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Abstract
One of the biggest challenges that prohibit
the use of many current NLP methods in
clinical settings is the availability of public
datasets. In this work, we present MeDAL,
a large medical text dataset curated for ab-
breviation disambiguation, designed for natu-
ral language understanding pre-training in the
medical domain. We pre-trained several mod-
els of common architectures on this dataset
and empirically showed that such pre-training
leads to improved performance and conver-
gence speed when fine-tuning on downstream
medical tasks.

1 Introduction

Recent work in mining medical texts focus on
building deep learning models for different medical
tasks, such as mortality prediction (Grnarova et al.,
2016) and diagnosis prediction (Li et al., 2020).
However, because of the private nature of medical
records, there are few large-scale, publicly avail-
able medical text datasets that are suitable for pre-
training models, and real-world, private datasets are
often small-scale and imbalanced. As a result, one
of the biggest challenge in building deep learning-
based NLP systems for biomedical corpora is the
availability of public datasets (Wang et al., 2018).

To tackle this problem, we present Medical
Dataset for Abbreviation Disambiguation for Natu-
ral Language Understanding (MeDAL)1, a large
dataset of medical texts curated for the task of
medical abbreviation disambiguation, which can be
used for pre-training natural language understand-
ing models. Figure 1 shows an example of sample
in the dataset, where the true meaning of the abbre-
viation ‘DHF’ is inferred from its context, and Fig-
ure 2 shows the pretraining framework. Although
this dataset can be used for building abbreviation-
expansion systems, its main purpose is to enable

1https://github.com/BruceWen120/medal

... for obtaining bovine liver DHF reductase in high yield and ...

... for obtaining bovine liver  dihydrofolate  reductase in high yield and ...
Original text:

Sample in MeDAL:

Disambiguate:

... for obtaining bovine liver  dihydrofolate  reductase in high yield and ...

dengue hemorrhagic fever
dihydroxyfumarate diastolic heart failure

Figure 1: A sample in the MeDAL dataset.

effective pre-training and improve performance on
downstream tasks during fine-tuning.

The motivation behind using abbreviation disam-
biguation as the pre-training task is two-fold. First,
abbreviations are widely used in medical records by
healthcare professionals and can often be ambigu-
ous (Xu et al., 2007; Islamaj Dogan et al., 2009).2

The ubiquitousness of abbreviations poses a restric-
tion on building deep learning models for medical
tasks, such as mortality prediction (Grnarova et al.,
2016) and diagnosis prediction (Li et al., 2020).

Second, we believe that understanding natu-
ral language in a knowledge-rich domain such as
medicine requires understanding of domain knowl-
edge at some level, similar to how humans can
understand medical text only after receiving medi-
cal training. The abbreviation disambiguation task
enables models to use domain knowledge to un-
derstand the global and local context, as well as
the possible meanings of the abbreviation in the
medical domain.

Medical abbreviation disambiguation has long
been studied (Skreta et al., 2019; Li et al., 2019;
Finley et al., 2016; Liu et al., 2018; Joopudi et al.,
2018; Jin et al., 2019) and our work builds upon
many of them. In particular, our data generation
process is inspired by the reverse substitution tech-

2For example, ‘MR’ is a commonly used abbreviation
which has a number of possible meanings, including ‘morphi-
none reductase’, ‘magnetoresistance’ and ‘menstrual regula-
tion’, depending on the context.

https://github.com/BruceWen120/medal
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Figure 2: Diagram of using MeDAL for pre-training NLU models in medical domain.

nique (Skreta et al., 2019; Finley et al., 2016).
Our work differs from them in mainly two as-

pects. First, instead of trying to improve perfor-
mance on abbreviation disambiguation itself, we
propose to use it as a pre-training task for transfer
learning on other clinical tasks. Second, existing
datasets for medical abbreviation disambiguation,
for instance CASI (Moon et al., 2014), are small
compared to datasets used for general language
model pre-training, and as noted by Li et al. (2019)
some are erroneous. Thus, we chose to construct a
new dataset large enough for effective pre-training.

Our main contributions are: a) we present a large
dataset for pre-training on the task of medical ab-
breviation disambiguation. b) we provide empirical
evidence of the benefit of abbreviation pre-training
for a wide range of deep learning architectures.

2 Abbreviation Disambiguation

2.1 Dataset Summary
The MeDAL dataset consists of 14,393,619 articles
and on average 3 abbreviations per article. The
statistics of MeDAL are summarized in Table 1.

The distribution of number of words and the
distribution of number of abbreviations are shown
in Figure 3a and Figure 3b, respectively.

2.2 Dataset Creation
The MeDAL dataset is created from PubMed ab-
stracts which are released in the 2019 annual base-
line.3 PubMed is a search engine that indexes sci-
entific publications in biomedical domain. The
PubMed corpus contains 18,374,626 valid abstracts
with 80 words in each abstract on average.

We use reverse substitution (Skreta et al., 2019)
to generate samples without human labeling. We
identify full terms in text that have known abbre-
viations and replace them with their abbreviations.

3https://www.nlm.nih.gov/databases/download/
pubmed medline.html
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Figure 3: Distributions of number of words and number
of abbreviations.

For reverse substitution, mappings of abbreviations
to expansions established by Zhou et al. (2006)
are used. Mappings where the abbreviation maps
to only one expansion or the expansion maps to
multiple abbreviations are discarded, resulting in
24,005 valid pairs of mappings. Among the valid
mappings are 5,886 abbreviations, which means
each abbreviation maps to about 4 expansions on
average.

To avoid completely removing all expansions
and making them unseen to models, the expansions
are substituted with a pre-defined probability. For
our study, expansions are substituted with a proba-
bility of 0.3, although our processing scripts allow
for other values for future use.

2.3 Pretraining

The task of abbreviation disambiguation is treated
as a classification problem, where the classes are
all possible expansions.

https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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Considering the huge size of the dataset and the
associated computational cost, a subset of 5 million
data points are sampled from the complete corpus,
which are split into 3 million training samples, 1
million validation samples and 1 million test sam-
ples. This subset is used throughout this study.

When creating this subset, because the distri-
bution of true expansions is highly imbalanced,
a sampling strategy is adopted which essentially
removes classes in increasing order of frequency
in an iterative manner. The sampling strategy
works in the following way: from each class label,
NC = min(FC , T ) samples that have this label
are randomly selected, where FC is the frequency
of that class in the unsampled dataset, and T is a
threshold that is computed using Algorithm 1 such
that each class can have at most T samples, and∑

C NC is equal to the total number of samples N .
The strategy iteratively removes classes, and at

every iteration decreases N ′ (which corresponds to
the number of remaining samples) and L (which
corresponds to the number of labels remaining).
Then, the rate r is calculated based on how many
classes L can fit in the remaining N ′ if each re-
maining L has exactly r samples. In this way, it
is ensured that the moment the current class fre-
quency fC being iterated is greater than the desired
rate r, the sampling stops.

Algorithm 1 Compute threshold T

Require: array of class frequency f , N > 0
Sort f in increasing order
L← length(f)
N ′ ← N
for each fC ∈ f do
N ′ ← N ′ − fC
L← L− 1
r = round(N ′/L)
if fC ≥ r then

return r + 1
end if

end for

3 Evaluation Tasks

Mortality Prediction As a downstream task to
evaluate models’ performance in clinical settings,
mortality prediction aims at predicting the mor-
tality of a patient at the end of a hospital admis-
sion, using ICU patient notes. The mortality predic-
tion dataset is generated from MIMIC-III (Johnson

total # of articles 14,393,619
median # of words 150
mean # of words 152.47

median # of abbreviations 2
mean # of abbreviations 3.04

Table 1: Statistics of the MeDAL dataset

et al., 2016). Medical notes in this MIMIC-III com-
prise of free-form text documents written by nurses,
doctors, and many types of specialists, and are writ-
ten throughout the patient’s stay. Only notes writ-
ten by physicians and nurses at least twenty-four
hours before the end of the discharge time are used,
for the goal is to accurately predict whether a pa-
tient is at risk of dying by the end of the admission.
In order to balance positive and negative samples
(roughly 10% of patients expire at the end of an
admission) while keeping as much text diversity as
possible, we sample at most four notes from each
surviving patient.

The dataset generated has a total of 137,607 neg-
ative samples and 138,864 positively-labelled notes.
Then, using stratified random splitting, we selected
75%/10%/15% of the patients to be included in the
training/validation/test splits. As an example of
the ubiquitousness of abbreviations, ‘MR’ appears
1,612 times in 1,366 samples in the test set alone.

Diagnosis Prediction Similar to mortality pre-
diction, diagnosis prediction aims to predict the di-
agnoses associated with a hospital admission from
medical notes written during the admission. The
same MIMIC-III medical notes and the same splits
from mortality prediction are used, with seven
training samples that have no diagnosis recorded
removed. In MIMIC-III, diagnoses are recorded
with International Classification of Diseases (ICD)
codes, which are standardized codes designed for
billing purposes. We discard minor distinctions of
ICD codes under the same category by taking the
first three digits (for codes that start with ‘E’ or ‘V’
the first four digits) of ICD codes.4 After grouping,
there are 1,204 unique diagnosis codes.

Top-k recall is used for evaluation of models
based on the similarities to real-life medical deci-
sion making (Choi et al., 2015), which is defined
as the number of diagnosis codes in that admis-
sion that are present in the top k predictions of the

4For example, codes 4800 to 4809 represent viral pneu-
monia of different causes, and they are grouped into one ICD
code 480.
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Figure 4: Attention output layer for mortality and diag-
nosis prediction.

model, divided by the number of diagnosis codes
in that admission in total. Note that since most ad-
missions have multiple diagnoses, a small k would
result in a top-k recall less than 100% even if all of
the top k predictions are correct.5 On our dataset,
the highest possible top-5, top-10 and top-30 recalls
are 50.17%, 79.48% and 99.88% on validation set,
and 49.75%, 79.23% and 99.79% on test set.

4 Models

The models are first pre-trained on the MeDAL
dataset, then pre-trained weights are used to initial-
ize models for training on the downstream tasks.
We compared this training strategy with training re-
spective models from scratch to validate the benefit
of pre-training.

LSTM BiLSTM is used as a baseline model.
Specifically, the BiLSTM consists of three layers
with hidden size of 512. Pre-trained Fasttext model
is used for word embeddings (Bojanowski et al.,
2017).

LSTM + Self Attention To allow for leveraging
information extracted by LSTM in a flexible man-
ner, soft attention layers are added on top of LSTM.
The attention layer is largely based on the soft at-
tention by Bahdanau et al. (2014). Its detailed
formulation is included in Appendix A.

Transformers We used the pre-trained
ELECTRA-small discriminator (Clark et al.,
2020) as an example of Transformer-based
(Vaswani et al., 2017) model and, since it was
not pre-trained on medical text, we compared
its performance with or without pre-training on
abbreviation disambiguation.

5For instance, if an admission has 10 diagnoses codes, the
highest possible top-5 recall for it would be 5/10 = 50%
which is when all of the top 5 predictions are correct.
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Figure 5: Validation accuracy on abbreviation disam-
biguation. ‘SA’ stands for self attention layer.
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Figure 6: Top-5 recall on diagnosis prediction valida-
tion set. ‘SA’ stands for self attention layer. ‘max’ rep-
resents max-pooling output layer. ‘(s)’ and ‘(p)’ indi-
cates whether the model is trained from scratch or pre-
trained, respectively.

Task-specific Output Layer Depending on the
task, the output layer can take various forms. For
abbreviation disambiguation, the output layer is a
fully-connected layer, whose input is the hidden
vector at the location of the abbreviation from the
previous layers and output space is all possible
expansions. For mortality or diagnosis prediction
which are not associated with any specific token,
hidden vectors from the previous layers need to
be first aggregated into one vector. This can be
achieved by either a pooling layer or an additional
attention layer with a learnable query vector. Then
the output layer is a fully connected layer that takes
the aggregated vector as input. The attention out-
put layer is illustrated in Figure 4. In preliminary
experiments we found attention output layer gen-
erally improves models’ performance compared to
max-pooling output layer, and therefore it is used
throughout the rest of the study unless otherwise
noted.

5 Results

Models’ performance on the pre-training task, ab-
breviation disambiguation, is shown in Figure 5.
As the goal is not to optimize performance on this



134

Model Validation accuracy
Pretrained From scratch

LSTM 82.67% 82.17%
LSTM+SA 82.46% 80.29%
ELECTRA 84.19% 83.92%

Test accuracy
LSTM 82.80% 82.61%

LSTM+SA 82.98% 79.96%
ELECTRA 84.43% 83.25%

Table 2: Results on mortality prediction. Bold
font indicates the training strategy (pre-trained or
from scratch) that has higher accuracy.

task, Figure 5 serves to confirm the models are
properly pre-trained.

After pre-training, models are fine-tuned on the
two downstream tasks to evaluate the benefit of pre-
training. On the mortality prediction task, all three
models that are pre-trained perform better than their
from-scratch counterparts, shown in Table 2.

The benefit of pre-training is more significant
on diagnosis prediction, shown in Figure 6. Both
LSTM and LSTM + self attention perform consid-
erably better if they pre-trained. In fact, the two
models’ performance increase by more than 70%
relatively. While for ELECTRA the gain is not as
significant, pre-training leads to faster convergence
during fine-tuning.

On the two downstream tasks, experiment re-
sults show that pre-training improves ELECTRA’s
performance even when the model is already fully
pre-trained on non-medical texts and is among the
state-of-the-art, and bring the other models’ per-
formance close to ELECTRA’s. This shows that
pre-training on the MeDAL dataset can generally
improves models capabilities of understanding lan-
guage in medical domain. The complete results
can be found in Appendix C.

6 Conclusion and Discussion

In this work, we present MeDAL, a large dataset
on abbreviation disambiguation, designed for pre-
training natural language understanding models in
the medical domain. We pre-trained a variety of
models using common architectures and empiri-
cally showed that such pre-training leads to im-
provement in performance as well as faster conver-
gence when fine-tuning on two downstream clinical
tasks.
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