, and each is fed to BERT
respectively.

6 The width embeddings in Lee et al. (2017) are not used.
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It showed footage of ambulances arriving at the Kilis State hospital 
and medical personnel unloading children on stretchers and a girl 
wrapped in a blanket , as well as a handful of adults.

" They hit the school , they hit the school , " wailed a Syrian woman 
who was unloaded from an ambulance onto a wheelchair .

The Observatory and al - Halaby also reported an air raid on the 
village of Kaljibrin near Azaz .
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Figure 1: An example of our model running over a paragraph. Trigger and argument span representations are
computed from BERT, then later fed to a Transformer for jointly modeling the spans to predict their roles.

and pass that through a 2-layer feed-forward neural
network to yield a fixed-length vector m8 ∈ R3span

for each argument span <8:

m = FFNNarg ( [w; ; wA ; c]) . (2)

Similarly, for any trigger span C = [; : A], we
employ a different set of parameters:

t = FFNNtrig ( [w; ; wA ; c]) . (3)

Joint modeling of arguments We propose a
joint model for all the arguments with respect to the
given event trigger with event type 4 (see Figure 1).
We form a sequence (t,m1,m2, · · · ,m=) with the
trigger span encoding as the prefix, then followed
by the representations of all the candidate mentions,
then fed to a Transformer encoder (Vaswani et al.,
2017). A Transformer, by its self-attention mech-
anism, naturally models the relation between ev-
ery trigger-argument and argument-argument pair.
Note two major differences as compared to a Trans-
former that runs on tokens: (1) each input to the
Transformer represents a span instead of a token,
following Chen et al. (2019); (2) since the argu-
ments do not take an explicit sequential order, we
forgo the positional embeddings in Transformers,
effectively modeling the input as a set of spans
instead of a sequence (self-attention exhibits the
property of permutation invariance without posi-
tional embeddings (Lee et al., 2019)).

For each argument span input m8, we pass the
output from the Transformer encoder m̂8 to linear
layer with the output size being the size of the role
set R. Softmax is applied to the output of size |R|,
with the non-permissible roles masked out, yielding
a distribution over the set of roles designated by
the given event type, plus the non-argument Y role:

%(A |C, <) = exp wT
A m̂∑

A ′∈' (4)∪{Y } exp wT
A ′m̂

(4)

The model could hence be trained using a cross-
entropy loss function to maximize such likelihood.

5 Experiments

As we draw the connections between SLU in di-
alogue systems and argument linking in informa-
tion extraction, we focus primarily on evaluating
the model a discourse-level dataset, RAMS (Ebner
et al., 2020). First however we look at a more es-
tablished dataset, ACE 2005 (Walker et al., 2006)7,
to verify if our model can reasonable performance
compared to prior work in event understanding.
While ACE 2005 is annotated only at the sentence-
level, our model may still be applied in this setting.
For detailed experimental setup, see Appendix A.

Baseline Aside from joint modeling of argu-
ments, we also include an independent model as a
case in ablation studies (while our proposed method
labeled as joint). The independent model removes
the Transformer encoder (cf. Equation 4), but di-
rectly applies a feed-forward neural network atop
of the trigger representation and each argument rep-
resentation to classify the role (or absence) of the
argument with respect to the event trigger. 8

%(A |C, <) = exp wT
A �ind( [t; m])∑

A ′∈' (4)∪{Y } exp wT
A ′�ind( [t; m])

The result from model would show the difference
between the proposed joint argument modeling ap-
proach v.s. a simpler, independent model.

7https://catalog.ldc.upenn.edu/
LDC2006T06.

8 This scoring function for triples (A, C, <) is similar to
Ebner et al. (2020)’s model. However, their model is trained
to maximize the posterior probability of the correct argument
given a trigger and a role, whereas in our independent baseline
here the probability of the correct role given a trigger and an
argument candidate is maximized.

https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
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Split ACE 2005 RAMS

#Event types 33 139
#Role types 22 65

#Events/#Args
train 4202/4859 7329/17026
dev 450/605 924/2188
test 403/576 871/2023

Table 2: Dataset statistics.

Model P R F1

Lin et al. (2020) 48.8 53.9 56.8*
Lin et al. (2020) PoE - - 58.6*

Independent 48.0 76.7 59.0
Joint 56.0 79.2 65.6

Table 3: We verify our model achieves similar per-
formance to recent work on ACE 2005. PoE denotes
“product of experts”, an ensemble model in Lin et al.
(2020). * Results not directly comparable as we are
exploring argument linking only.

Metrics We use precision, recall, and F1-score
as metrics. A link between the trigger and an ar-
gument is considered correct, if and only if the
predicted argument span offsets and role matches
the gold reference. We report using micro-average
among F1-scores across different roles.

5.1 ACE 2005

We use ACE 2005 as a sanity check for our
discourse-context model to verify its ability to per-
form sentence-context extraction. We follow Lin
et al. (2020)’s pre-processing and dataset splits
for event extraction task (statistics see Table 2).
Table 3 reports the experimental results on ACE
2005. Although the results are not directly com-
parable since our model has access to gold trig-
ger/argument spans (Lin et al. (2020) does not), we
can observe similar levels of performance, suggest-
ing our method may be competitive when applied to
event understanding beyond sentence boundaries.

5.2 RAMS

Roles Across Multiple Sentences (RAMS; Ebner
et al., 2020) is an event extraction dataset that
considers discourse-level, non-local arguments
in document-level context. We follow the
train/dev/test split provided in the dataset, with
statistics shown in Table 2. Experiments setup fol-
low the configuration employed for ACE 2005.

Table 4 shows the performance of our models on

Model P R F1

Ebner et al. (2020) 62.8 74.9 68.3
Ebner et al. (2020) TCD 78.1 69.2 73.3

Independent 73.5 73.0 73.3
Joint 79.6 80.2 79.9

Table 4: Experimental results on RAMS. TCD desig-
nates the use of ontology-aware type-constrained de-
coding, which is similar to our independent model.

Dist. # Gold args. RAMS-TCD Ours

−2 79 75.7 77.2
−1 164 73.7 74.4

0 1,811 75.0 79.6
+1 87 76.5 77.0
+2 47 79.1 78.7

Table 5: Breakdown of the models’ performance across
sentence distances on the RAMS dev set. RAMS-TCD
refers to Ebner et al. (2020)’s type-constrained decod-
ing approach (see Table 4).

RAMS. Following the same conditions as Ebner
et al. (2020), our joint model outperforms that work,
and our independent baseline, by a substantial mar-
gin of 6.6%, illustrating the benefit of modeling
potential arguments jointly.

We analyze the performance of our model on
non-local arguments, i.e., arguments that are not
in the same sentence as the event trigger (Table 5).
Our model’s performance on non-local arguments
is on par with local arguments, demonstrating the
ability to handle non-local argument linking.

Case study We here show one example where
the joint model performs better than the indepen-
dent model. The joint model correctly labeled all
the roles, while the independent model failed on
two. We hypothesize that joint modeling of the
arguments will avoid these cases where multiple
spans are labeled with the same role.

... Stratfor analyst Sim Tack:“ This was indeed an Is-
lamic State attack, rather than an accidental explosion.”
New satellite imagery appears to reveal extensive dam-
age to a strategically significant airbase in central Syria
used by Russian forces ...

Argument Independent Joint Gold

Islamic State Attacker Attacker Attacker
explosion Attacker Instrument Instrument
airbase Attacker Victim Victim
central Syria Place Place Place
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6 Conclusion

We proposed a joint modeling approach for argu-
ment linking that considers the interdependent rela-
tionships among argument mentions conditioning
on a specific event. Our approach extends from re-
cent work in dialogue systems, viewing a document
as essentially a single-side discourse, and where
event arguments are recognized as similar to slots
that potentially carryover across utterances. Experi-
mental results show our approach achieves superior
performance on a recently introduced dataset for
modeling discourse-level contexts.
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A Appendix

Experimental Details We use BERT (BERT-
BASE-CASED here) as the encoder for text embed-
ding. The models are setup with 3tok = 3span =

768, and are trained using AdamW optimizer
(Loshchilov and Hutter, 2019) with learning rate
of 3 × 10−5 for 200 epochs, and the tolerance
n = 1×10−8. We employ gradient clipping to avoid
exploding gradients with maximum gradient norm
5.0. We also use a linear learning rate scheduler to
warmup models for the first 200 iterations.

The Transformer encoder has 3 layers with 64
attention heads9, and its feed-forward neural net-
works (FFNNs) for computing the argument / trig-
ger representations are set to have the dim of 2,048.
For mention representations, we use two-layer
FFNNs with hidden size of 768. Note there are
two different sets of parameters for constructing
trigger representations and argument representa-
tions. All non-linearities used in the paper are
GELU (Hendrycks and Gimpel, 2016). Dropout
with rate 0.2 is applied in each levels in the feed-
forward neural network for argument / trigger rep-
resentation computation, and also in each layer in
the Transformer encoder.

For model selection, we pick the best performing
model on the dev set and then run it on the test set.
Early stopping is used with patience ? = 10, i.e.,
if the performance on the dev set did not increase
after ? epochs, stop training.

In terms of hyperparameter sweep, we perform
grid search over a combination of hyperparameters
shown in Table 6, and choose the set performed
best on the dev set.

Our models are trained on one Nvidia GTX 1080
Ti GPU. For the joint model, the training time
is around 30 mins/epoch, and it takes 70 epochs
(around 20 hours) to converge on average. For the
independent model, it takes 15mins/epoch and con-
verges in 5 epochs (around 50 mins) on average.

Hyperparameter Range

# Encoder layers {1, 2, 3, 4, 5, 6}
# Attention heads {12, 64, 128}

Learning rate {1 × 10−5, 3 × 10−5, 5 × 10−5}
Warmup steps {0, 100, 200, · · · , 500, 1000}

Table 6: Ranges for hyperparameter sweeps.

9 According to Chen et al. (2019), increasing the number of
attention heads substantially improves the model performance,
so we prefer more attention heads over more encoder layers.
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