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Abstract

Eligibility criteria in the clinical trials spec-
ify the characteristics that a patient must or
must not possess in order to be treated ac-
cording to a standard clinical care guideline.
As the process of manual eligibility determi-
nation is time-consuming, automatic structur-
ing of the eligibility criteria into various se-
mantic categories or aspects is the need of the
hour. Existing methods use hand-crafted rules
and feature-based statistical machine learning
methods to dynamically induce semantic as-
pects. However, in order to deal with paucity
of aspect-annotated clinical trials data, we pro-
pose a novel weakly-supervised co-training
based method which can exploit a large pool
of unlabeled criteria sentences to augment the
limited supervised training data, and conse-
quently enhance the performance. Experi-
ments with 0.2M criteria sentences show that
the proposed approach outperforms the com-
petitive supervised baselines by 12% in terms
of micro-averaged F1 score for all the as-
pects. Probing deeper into analysis, we ob-
serve domain-specific information boosts up
the performance by a significant margin.

1 Introduction

Clinical trials (CTs) are research studies that are
aimed at evaluating a medical, surgical, or behav-
ioral intervention (Embi et al., 2008), (Shivade
et al., 2015). Through such trials, researchers aim
to find out whether a new treatment, like a new
drug or diet or medical device is more effective
than the existing treatments for a particular ailment.
From an organization’s perspective, a successful
completion of a trial depends on achieving a signif-
icant sample size of patients enrolled for the trial
within a limited time period.
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Total bilirubin less than or equal to 1.5 mg/dl,
except in patients with history of anaemia.
Have had their ileostomy or colostomy for at
least 3 months. Subjects must be between the
age of 18-65 yr old and must not intake alcohol.

Categories of Semantic Aspects are represented
using the colors: Health Status ; Lab Test ;
Demography ; Life Style ; Treatment Status

However, recruiting enough number of eligible pa-
tients to participate in a trial can be a bottleneck.
If suitable patients are not found then the trials
might get cancelled or delayed significantly. In
this case a patient queries the sites like clinical-
trial.gov to retrieve suitable trials. Due to the com-
plexity of the task which involves repeated reading
of the patient’s Electronic Health Record (EHR)
and the trial criteria for multiple trials, this is not
only a labor-intensive and time-consuming task but
also prone to human errors. In addition to this,
the eligibility criteria often uses complex language
structures and medical jargons mentioned in either
semi-structured or unstructured way.

Previous works (Koopman and Zuccon, 2016)
have formulated the problem of retrieving relevant
document collection based on patient query. How-
ever, we demonstrate an approach in which the
primary eligibility aspects are identified initially
for further screening of the patients in terms of in-
clusion or exclusion strategy, which is the first step
towards matching patients with the relevant trials.

In this paper, we propose an effective method
which automatically identifies and segregates the
clinical trial eligibility criteria into five semantic
aspects. Also, the criteria texts speak volume about
multiple aspects of the patients that includes de-
mographic information, health status, treatment
history, laboratory test reports and life-style. How-
ever, there has been a dearth of annotated crite-
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ria. Since, prior methods on neural clinical entity
recognition models rely on the presence of a large
annotated corpora and due to the high cost asso-
ciated with manual tagging of semantic aspects
and limited availability of labeled datasets (Na-
jafabadi et al., 2015), it is difficult to train a deep
neural network effectively for such a task. We at-
tempt to combat this difficulty by proposing a novel
semi-supervised method based on deep co-training
(Blum and Mitchell, 1998) which can harness a
large pool of unlabeled clinical trial criteria that
are more economical to collect. To the best of our
knowledge, we are the first to introduce such a
co-training-based method and demonstrate its ef-
fectiveness in aspect categorization of clinical trials
in comparison to stand-alone sequence-labelling in
isolation. The end-product of our experiments is a
clinical trial-register that contain details of the dif-
ferent aspects across conditions and interventions.

2 Problem Formulation

Given an eligibility criteria sentence in the form
of a word sequence x = (x1 ...., xn) , where n is
the maximum length of the sequence, the task is
to predict an output sequence y = (y1 , ...., yn) in
which each yi is encoded using standard sequence
labeling encoding scheme. Each yi might take one
of the following aspects :

1. Health Status (Health): describes the
present medical condition like pregnancy sta-
tus, disease affected, etc.

2. Treatment (Trt): contains information about
the intervention, surgery or therapy related
information of the patients.

3. Lab-Test (Lab): It deals with the lab-tests or
experimental results.

4. Demography(Demo): This class primarily
deals with the age, gender related to the pa-
tients undergoing clinical trials.

5. Life-Style(Life): This class primarily deals
with the information of the patients regarding
their daily habits like diet, exercise etc

6. Other: It contains none of the above classes.

Figure 1 illustrates the overview of semantic aspect
extraction.

Figure 1: Working Pipeline of Semantic Aspect Extrac-
tion from Eligibility Criteria using Co-Training.

Health Trt Lab Life Demo
TS 345 323 456 280 600

ASL 8 6 9 8 5

Table 1: Statistics of the Manually annotated Dataset.
Here, TS indicates the total Number of Sequences for
each of the different aspects and ASL indicates Aver-
age length of each Sequence. Life indicates Life-Style
aspect, Trt indicates Treatment aspect, Lab indicated
Lab-Test Results and Demo indicates demography as-
pect.

3 Data Annotation

To induce semantic categorization of aspects in the
eligibility criteria, we generate a small pool of an-
notated data by manually examining some of the
most frequently used n-gram patterns such as his-
tory of, upper limit of normal, treated by, Allergy
to as specified in (Luo et al., 2011) in the initial
phase. During pre-processing, we filter out the
most frequently occurring n-grams (n=2, n=3, n=4,
n=5) present in the criteria of the patients. Sec-
ondly, the criteria sentences are also tagged with
CliNER Tagger (Boag et al., 2015) for extracting
out the diseases and drugs. Further details of data
are provided in the supplementary material 1. After
these two steps, finally, the false positives are being
removed during manual supervision by four inde-
pendent domain-expert annotators. These include
annotations for each of the different categories.
The mean Cohen’s Kappa (McHugh, 2012) was
0.82, which indicate good inter-annotator agree-

1https://github.com/Ishani-Mondal/Clinical-Trials-
Aspect-Extraction
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Algorithm 1 Aspect Extraction using Co-Training
Algorithm
Input U : Large amount of unlabelled criteria sentences, τ :
Co-Training threshold, V1 , V2: Two views of labelled Aspect
Annotated Criteria Sentences
Output Model Parameters : θBiLSTM−CRF, θBiGRU−CRF

T1,T2 ← V1, V2

Initialize the model parameters θBiLSTM−CRF, θBiGRU−CRF
randomly.
while (stopping criteria is not met) do

C1 ← Train BiLSTM-CRF on T1 (minimize the Aspect
Loss)

C2 ← Train BiGRU-CRF on T2 (minimize the Aspect
Loss)

for i=1 to |U| do
if C1.score(Ui) ≥ τ then

T2 ← T2 ∪ Ui , U = U Ui
end if
if C2.score(Ui) ≥ τ then

T1 ← T1 ∪ Ui , U = U Ui
end if

end for
end while

ment. 1500 clinical trial documents from Clinical-
Trials.gov2 are annotated with an average of 16
sentences per document. The manually labelled
dataset statistics with the class distributions are
specified in the Table 1. While manually inspect-
ing the co-occurence statistics of different aspects
in the same criteria sentence of the manually anno-
tated dataset, we observe that around 30% of the
eligibility criteria contains more than one aspect,
with 65% containing health, life-style, demogra-
phy aspects, while the remaining 35% contains
demography and treatment. For facilitating fur-
ther research, we will also provide some sample
examples of the annotated corpus.

4 Methodology

In this work, we experiment with two different
methods of aspect extraction. One of the follow-
ing being the traditional supervised setup of using
BiLSTM-CRF/Bi-GRU CRF with input represen-
tation optimized using categorical cross-entropy
loss (Zhang and Sabuncu, 2018). The second one
being the Co-Training (Blum and Mitchell, 1998)
method to extract the semantic aspects which has
been outlined in Algorithm 1. The later method
uses two conditionally independent feature views
of the same dataset illustrated below:

1. Domain-independent: The contextual pre-
trained language models such as, BERT (De-

2https://clinicaltrials.gov/

vlin et al., 2019) (E1) (or word2vec (Mikolov
et al., 2013) trained on GoogleNews Corpus
3 (E2)) embeddings followed by a BiLSTM-
CRF (C1) (Huang et al., 2015) feature extrac-
tor.

2. Domain-dependent: Bio-BERT embeddings
(Lee et al., 2020) (E3) (or word2vec trained
on PubMed 4) (E4) followed by BiGRU-CRF
(C2) (Lerner et al., 2020) feature extractor.

At each step of co-training, the classifiers C1 and
C2 are trained on respective views of training sets
V1 and V2, thereby minimizing the loss function.
Each instance from the unlabeled samples (U) is
scored using a scoring function computed as fol-
lows. First, the current classifier is used to decode
the output label distribution for each word in the
unlabeled instances. For each word in the output,
we choose the output label which has the maximum
probability. We compute the score for the sample as
the multiplication of the probabilities of each label
type for all labeled words in sequence normalized
by the total number of words in the sentence. If this
confidence score of the sample is greater than some
pre-defined threshold τ , the sample has been added
to the training set of the other classifier along with
its output labels as generated by the classifier. This
is the process of generation of weak labels for each
sequence. Due to interchange of training data, both
classifiers can learn from mistakes of each other
and work in synergy.

5 Experimental Details

We implement the model using Pytorch 0.3.0. The
two classifiers considered for co-training are C1

: Bi-LSTM-CRF and C2 : Bi-GRU-CRF. For
both supervised and co-training methods, the train-
ing data is divided according to 70-30% train-
validation split. The two different views of co-
training setup are explained as follows:

Hyper-parameters for two independent views:
We run two experiments based on co-training,
one using contextual embeddings (C-CTr) and
the other using context-independent embeddings
(NC-CTr). The hyper-parameter settings for the
two views as required by the co-training method
are as follows:

3https://github.com/mmihaltz/word2vec-GoogleNews-
vectors

4http://bio.nlplab.org/
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View 1: For the first view (V1), we use Bi-LSTM-
CRF (Huang et al., 2015) with domain-independent
word embeddings. We experiment with both
a) (NC-CTr) Word2vec embeddings trained on
GoogleNews Corpus with dimension 300 b)
(C-CTr) pre-trained bert-base (12 layers, 12
attention heads, and 110 million parameters).

View 2: For the second view (V2), we use Bi-GRU
classifier with domain-dependent word embed-
dings. We experiment with both a) (NC-CTr)
Word2vec embeddings trained on PubMed Corpus
with dimension 200 b) (C-CTr) contextualized
pre-trained Bio-BERT embeddings.

For both the classifiers, the hidden unit dimensions
are set to 300. During training, we use Adam
(Kingma and Ba, 2015) optimizer with a learning
rate of 0.001 and a batch size of 64. For co-training,
τ has been set to 0.5, epoch size to 200, with early-
stopping employed based on the performance of
validation set. All the results are reported based on
the best hyper-parameter settings after an exhaus-
tive grid search over parameter space.

Methods Health Trt Lab Demo Life
F1 F1 F1 F1 F1

Baseline-1 0.78 0.73 0.72 0.70 0.80
Baseline-1(1) 0.73 0.64 0.68 0.65 0.76
Baseline-1(2) 0.75 0.60 0.68 0.61 0.73

Baseline-2 0.73 0.43 0.66 - -

Table 2: Macro-F1 score for all the aspects using prior
methods with some additional features

Methods Health Trt Lab Demo Life
F1 F1 F1 F1 F1

C1+E1 0.72 0.70 0.65 0.80 0.70
C1+E2 0.68 0.61 0.62 0.75 0.67
C2+E3 0.73 0.70 0.66 0.81 0.72
C2+E4 0.70 0.64 0.63 0.77 0.67

Table 3: Feature ablations on our supervised setup on
the train-validation split of our dataset.

6 Results and Analysis

In this section, we have provided a detailed
analysis of the various results and findings that we
have observed during experimentation. There are
various criteria on which we have tried to evaluate
our semi-supervised approach.

Methods Health Trt Lab Demo Life
F1 F1 F1 F1 F1

w/o CTrain 0.73 0.70 0.66 0.81 0.72
C-CTr(8K) 0.85 0.80 0.83 0.90 0.80

C-CTr(10K) 0.83 0.84 0.82 0.90 0.85
C-CTr(15K) 0.77 0.82 0.75 0.92 0.88
C-CTr (20K) 0.85 0.86 0.79 0.90 0.83
NC-CTr (8K) 0.76 0.77 0.74 0.74 0.75

NC-CTr (10K) 0.78 0.81 0.75 0.78 0.80
NC-CTr (15K) 0.77 0.76 0.77 0.81 0.77
NC-CTr (20K) 0.78 0.77 0.77 0.82 0.79

Table 4: Results showing various co-training method-
ology with different size of unlabelled instances.
Trt=Treatment aspect. The scores are reported in the
table based on exact match F1-score for all aspects.

Comparison with the baselines:
The results of the baseline methods are enumerated
in Table 2. We report the results based on exact
match of each type of the aspects using F1-score.
Following (Luo et al., 2011), we implement the
same (Baseline-2) on our dataset with UMLS
(Bodenreider, 2004) feature representation and
“bag-of-words” (BoW) features, and report results
for various aspects. Although (Luo et al., 2011)
assumes each criteria sentence essentially belongs
to a single aspect, we have done an ablation of
Baseline-2 without UMLS features (Baseline-1(1))
and without BoW (Baseline-1(2)). We observe
that UMLS feature representation boosts up the
performance due to inclusion of domain-specific
information. We observed that this work finds
resonance with (Chalapathy et al., 2016) in which
the corpus uses multiple annotations. Due to
availability of their working code, we have exper-
imented with their stand-alone Bi-LSTM-CRF
approach, used them as Baseline-2 and report
results for each of the first three annotated aspects.

Feature ablation on model architecture:
For the purpose of fair comparison, we experiment
with different ablations of feature extractor and
types of input representation (in the supervised
setup) and present the results of Macro-averaged
F1-score in Table 3. It has been observed that
Bi-LSTM CRF with domain-specific input
representation as Bio-BERT outperforms other
ablations.

Impact of using co-training:
It is also evident from table 4, when the two
independent views consist of contextualized
embeddings (C-CTr), the model outperforms the
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Figure 2: Testing the optimum Co-Training Threshold

non-contextualized features (NC-CTr) by an aver-
age margin of 6% F1-Scores. Also, we compare
our best architecture for supervised setup with
co-training approach. Given that the co-training
model trains each classifier separately on different
subsets of the training set, it can be sensitive to the
choice of V1 and V2. In order to address this issue,
we experiment with repeating the same experimnts
with various random sampling of the two training
subsets. We observe an average F1-score standard
deviation (across multiple sampling) of 0.064 for
Health class, 0.091 for Treatment class, 0.116 for
Lab-Test Results class, 0.055 for Demography
class and 0.008 for Life-style class.

Sensitivity of co-training parameters:
In figure 1, Macro-F1 score (across all aspects)
of the co-trained model has been evaluated based
on the values of co-training threshold. The values
have been chosen from 0 to 1 at an interval of 0.1,
in which the optimum value has been observed as
0.5. The sensitivity of co-training parameters has
been shown in figure 2.

Effect of unlabelled data size:
Moreover, the results are fairly constant even when
the unlabeled data size varies (enumerated in Table
4) which demonstrates the robustness of our ap-
proach. The contextualized representations when
augmented with fair amount of semi-automatically
annotated samples outperforms the supervised base-
line setup.

7 Conclusion

In this paper, we have proposed a semi-supervised
co-training method to tackle the scarcity of anno-
tated data for the semantic clinical aspect extrac-
tion. This method augments a limited pool of anno-
tated data with a large number of unlabeled clinical
eligibility criteria outperforming pure supervised

approaches. To the best of our knowledge, we are
the first to provide an effective semi-supervised ap-
proach to detect the semantic aspects from clinical
eligibility criteria which is a promising direction
for further research on automatic linking of the pa-
tient Electronic Health Records (EHR) to clinical
eligibility criteria with promising performance. As
a future work, we aim to propose an end-to-end au-
tomatic matching system for patient-based clinical
trial eligibility with low-cost data annotation.
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