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Abstract

We introduce a framework in which
production-rule based computational cog-
nitive modeling and Reinforcement Learning
can systematically interact and inform each
other. We focus on linguistic applications
because the sophisticated rule-based cog-
nitive models needed to capture linguistic
behavioral data promise to provide a stringent
test suite for RL algorithms, connecting RL
algorithms to both accuracy and reaction-
time experimental data. Thus, we open a
path towards assembling an experimentally
rigorous and cognitively realistic benchmark
for RL algorithms. We extend our previous
work on lexical decision tasks and tabular RL
algorithms (Brasoveanu and Dotlačil, 2020b)
with a discussion of neural-network based
approaches, and a discussion of how parsing
can be formalized as an RL problem.

1 Reinforcement Learning and
Production-based Cognitive Models

We introduce a framework in which we can start ex-
ploring how Reinforcement Learning (RL; Sutton
and Barto 2018) algorithms scale up against human
cognitive performance, as captured by complex,
production-based cognitive models. Our ultimate
goal is to focus on sophisticated cognitive models
of linguistic skills, e.g., the parsers in Lewis and
Vasishth (2005); Hale (2011); Engelmann (2016),
because cognitive models that use theoretically-
grounded linguistic representations and processes
call for richly structured representations and com-
plex rule systems that pose significant challenges
for RL algorithms.

These cognitive models, which capture human-
participant accuracy and latency data obtained
from forced-choice and reaction-time experiments,
can provide exacting, experimentally established
benchmarks for the performance of artificial RL

agents. These benchmarks will enable us to see
if and when different RL algorithms fail, and how
exactly they fail. In this paper, we report a small
pilot study that exemplifies three modes of fail-
ure. Neural-network based function-approximation
approaches sometimes (i) fail to learn even fairly
simple rule systems in a stable manner. Even when
they seem to learn, (ii) they fail by learning a lot
of noise (incorrect rules), particularly in more com-
plex tasks. Tabular approaches fare better, but (iii)
learn complex tasks much more slowly, and still
learn a lot of noise in more complex tasks, albeit
less so than neural-network approaches.

Bridging the RL–cognitive modeling divide also
promises to shed new light on the issue of cognitive
model learnability. The learnability problem for
production-rule based models can be divided into
two parts: (i) rule acquisition – forming complex
rules out of simpler ones, and (ii) rule ordering –
deciding which rule to fire when. We focus here
on the easier problem of rule ordering, and show
how, on one hand, linguistic cognitive models pro-
vide a benchmark for RL algorithms and, on the
other hand, RL provides a framework to systemati-
cally investigate cognitive model learnability in a
formally and computationally explicit way.

We investigate the issue of rule-ordering learning
using the Adaptive Control of Thought-Rational
(ACT-R) cognitive architecture (see Anderson and
Lebiere 1998; Anderson 2007). The advantage of
using ACT-R is that this cognitive architecture and
RL have very close, albeit largely unexplored, con-
nections (Fu and Anderson 2006, Sutton and Barto
2018, Ch. 14). ACT-R tries to address the rule ac-
quisition and ordering problems, but its proposed
solutions – production compilation and rule-utility
estimation, respectively – have not been systemati-
cally applied to complex models for linguistic skills
(apart from Taatgen and Anderson 2002, which in-
vestigates the role of production compilation in
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morphology acquisition).
After a brief overview of ACT-R and the descrip-

tion of a linguistic task for which rule-ordering
learning will be studied (Section 2), we show how
the linguistic task can be analyzed as an RL prob-
lem (Section 3), and discuss the results of our ex-
periments with tabular and neural-network based
Q-learning algorithms (Section 4). We then briefly
discuss how parsing can be formalized as an RL
problem (Section 5), and conclude with a summary
and some directions for future work (Section 6).

2 Learning Goal-conditioned Rules in
Lexical Decision: A Simple Test Case

There are two types of memory in ACT-R. On
one hand, we have declarative memory (‘knowing
that’), which encodes our knowledge of facts. Facts
are represented as chunks / attribute-value matrices,
e.g., the lexical chunk for the word elephant:

(1) ISA: word
FORM: elephant
MEANING: JelephantK
CATEGORY: noun
NUMBER: sg

On the other hand, we have procedural memory
(‘knowing how’), which consists of the set of pro-
ductions that fire in series to generate cognitive
behavior / processes. These productions have the
form of rewrite rules in formal grammars (e.g.,
context free / phrase structure grammars), but in
ACT-R, they are conditionalized cognitive actions:
the ACT-R mind fires a production, i.e., takes the
action encoded in it, if the current cognitive state
satisfies the preconditions of that production. Pro-
cedural memory and its production rules are the
focus of our investigation and RL experiments here.

An example production is provided in (2): if
the current cognitive state is such that the goal
buffer (which drives cognitive processes in ACT-
R) encodes a TASK of ‘retrieving’ the lexical entry
for the FORM ‘elephant,’ then (=⇒), we take the
action of placing a Retrieval (buffer) request to
search declarative memory for a word with the
FORM ‘elephant,’ and we consequently update the
TASK in the goal buffer to one of ‘retrieval done.’

(2) Goal> TASK: retrieving
FORM: elephant

=⇒

Goal> TASK: retrieval done

Retrieval> ISA: word
FORM: elephant

Implicit in this example production is that an ACT-
R mind is composed of modules, which include
declarative and procedural memory, but also visual
and motor modules etc. Modules are not directly
accessible: they can only be accessed through their
associated buffers, e.g., the retrieval buffer is associ-
ated with declarative memory. Buffers serve a dual
purpose: individually, they provide the input/output
interface to specific modules; as a whole, however,
buffers represent the current cognitive state of the
mind. Crucially, productions fire based on the cur-
rent cognitive state, i.e., they are conditioned on
the contents of various buffers.

The ACT-R architecture constrains cognitive be-
havior in various ways, two of which are that (i)
buffers can hold only one chunk, and (ii) only one
production can fire at any given time.

The framework and the range of issues that
emerge when we try to systematically bridge RL
and ACT-R are best showcased with a simple kind
of linguistic tasks: lexical decision (LD) tasks. We
briefly outline in Section 5 how to extend this ap-
proach to parsing models implemented in ACT-R.
In an LD task, human participants see a string of
letters on a screen. If the participants think the
string of letters is a word, they press one key (J in
our setup). If they think the string is not a word,
they press a different key (F in our setup). After
pressing the key, the next stimulus is presented. We
will investigate the extent to which two kinds of RL
agents can be used to learn goal-conditioned rules
in an ACT-R based cognitive model of LD tasks.

The main point of proposing and examining an
ACT-R model of LD tasks is to construct a simple
example of a production-rule based model that en-
ables us to study learnability issues associated with
RL algorithms. Our discussion recapitulates the
main results in Brasoveanu and Dotlačil (2020b),
and extends them with an initial foray into neural-
network based RL approaches. The LD model and
RL algorithms can be scaled up in future work to
more complex and cognitively realistic syntactic
and semantic parsing models, since LD is basically
a subcomponent of parsing.

The LD model provides the basic scaffolding
of production rules needed for LD tasks, which is
all that we need for our purposes: fleshing it out
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to capture major experimental results about LD,
or comparing it to previously proposed cognitive
models of LD is not our focus here.

We model three LD tasks of increasing length,
hence difficulty: (i) a 1-stimulus task consisting
only of the word elephant, (ii) a 2-stimuli task con-
sisting of the word elephant and a non-word, and
(iii) a 4-stimuli task consisting of the word elephant,
a non-word, the word dog, and another non-word.

The model components are split between declara-
tive memory, which stores the lexical knowledge of
an English speaker, and procedural memory, which
stores rules that enable the model to carry out the
LD task. LD tasks can be modeled in ACT-R with a
small number of rules (see Brasoveanu and Dotlačil
2019, 2020a). We will assume 4 rules, provided in
standard ACT-R format below. These rules were
originally hand-coded to fire serially by condition-
ing all the actions on specific goal states. The goal
conditions are stricken out, indicating that goal
states were not provided to the RL agents: the order
of the rules was not hand-coded for them. Instead,
we want the RL agents to learn the rule ordering.

Rule 1: Retrieving
goal> STATE: retrieving

visual> VALUE: =val
VALUE: ∼FINISHED

=⇒
goal> STATE: retrieval done

+retrieval> ISA: word
FORM: =val

Rule 2: Lexeme Retrieved
goal> STATE: retrieval done

retrieval> BUFFER: full
STATE: free

=⇒
goal> STATE: retrieving

+manual> CMD: press-key
KEY: J

Rule 3: No Lexeme Found
goal> STATE: retrieval done

retrieval> BUFFER: empty
STATE: error

=⇒
goal> STATE: retrieving

+manual> CMD: press-key
KEY: F

Rule 4: Finished
goal> STATE: retrieving

visual> VALUE: FINISHED
=⇒

goal> STATE: done

With fully specified, hand-coded rules, the LD
task unfolds as follows. Assume the initial goal
STATE of the ACT-R model is retrieving, and
the word elephant appears on the virtual screen
of the model, which is automatically stored in the
VALUE slot of the visual buffer. At this initial stage,
the preconditions of Rule 1 are satisfied, so the rule
fires. This starts an attempt to retrieve a word with
the form elephant from declarative memory, and
the goal STATE is updated to retrieval done.
When the word is successfully retrieved, Rule 2
fires and the J key is pressed. At that point:

i. in the 1-stimulus task, the text FINISHED is
displayed, then Rule 4 fires and ends the task;

ii. in the 2-stimuli task, the non-word is dis-
played, then Rule 1 fires again; the retrieval
attempt fails since we cannot retrieve a non-
word from declarative memory, so Rule 3 fires
and the F key is pressed; at that point, the text
FINISHED is displayed, then Rule 4 fires and
ends the task;

iii. in the 4-stimuli task, the first non-word is
displayed, Rule 1 fires again, then, just as
in the 2-stimuli task, Rule 3 fires and the F
key is pressed, after which the word dog is
displayed, Rule 1 fires for the third time fol-
lowed by Rule 2, which means that the J key is
pressed and the second non-word is displayed;
then, Rule 1 fires for the final time, followed
by Rule 3, which triggers an F-key press, af-
ter which the text FINISHED is displayed, so
Rule 4 fires and ends the task.

Thus, the rule sequences for the 3 LD tasks are
as shown in (3), assuming fully specified, hand-
coded rules. However, as we mentioned, we do not
hand-code the goal-state preconditions, indicated
by striking out the goal states in the 4 rules above.
We only specify the actions (and preconditions as-
sociated with buffers other than the goal buffer)
and let the RL agents, which can select any rule at
any given time, learn to carry out the LD tasks.

(3) 1-stim rules: [1 – 2] – 4
2-stim rules: [1 – 2] – [1 – 3] – 4
4-stim rules: [1 – 2] – [1 – 3] – [1 – 2] – [1 – 3] – 4

We see that proper rule ordering / sequencing
is crucial to successfully completing an LD task,
which is like searching for a path through a maze:
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(i) the position in the maze is the current cognitive
state of the ACT-R mind, (ii) the possible moves
(up, left etc.) are the production rules we can fire,
and (iii) a path through the maze is given by the
proper sequence of production rules we need to fire
to complete the LD task.

3 Rule Ordering as an RL Problem

Markov Decision Processes (MDPs) are the
stochastic models of sequential decision-making
that form the basis of RL approaches to learning.
In an MDP, an agent interacts with its environment
and needs to make decisions at discrete time steps
t = 1, 2, . . . , n. Defining what counts as the agent
and what counts as its environment is part of the
modeling process. At every step t, all the informa-
tion from the past relevant for the current action
selection is captured in the current state of the pro-
cess st. This is the Markov property: the future is
independent of the past given the current state.

Agent

state st, reward rt action at

Environment

Figure 1: Agent-environment interaction in an MDP

As Figure 1 shows, the environment passes to the
agent a state st and, at the same time, a reward sig-
nal rt. The agent observes the current state st and
reward rt and takes an action at, which is passed
from the agent to the environment. The cycle then
continues: at time step t+ 1, the environment re-
sponds to the agent’s action with a new state st+1

and a new reward signal rt+1. Based on these, the
agent selects a new action at+1 etc. The definitions
of ‘state’ and ‘action’ depend on the problem, and
are part of the modeling process, just like defining
what counts as the agent and its environment.

The agent’s policy is a complete specification
of what action to take at any time step. Given
the Markovian nature of the MPD, the policy π is
effectively a mapping from the state space S to the
action space A, π : S → A. A deterministic policy
is a mapping from any given state st to an action
at = π(st), while a stochastic policy is a mapping
from any given state st to a probability distribution
over actions at ∼ π(st).

The agent’s goal is to maximize some form of
cumulative reward over an episode, which is a com-

plete, usually multi-step interaction between the
agent and its environment. In our case, an episode
would be a full simulation of a 1/2/4-stim LD task.

The agent learns (solves/optimizes the MDP) by
updating its policy π to maximize the (per-episode)
cumulative reward. The standard cumulative re-
ward for an episodic task is the discounted returnG:
at time step t < n (n is the final step in the episode),
Gt = rt+1 + γrt+2 + γ2rt+3 + · · · + γn−t−1rn,
i.e., Gt is the sum of the current reward and the
discounted future rewards until the final step n of
the episode. Future rewards are discounted in finite
/ episodic tasks because the agent has a preference
for more immediate rewards. The present value of
future rewards is determined by the discount factor
γ (0 ≤ γ ≤ 1). We define the (state-)action value
function Qπ(s, a) to be the expected (discounted)
return when starting in state s, performing action a
and then following the policy π until the end of the
episode.

The agent selects actions with the goal of max-
imizing its expected discounted return. If we es-
timate the Q function for a given policy based on
the interactions between the agent and its environ-
ment, i.e., based on experience, we can improve
that policy by ‘greedification:’ given a state s, we
can always select the optimal action in s, i.e., the
action with the maximal expected return according
to our current Q estimate.
Q-learning algorithms, which are the focus of

our investigation here (given their widespread use),
come in various flavors. The simplest one is tabular
Q-learning (Watkins, 1989; Watkins and Dayan,
1992), which is fairly effective for our LD tasks.
We will also investigate approaches that approxi-
mate the Q-function with neural networks, specifi-
cally Deep Q-networks (DQN, Mnih and al 2015).

In tabularQ-learning, theQ function S×A→ R
is represented as a look-up table that stores the esti-
mated values of all possible state-action pairs. The
Q table is initialized to an arbitrary fixed value (0).
The agent then updates the Q table incrementally
at each time step t: the value of the pair (st, at),
where st is the state relative to which the agent took
action at, is updated based on the reward signal
rt+1 and the new state st+1 that the agent receives
back from the environment after taking action at.
Q-learning is a form of temporal difference (TD)

learning, as shown in (4). The Qnew value estimate
for the state-action pair (st, at) is based on theQold

value, updated by some proportion α (the learning
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rate; 0 < α ≤ 1) of the TD error.

(4) Qnew(st, at) ← Qold(st, at) + α ·

TD (temporal difference) error︷ ︸︸ ︷(
rt+1 + γ ·max

at+1

Qold(st+1, at+1)︸ ︷︷ ︸
next-state value estimate︸ ︷︷ ︸

TD target (updated value)

− Qold(st, at)

)

The TD error is the difference between the TD
target – which is an updated estimate of the value
of the (st, at) pair – and the Qold value estimate.
The TD target consists of (i) the reward rt+1 the
agent receives after action at, which is part of the
new data the agent gets back from the environment
after action at, plus (ii) the estimate of the value of
the next state st+1, where the next state st+1 is the
other part of the new data the agent gets back from
the environment after action at. The Q-learning
optimal estimate for the value of the next state
st+1 is discounted by γ, since this state is in the
future relative to the state-action pair (st, at) we’re
currently updating. This optimal estimate for st+1

is aggressively confident / optimistic (in contrast to
Expected Sarsa, for example; see van Seijen et al.
2009): the agent looks at all the possible actions
at+1 that can be taken in state st+1 and assumes
that the action at+1 with the highest Qold-value
provides an accurate estimate of the st+1 value.

For tabular Q-learning, the agent (in the RL
sense) is a Q-value table that assigns values to all
possible state-action pairs and that guides the rule
selection process at every cognitive step. The envi-
ronment is the cognitive state of the ACT-R model
/ mind, which could conceivably consist of (i) all
the modules (procedural memory, declarative mem-
ory and visual and motor modules) together with
(ii) their associated buffers (goal, retrieval, visual-
what, visual-where and the manual buffer). This,
however, would lead to a very large state space S,
which in turn would lead to a large Q-value table.
DQN and similar neural-network approaches can
help with the large state-space problem, but we will
nonetheless take a state s to consist just of: (i) the
goal buffer, (ii) the retrieval buffer, (iii) the value
in the visual-what buffer, if any, and finally, (iv)
the state of the manual buffer (busy or free). For
example, the state after the word elephant is re-
trieved from declarative memory is: goal: {STATE:
retrieval done}, retrieval: {FORM: elephant}, vi-
sual value: elephant, manual: free.

The action space consists of the 4 rules above,

namely retrieving, lexeme retrieved,
no lexeme found and finished, together
with a special action None that the agent selects
when it wants to not fire any rule because it prefers
to wait for a new cognitive state.

The reward structure is as follows: (i) the agent
receives a positive reward of 1 at the end of an
episode (when the LD task is completed), specifi-
cally, when the goal STATE is done; (ii) the agent
receives a negative reward of −0.15 for every rule
it selects, other than None; (iii) there is no penalty
for waiting and selecting no rule, i.e., for selecting
the special action None, which is optimal when
waiting for retrieval requests from declarative mem-
ory to complete, for example; (iv) finally, at every
step, the agent receives a negative reward equal to
the amount of time that has elapsed between the
immediately preceding step and the current step
(multiplied by −1 to make it negative).

This reward structure is designed to encourage
the agent to finish the task as soon as possible by
selecting the smallest number of rules. The neg-
ative temporal reward (iv) discourages the agent
from just repeatedly selecting an action, e.g., None.
This ends up timing out the LD task in a small
number of steps and fast-forwards the agent to the
maximum waiting time per stimulus the ACT-R
environment allows for, which we set to 2 seconds
per word for the LD task.

Thus, given a simple reward structure that incor-
porates fairly minimal cognitive assumptions, RL
enables us to induce proper rule sequences to com-
plete the LD tasks: RL enables us to leverage the
simple assumptions built into the reward structure
to solve the much harder rule-ordering problem by
direct experience / trial-and-error interaction with
the LD tasks.

4 Experiments and Results

We assume the usual ACT-R defaults, e.g., rule
firing time is set to 50 ms. The discount factor γ
is set to 0.95 and the learning rate α is set to 10−3.
We use an ε-greedy policy to balance exploration
and exploitation, with ε annealed from a maximum
of 1 to a minimum of 0.01.

We investigate two types of agents / algorithms:
(i) tabular Q-learning (the main results for tabular
agents are from Brasoveanu and Dotlačil 2020b),
and (ii) DQN. To a large extent, the agents learn
by trial and error to successfully carry out the LD
tasks: they learn how to properly order the rules
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Figure 2: Tabular Q: Steps per episode for the 1-stim (left), 2-stim (middle) and 4-stim (right) tasks

Figure 3: DQN: Steps per episode for 1-stim (left), 2-stim (middle) and 4-stim (right) tasks

and complete the LD tasks as efficiently as possible.
This is no small feat given that the actual number of
steps, i.e., decision points, when the agents needs
to select an action, is larger than the high-level
sequences of rule firings in (3) above. For example,
for a 1-stim task, there are actually 12 steps where
the agent needs to decide whether to wait or to fire
a specific rule (when the agent does not complete
the task perfectly, it might take much more than 12
steps). The 2-stim task requires 18 such steps (if
perfectly completed), and the 4-stim task requires
34 steps (again, if perfectly completed).

The reason for the higher number of steps com-
pared to the number of rules is that our LD simu-
lations involve the visual and motor modules (to
read strings of characters and to press keys) in addi-
tion to the declarative memory module. Visual and
motor actions, just as retrievals from declarative
memory, take time, and the agent needs to make
decisions while waiting for them to complete.

4.1 Tabular Q-learning in LD Tasks

The higher the number of steps, i.e., the higher
number of decision points for the tabular agent, the
harder the task is to learn for the tabular agents.
As the plots in Figure 2 show, repeated from
Brasoveanu and Dotlačil (2020b), learning is faster
and less noisy for shorter tasks (fewer stimuli), but
the tabular Q-learning agent manages to learn even

the most complex 4-stimuli task moderately well.
We simulate 15,000 episodes, i.e., 15,000 LD de-

cision tasks consisting of 1 stimulus only (the word
elephant), from which the tabular Q agent learns –
shown in the leftmost plot in Figure 2. After about
5,000 episodes, the task is completed in≈ 12 steps,
which is the length of the task when completed per-
fectly. For some episodes, the number of steps is
smaller than 12. In these cases, the agent times
out the task (e.g., by selecting the None action
several times) and receives steep negative temporal
rewards leading to low returns.

A close examination of the agent’s final Q-value
table, which stores the agent’s rule-firing prefer-
ences for any given state, indicates that the agent
has learned goal-conditioned rules perfectly. We
only look at states for which at least one action/rule
has a non-0 value (recall that all Q-values are ini-
tialized to 0). For each such state, we identify
the action/rule with the highest value. There are
8 states total with at least one non-0 value action,
and the maximum-value action for each of these
states makes complete sense. For example, None
is the maximum-value rule at the beginning of ev-
ery episode when the agent waits for some text to
be automatically detected and stored in the visual
buffer. Similarly, after a retrieval request is placed,
the agent waits for the process to complete.

As the middle plot in Figure 2 shows, we also
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simulate 15,000 2-stim episodes (LD tasks con-
sisting of the word elephant and the non-word
not a word). After about 9,000 episodes, the task
is completed in ≈ 18 steps, which is the length
of this task when the agent completes it perfectly.
A close examination of the agent’s final Q-value
table indicates that the agent has learned goal-
conditioned rules almost perfectly. Once again, we
only look at states for which at least one action has
a non-0 value – a total of 13 states. For each state,
we identify the maximum-value action, and for 12
states, this action makes complete sense. However,
unlike in the 1-stim task, there is one state-action
pair that encodes a questionable rule. We see here
how, for more complex tasks, the tabular RL agents
learn spurious rules, which are a by-product of the
noisy trial-and-error learning process.

This lack of robust learning, which can be charac-
terized as overgeneralization, or as vulnerability to
‘adversarial’ inputs, becomes even more prominent
in the 4-stim task, where the tabular Q-learning
agent learns even more spurious rules. As the right-
most plot in Figure 2 shows, we simulate 25,000
4-stim episodes (LD tasks consisting of the word
elephant, a non-word, the word dog and another
non-word). We need more episodes for this task
because it is longer, hence more complex, than the
1/2-stim tasks. It takes about 22,000 episodes for
the task to be reliably completed in less than 40
steps. The task takes 34 steps when the agent com-
pletes it perfectly, but even after 25,000 episodes,
the agent takes more steps than that because it tries
incorrect rules or waits for no reason. An exami-
nation of the final Q-value table indicates that the
agent has learned goal-conditioned rules fairly well,
but there is also a good amount of spurious rules.
There are 24 states total with at least one action
with a non-0 value. Out of these, 6 states have ques-
tionable / nonsensical maximum-value actions.

4.2 DQN in LD Tasks

The DQN agents use an artificial neural network
(ANN) to approximate the Q-function. We use a
simple multilayer perceptron with a hidden layer of
size 64. A small hyperparameter search indicated
that a hidden size of 32 seems to be too small, while
128 or 256, for example, seems to be too large.

The ANNs are trained using 1-step semi-gradient
TD (a.k.a. semi-gradient TD(0); Sutton and Barto
2018, Chapters 9-11), with the Adam optimizer
(Kingma and Ba, 2015) and a mean squared TD

error loss function (see (4) above for the TD error).

As the leftmost plot in Figure 3 shows, the DQN
agent takes longer than the tabular agent to learn
the 1-stim task, but it completes it more or less per-
fectly after about 7,500 episodes. We inspect theQ-
function approximation encoded by the ANN at the
end of the simulation by identifying the maximum-
value rule for each of the 36 possible states. Un-
like tabular approaches, function-approximation
approaches aggressively generalize over states by
design, which is why they are appropriate for large
state (and action) spaces. The final Q-function ap-
proximation aggressively generalizes by taking the
finished rule to be the maximum value action
for 31 out of 36 states. This makes sense given that
the finished rule is immediately followed by
the final positive reward of 1.

The other rules are triggered largely only
when they are appropriate. For example, the
lexeme retrieved rule is triggered only in
one state – immediately after the word ‘elephant’
is successfully retrieved from declarative memory.
The None rule is only triggered in two states: when
the agent is waiting for the visual module to auto-
detect and encode the text on the virtual screen, and
when waiting for the retrieval request to declarative
memory to complete. But the DQN agent over-
generalizes the retrieving rule. It is appropri-
ately triggered after the text on the virtual screen is
stored in the visual buffer, i.e., when visual value
is the word ‘elephant,’ but it is also triggered in
one other state when the None rule is appropriate
because the agent is waiting for the visual module
to auto-detect the text on the virtual screen.

As the middle plot in Figure 3 shows, the DQN
agent fails to learn the 2-stim task in a stable man-
ner. We tried several different random seeds, and
the DQN agent exhibits unstable learning in most
of them, sometimes to an even larger extent than
depicted here. An examination of the final Q-
function approximation reveals that, once again,
the finished rule is the maximum value action
for the vast majority of states (37 out of 48). The
None rule is triggered only in 4 states. In two of
them, the agent is waiting for the visual module
to auto-detect the text on the virtual screen and
encode it in the visual buffer (whether the manual
buffer is free or busy). In another one, the agent is
waiting for the retrieval request associated with the
non-word to complete. However, the DQN agent
has not learned that None should also be triggered
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when waiting for the retrieval request associated
with ‘elephant,’ and it incorrectly triggers None in
a state where retrieving is more appropriate.

The lexeme retrieved rule is triggered in
3 states. One of them is the expected one: im-
mediately after the word ‘elephant’ is successfully
retrieved from declarative memory. Another one
is a reasonable overgeneralization to a state that
is exactly the same as the first one except that
the visual value is the non-word. In the third
state, however, the None rule is more appropri-
ate since the retrieval process for the word ‘ele-
phant’ is still in progress. The agent has clearly not
learned when to trigger the no lexeme found
rule, which is triggered in only one state for which
the retrieving rule is appropriate (since the
word ‘elephant’ has just been read off the virtual
screen). Finally, the retrieving rule is trig-
gered in 3 states, one of which is appropriate as
it immediately follows the point at which the non-
word has been read off the virtual screen. However,
the DQN agent also triggers this rule in two other
states, for which it does not make much sense.

As the rightmost plot in Figure 3 shows, the
DQN agent seems to performs much better than
the tabular Q agent on the 4-stim task, learning to
complete it efficiently after about 2,000 episodes.
But an examination of the final Q-function ap-
proximation reveals an unexpected result: the
retrieving rule is aggressively overgeneral-
ized to 82 states (out of 108). The finished rule
is the maximum value action for 9 states only, the
lexeme retrieved rule for 8 states, the None
rule for 7 states, and the no lexeme found
rule for 2 states.

The finished rule is mostly triggered in states
in which the visual value is FINISHED (5 out of 9
states), but it is also incorrectly triggered in states
in which the 4 stimuli are stored in the visual buffer.
It is not clear at all that the agent has learned this
rule. The lexeme retrieved rule exhibits a
similar profile. It is correctly triggered when the
retrieval process for the two words are completed
successfully, but there is a lot of noise also: 6 out of
8 states are not states in which this rule should be
clearly triggered, and in two of them, the retrieval
buffer is empty. Thus, it is far from clear that the
agent has learned the lexeme retrieved rule.

The None rule is appropriately triggered when
the agent is waiting for the visual module to auto-
detect text on the virtual screen, and when waiting

for retrieval requests to complete for the two words
‘elephant’ and ‘dog.’ However, the agent has not
learned to trigger this rule when waiting for re-
trieval requests associated with the two non-words.
In addition, this rule is overgeneralized to several
states where the retrieving rule is more appro-
priate. Finally, the DQN agent has clearly learned
the no lexeme found rule: it is triggered in
only two states, after failed retrieval requests asso-
ciated with the two non-words.

In conclusion, we see that the DQN agent fails
to learn the 2-stim task in a stable manner, learns
the 1-stim task more slowly than the tabular Q
agent, but exhibits an interesting behavior on the
4-stim task. This task seems to be learned very
quickly (compared to tabular Q), but there is a very
significant amount of noise in the final Q-function
approximation. It is therefore not clear that the
appropriate preconditions for most of the rules have
actually been learned.

5 Parsing as an RL Problem

In this section, we briefly discuss how parsing can
be formalized as an RL problem. Just as the LD
task, the parsing task can be implemented in ACT-
R (cf. Lewis and Vasishth 2005; Brasoveanu and
Dotlačil 2018, 2020a). The parser components are
split over various ACT-R modules and buffers: (i)
lexical knowledge is encoded in declarative mem-
ory, (ii) knowledge of grammar and parsing actions
are encoded in procedural memory, (iii) expecta-
tions about upcoming syntactic categories are en-
coded in the goal buffer, (iv) information about the
current partially-built syntactic parse is encoded in
the imaginal buffer (a secondary goal-like buffer),
and finally, (v) visual information from the envi-
ronment is transferred via the visual buffer.

We consider a simple example, which features
an eager left-corner parser (Resnik, 1992). Assume
we have a simple grammar with four phrase struc-
ture rules: (i) S → NP VP, (ii) NP → Det N, (iii)
VP → V, (iv) VP → V NP. Also, assume that
we are reading the sentence A boy sleeps word by
word. As shown in Figure 4, we start with the
empty visual buffer and our goal stack (the stack of
the expected syntactic categories) consists of just
S: our goal is to parse a sentence.

We then shift focus to the first word, the informa-
tion is transferred to the goal buffer, at which point
we retrieve its syntactic category Det(erminer)
from declarative memory. We can now take a series
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Figure 4: Partial trees built incrementally when reading the sentence A boy sleeps word by word

of cognitive steps – that is, we fire a series of pro-
ductions – that lead to a new state. The new goal
stack is N S: we now have the subgoal of finding
a N(oun) on the way to S. Also, we build a partial
syntactic structure of the form shown in the left-
most tree in Figure 4, and store it in the imaginal
buffer. The noun boy is then brought into focus, its
syntactic category N is retrieved, and we discharge
the N goal at the top of the goal stack. At this point,
we have the full corner of the rule S→ NP VP, so
we trigger it, which eagerly discharges the S goal
and replaces it with the goal of finding a VP (verb
phrase). At the same time, a richer partial tree,
shown in the middle of Figure 4, is stored in the
imaginal buffer. Finally, the verb sleeps is in focus,
its syntactic category V is retrieved from declara-
tive memory, and we trigger the rule VP→ V that
discharges the VP goal, resulting in an empty goal
stack and the rightmost tree structure in Figure 4.

We see that rule ordering plays two roles in pars-
ing. First, the parser has to correctly sequence
actions per word: it has to collect the visual in-
formation, move it to the goal buffer, recall lexical
information from the declarative memory, carry out
a parsing action and move its visual attention to
the following word. This sequencing of actions is
akin to the one explored in the LD task. In addi-
tion, the parser has to find the right path through
the sequence of parsing rules, e.g., it has to realize
that the Det element at the start of the sentence
should trigger the NP → Det N rule, followed by
discharging the N goal etc. Incorrect sequencing
would eventually lead to a dead end. For example,
had the parser triggered the VP→ V NP rule when
parsing sleeps, it would incorrectly end up with an
expectation for a non-existent direct object.

6 Summary and Future Work

We argued that sophisticated production-based cog-
nitive models used to capture human behavioral
data (particularly linguistic behavior) promise to
provide a stringent test suite for RL algorithms.
An immediate follow-up would be to explore how
RL algorithms perform on a variety of production-
based cognitive models, whether linguistic, e.g.,
syntactic or semantic parsing, or non-linguistic.
We have conducted pilot experiments with simple
parsing models and tasks, and they are much more
difficult than the LD tasks explored in this paper.

Another direction for future research is in-
vestigating other value-based tabular learning
algorithms (Sarsa, Expected Sarsa), as well
as extensively studying ANN-based function-
approximation approaches to reinforcement learn-
ing, both value and policy based.

Similarly, we might want to investigate curricu-
lum learning (see Elman 1993; Rusu and al 2016
among others) for increasingly complex tasks. A
DQN agent that has already learned the 1-stim task
might be able to learn the 2/4-stim tasks quickly
and well. Curriculum or transfer learning might
also enable agents to learn from much fewer inter-
actions, and/or from explicit instructions.
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